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Abstract. The verification of global properties (involving several components) is
difficult or impossible to achieve, due to combinatorial explosion problem, while
the verification of each component is easier to perform. Following the idea of Xie
and Browne [21], we propose to build an abstraction of a component already ver-
ified, starting from a subset of its specification described as CTL formulae. For
a component C and a formulae φ, the abstraction is a 3-valued Kripke structure,
which is smaller than the Kripke structure of C, and both model φ. This abstrac-
tion replaces the concrete component in the global properties verification, hence
it alleviates the state explosion problem. In this paper, we first set out our CTL-
based abstraction of a component, and present the algorithm to build an abstract
Kripke structure from a component and a subset of its specification CTL. Then we
show some results on abstract Kripke structure composition and model-checking.
Finally, we exhibit the benefits of this approach in model-checking by applying
this abstraction on a hardware system relating VCI components to a PI-bus.

1 Introduction

This work takes place in the context of hardware modular verification by model check-
ing ([3, 12]). Although this latest is not adequate to verify very complex systems, it
has been successfully used for medium-sized systems. More precisely, model-checking
techniques are well-suited for protocols verification. For instance, successful experi-
ments are described in [9, 19, 14] where the specification is expressed in temporal logic.
More recently, the idea of abstracting a component by a subset of its specification prop-
erties appears as a new method to alleviate the state space explosion problem. Xie and
Browne in [21] proposed a compositional model checking process integrating this idea
in the context of software engineering. Temporal properties (LTL) of a component are
specified, verified and packed with the component. The whole system is then checked
by using abstractions of all its components, each of which being built from already veri-
fied temporal properties and some environment assumption (also defined with temporal
logic). Afterward, the abstraction refinement is performed with a classical counterex-
ample guided abstraction refinement loop (CEGAR) [6]. But in [21], the details of the
algorithm computing the abstraction is not given. Büttner [4] adopts a similar abstrac-
tion based on CTL properties in the context of synchronized module composition. Its
abstract model of module is well suited to provide a cycle accurate abstraction to be
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used in micro-architecture verification. The abstraction is then synthesized in hardware
and embedded in a simulation environment.

In the present paper, we define a component abstraction based on the specifica-
tion of the component. Components are represented as Kripke structures, specification
and environment assumption are expressed as CTL formulas. We propose an algorithm
which build a component abstraction relatively to a subset of its specification. The ab-
straction is thus a direct translation from CTL formulas to an abstract Kripke structure.
Our verification process is the following :

– Each component is already specified and its CTL formulae are verified.
– We choose a global property to be checked on the whole system (encompassing

several components).
– For each component, we select a subset of its specification, useful for checking the

global property.
– For each component, we compute a preliminary abstraction directly from CTL for-

mulas included in its specification.
– We compose all component abstractions and obtain an abstraction of the whole

system, that is the seed of a counter-example guided abstraction refinement process
(CEGAR).

– After having performed the model checking, if the abstraction needs to be refined,
we simply add a new formula from the specification of one (or several) components.

The main contribution of this work is the definition of an algorithm building auto-
matically abstraction from a subset of the component specification. Several works study
the translation of temporal logic into automaton. Kupferman and al. [17] state a linear
translation from branching temporal logic into alternating tree automatas. This implies
an automata-based model checking algorithm of linear running time for CTL. More
recently, Dams and Namjoshi [8] propose to use tree automata as abstraction for all
unwinding of a Kripke structure. Our goal is different : we want to obtain an abstrac-
tion that can be plugged into the platform under verification. The model of Abstract
Kripke Structure (close to the L-valued Kripke structure in [13]) is well-suited for such
a purpose: we can combine concrete and abstract components in a unified way.

The abstract structure we obtain is obviously less precise than the concrete one.
We need to represent less information. The idea is to use multi-valued logic as in [1]
or [5, 13] to represent the lack of information due to the abstraction. In [1], Bruns and
Godefroid assigned a third value for the signal that does not have a truth value true or
false in the abstraction. They interpret it with the value ”unknown” (or ⊥). In our case,
during abstraction of a component relatively to some properties it verifies, the value
of abstracted signals is interpreted as “don’t care”. During the verification of a global
property (encompassing several abstracted components), the value of abstracted signal
is interpreted as “unknown”. Furthermore, in our approach we do not need a fourth
value to represent possible inconsistencies as described in [5]. Instead of inserting the
third value of interpretation of atomic proposition in the abstract Kripke structure, we
extend the set of atomic propositions and the associated labeling function.

The paper is organized as follows. First, we recall some preliminary definitions on
Kripke structure and introduce the abstract Kripke structure model in Section 2. Then
we describe, in Section 3, the algorithm which translates a CTL formula into abstract
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Kripke structure and the composition of such structures. Section 4 states the link be-
tween CTL formulas, abstract and concrete structure. Finally, Section 5 studies the im-
pact of the abstraction in the verification process of a system encompassing: Virtual
Component Interface IP’s (VCI[10]), a PI-bus ([16]) and VCI-PI protocol converter.

2 Modeling Abstraction of Component

2.1 Modeling a component

Generally, a specification holds for a component when some assumption about the be-
haviour of the environment holds. Thus we model a component as a description of its
behaviour, its specification and its assumptions about the environment.

Definition 1. A component is a tuple C = 〈K,P,A〉 where K : a fair Kripke structure, P
and A are disjoint sets of CTL formulae.

We model the behaviour of one component, or of a composition of components as
a fair Kripke structure [7]. A fair Kripke structure is 6-tuple K = 〈AP,S,S0,L,R,F〉
where : AP is a finite set of atomic propositions; S0 ⊆ S is the set of initial states; L :
{l0, . . . , l|AP|−1} is a vector of | AP | interpretation functions; R ⊆ S×S is the transition
relation : ∀s ∈ S ∃s′ ∈ s s. t. R(s,s′); F ⊆ 2S is a set of fairness constraints (generalized
Büchi acceptance condition).

Let s and s′ be in S, we write s → s′ as an equivalent notation of (s,s′)∈ R. A path in
K from s is an infinite sequence of states, π = s0,s1, . . . such that s0 = s and ∀i si → si+1.

Definition 2. An interpretation function l associates a truth value with each atomic
proposition for a given state: l : S×AP →{true, false}.

We call L : S → 2AP the function that associates each state with the set of atomic
propositions that are true in that state.

In this paper we restrict to the positive normal form of CTL\X formulae. Negations
only apply to atomic propositions. We define the CTL fragment we consider as follows :
p is an atomic proposition, ϕ,ϕ1, ϕ2 are state formulae and ψ is a path formula.

State formula : ϕ ::= true | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Eψ | Aψ with p ∈ AP
Path formula : ψ ::= Xϕ | Fϕ | Gϕ | ϕ1 U ϕ2 | ϕ1 W ϕ2

The semantic of CTL formulae is defined on the infinite execution tree obtained by
unrolling the Kripke structure [7]. We have K |= ϕ iff for all s in S0 K,s0 |= ϕ.

2.2 Abstract Kripke Structure

To model a component abstraction we need to represent two additional information
about the truth value of the atomic proposition. The first one is absence of knowledge
about the atomic proposition we do not care for the verification. The second one is in-
consistency generated by the abstraction itself. Unlike [2] for 3-valued model checking
, or [5] with 4-valued model-checking, we do not represent these new values with new
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symbols. Instead, we extend the set of atomic proposition AP of a Kripke structure. AP
is now the set of atomic propositions and their negations. In our abstract Kripke struc-
ture (AKS), for all p in AP, we have p also in AP. Actually, we represent the knowledge
of all atomic propositions in each state.

The ”bottom truth value” (⊥) in [2, 5] is represented here by : l(s, p) = false and
l(s, p) = false ; the ”top truth value” (>) of the 4-valued logic is expressed here by
l(s, p) = true and l(s, p) = true. The case where p = ¬p is the traditional one. In the
continuation of the paper we will show that fourth value is not useful in our work.

Definition 3. An Abstract Kripke Structure (AKS) is a tuple A = 〈AP,S,S0,L ,R,F〉.
S,S0,L ,R,F are defined as above and AP is the union of the set of positive atomic
propositions and the set of negative atomic propositions.

We define an inconsistent state as a state where at least one atomic proposition p is
true and p is also true.
Definition 4. An inconsistent state s is a state where there exists p ∈ AP such that
p ∈ L(s) and p ∈ L(s).

Definition 5. An inconsistent path contains at least one inconsistent state.

3 From CTL to an Abstract Kripke Structure

In this section, we present the construction of an AKS Kϕ from a CTL formula ϕ. Then
we prove that Kϕ is a model of ϕ. Moreover, this abstracted Kripke structure is less
constrained than any concrete component verifying ϕ.

3.1 Preliminary definitions

We need to characterize a function that extends the vector of interpretation functions for
a structure. During the construction of an AKS K’ from an AKS K, this case may occur
when we extend the set of atomic propositions, or when we extend the set of states.
The two following definitions describe the extension of each function l in the vector
of interpretation functions L when increasing the set of atomic propositions, and when
increasing the set of states.
Definition 6. Atomic proposition extension
Let L be a vector of |AP | interpretation functions, let AP′ be a set of atomic propositions
(AP′∩AP = /0) and S a set of states. L+AP′

is a vector of interpretation functions over
AP′∪AP such that :
∀p ∈ AP,∀s ∈ S, l(s, p) and l(s, p) are unchanged ; ∀p ∈ AP′,∀s ∈ S, l(s, p) = false and
l(s, p) = false.

Definition 7. State extension
Let L defined on S ×AP and L′ defined on S′ ×AP be two vectors of interpretation
functions related to the same set of atomic propositions. L′′ = L · L′ is a vector of in-
terpretation functions related to AP for each state s ∈ S∪S′ such that l′′(s, p) = l(s, p)
(resp. l′(s, p)) if s ∈ S (resp s ∈ S′) and l′′(s, p) = l(s, p) (resp. l′(s, p)) if s ∈ S (resp
s ∈ S′)
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Definition 8. Concatenation function
Let K1 and K2 be two abstract Kripke structures to be composed, L = L1 ∗L2 is a vector
of | AP1∪AP2 | labeling functions for each state (s1,s2) ∈ S1 ∪S2 and such that :

– ∀p ∈ AP1∩AP2, l((s1,s2), p) = l1(s1, p)∨ l2(s2, p) and l(s, p) = l1(s1, p)∨ l2(s2, p)
– ∀p ∈ AP1 (resp. AP2), p 6∈ AP1 ∩AP2, l((s1,s2), p) = l1(s1, p) (resp. l2(s2, p)) and

l(s, p) = l1(s1, p) (resp. l2(s2, p)).

Synchronous composition is closed to the parallel composition of [12] and is de-
fined below. States of the composition are pair of component states. Paths leading to
inconsistent states in the AKS have no equivalent path in the concrete Kripke structure,
hence inconsistent states are excluded. The fairness constraints ensure that a path in
K1 ‖ K2 is fair if and only if its projection to each component results in a fair path.

Definition 9. Let K1 = 〈AP1,S1,S01 ,L1,R1,F1〉 and K2 = 〈AP2,S2,S02 ,L2,R2,F2〉 be
two AKS. The parallel composition of K1 and K2 denoted K1 ‖ K2 is the structure K
defined as follows :

AP = AP1∪AP2
S ⊆ (S1 ×S2)\{(s1,s2) | l((s1,s2), p) = true and l((s1,s2), p) = true}
S0 = (S01 ×S02)
L = L1 ∗L2
R ⊆ S1 ×S2 → S1 ×S2, that is R((s1,s2),(t1, t2)) iff R1(s1, t1) and R2(s2, t2)
F ⊆ {(P1×S2)∩S | P1 ∈ F1}∪{(S1×P2)∩S | P2 ∈ F2}

3.2 Building AKS from CTL formulae

In this section, we present the construction algorithm of an abstract Kripke structure
from a CTL\X formula. Without loss of generality, CTL formulas are rewritten as fol-
lows :

– AG( f ∧g) = AG( f )∧AG(g); EG( f ∧g) = EG( f )∧EG(g)
– A[( f ∧g)Uh] = A[ fUh]∧A[gUh]; E[( f ∧g)Uh] = E[ fUh]∧E[gUh]

We need to define two special states : sT RUE and sNEG, each of which having a
unique outgoing self-loop transition. The execution tree obtained by unrolling tran-
sitions from sT RUE is an abstraction of any execution tree that has no impact on the
validity of the formula. The same applies for state sNEG.

State sT RUE is reachable from a state s validating the formula in the initial state,
whatever the future of s is. State sNEG is only reachable from a state from which there
exists another transition leading to a state where the formula can be evaluated. In states
sT RUE and sNEG the truth value of atomic propositions (and their negation) is undefined
(L(sT RUE) = /0∨L(sNEG) = /0). These values can be interpreted as ”don’t care” values
since they do not influence the satisfaction of the formula.

As an example, Fig. 1 presents the AKS obtained from the CTL formula EF p. It
contains two initial states s0 and s1 and the states sT RUE and sNEG. In state s1 p is true
then EF p is true, the subsequent execution tree are not relevant for the evaluation of



6 Cécile Braunstein and Emmanuelle Encrenaz

sTRUE

sNEG

p ¬p
s1s0

KEF p

Fig. 1. The AKS obtained for the CTL formula EF p. Initial states are s0 and 1. The interpretation
function is : l(s0, p) = false and l(s0, p) = false; l(s1, p) = false and l(s1, p) = false

the formula. This is represented by the transition from s1 to sT RUE . At each depth of
the execution tree obtained from s0, state s0 can reach state s1, hence it satisfies EF p.
Other future executions from s0 are not significant and are abstracted by the execution
tree obtained by unrolling state sNEG.

Moreover, we define the sets SpredT and SpredN the subsets of S such that for all
s ∈ SpredT , s → sT RUE , and for all s ∈ SpredN , s → sNEG.

The following definition presents the rules for building an AKS with respect to a
property ϕ. The basic cases are depicted on Fig.2, 3, 4. For a state s, all atomic proposi-
tions that do not appear in the state label are such that l(s, p) = false and l(s, p) = false.

Definition 10. Construction of AKS Kϕ is inductively defined as follows. p and q are
atomic propositions, ϕ1, ϕ2 are CTL formulae.

ϕ = p , we construct
Kp = 〈{p, p},{s0,sT RUE},{s0},{l} ,{R(s0,sT RUE), R(sT RUE ,sT RUE)},{sT RUE}〉with
l(s0, p) = true and l(s0, p) = false

ϕ = p , we construct
Kp = 〈{p, p},{s0,sT RUE},{s0},{l}, {R(s0,sT RUE),R(sT RUE ,sT RUE)},{sTRUE}〉with
l(s0, p) = false and l(s0, p) = true

ϕ = ϕ1 ∨ϕ2 , let Kϕ1 = 〈APϕ1 ,Sϕ1 ,S0ϕ1
,Lϕ1 ,Rϕ1 ,Fϕ1〉 and

Kϕ2 = 〈APϕ2 ,Sϕ2 ,S0ϕ2
,Lϕ2 ,Rϕ2 ,Fϕ2〉 be the AKS representing ϕ1 and ϕ2, we con-

struct Kϕ = 〈APϕ1 ∪APϕ1 ,Sϕ1 ∪Sϕ2 ,S0ϕ1
∪S0ϕ2

,L+AP2
ϕ1 ·L+AP1

ϕ2 ,Rϕ1 ∪Rϕ2 ,Fϕ1 ∪Fϕ2〉.
ϕ = ϕ1 ∧ϕ2 , let Kϕ1 = 〈APϕ1 ,Sϕ1 ,S0ϕ1

,Lϕ1 ,Rϕ1 ,Fϕ1〉 and
Kϕ2 = 〈APϕ2 ,Sϕ2 ,S0ϕ2

,Lϕ2 ,Rϕ2 ,Fϕ2〉 be the AKS representing ϕ1 and ϕ2, Kϕ is
defined as the parallel composition of Kϕ1 and Kϕ2 denoted Kϕ1 ‖ Kϕ2 . We add the
transition rules :

– if Rϕ1(s1,sT RUE) and Rϕ2(s2,sT RUE) then Rϕ((s1,s2),sT RUE)
– if Rϕ1(s1,sNEG) and Rϕ2(s2,sT RUE) or Rϕ2(s2,sNEG) then Rϕ(sϕ,sNEG)

ϕ = AFϕ1 , let Kϕ1 = 〈APϕ1 ,Sϕ1 ,S0ϕ1
,Lϕ1 ,Rϕ1 ,Fϕ1〉 be the AKS representing ϕ1, we

construct Kϕ by adding a new state s, whose all outgoing fair paths will eventually
reach the initial states of Kϕ1 (which verify ϕ1).
Kϕ = 〈APϕ1 ,{s}∪ Sϕ1 ,{s}∪ S0ϕ1

,Lϕ,Rϕ1 ∪{R(s,s)}∪ {R(s,si) | ∀si ∈ S0ϕ1
},Fϕ1〉

where Lϕ is the state-extension of Lϕ1 with Sϕ = Sϕ1 ∪{s}.
ϕ = EFϕ1 , let Kϕ1 = 〈APϕ1 ,Sϕ1 ,S0ϕ1

,Lϕ1 ,Rϕ1 ,Fϕ1〉 be the AKS representing ϕ1, we
construct Kϕ by adding a new state s, from which there exists at least one outgoing
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p ¬p sTRUE sTRUE¬p p

p ¬p

q ¬q

sTRUE

p ¬p
q ¬q sTRUE

Kp Kp Kp∨q Kp∧q

Fig. 2. The four AKS representing Kp, Kp, Kp∨q and Kp∧q respectively

path eventually reaching the initial states of Kϕ1 (which verify ϕ1), and one outgo-
ing path reaching state sNEG (hence s ∈ SpredN). We construct
Kϕ = 〈APϕ1 ,{s,sNEG}∪Sϕ1 ,{s}∪S0ϕ1

,Lϕ1 ,Rϕ1 ∪{R(s,s)}∪R′,Fϕ1 ∪{sNEG}〉 such
that R′ = {R(s,si) | ∀si ∈ S0ϕ}∪ {R(s,sNEG),R(sNEG,sNEG)} and Lϕ is the state-
extension of Lϕ1 with Sϕ = Sϕ1 ∪{s}.

ϕ = AGϕ1 , let Kϕ1 = 〈APϕ1 ,Sϕ1 ,S0ϕ1
,Lϕ1 ,Rϕ1 ,Fϕ〉 be the AKS representing ϕ1. We

construct Kϕ = 〈APϕ1 ,Sϕ,S0ϕ1
,Lϕ,Rϕ,Fϕ1〉 such that :

– Sϕ is defined as follows: Let S’ be the set of new intermediary states : for each
s0 ∈ S0ϕ1

∩ SpredNϕ1
, we associate a new intermediary state s′. We have Sϕ =

Sϕ1 ∪S′ \{sNEG,sT RUE}
– Lϕ is the state-extension of Lϕ1 with Sϕ = Sϕ1 ∪S′, such that ∀p∈ APϕ1 ,∀s′ ∈ S′

corresponding to a state s0 ∈ S0ϕ1
l(s′, p) = l(s0, p) and l(s′, p) = l(s0, p)

– Rϕ is defined such that :
• for each state s ∈ Sϕ1 ∩SpredTϕ1

, remove the transition from s to sT RUE , and
add a new transition from s to each initial state.

• for each state s ∈ S0ϕ1
∩SpredNϕ1

, a corresponding state s′ has been created.
Remove transition from s to sNEG and add a transition from s to s′.

• for each newly created intermediary state s′ from s0, for each transition
Rϕ1(s0,s), add a transition from s′ to each s.

– Fϕ = Sϕ.
ϕ = EGϕ1 , let Kϕ1 = 〈APϕ1 ,Sϕ1 ,S0ϕ1

,Lϕ1 ,Rϕ1 ,(S0ϕ1
∩SpredTϕ1

)∪{sNEG}〉 be the AKS
representing ϕ1. We construct Kϕ by changing Sϕ1 into Sϕ and Rϕ1 into Rϕ as fol-
lows : first remove state sT RUE , and if state sNEG were not present in Sϕ1 , add it.
Then for each state s ∈ SpredTϕ1

, remove transition from s to sT RUE , add a transition
from s to each initial state (in S0ϕ1

) and a transition from s to sNEG.
ϕ = A[ϕ1Uϕ2] ,

let Kϕ1 = 〈APϕ1 ,Sϕ1 ,S0ϕ1
,Lϕ1 ,Rϕ1 ,Fϕ1〉, Kϕ2 = 〈APϕ2 ,Sϕ2 ,S0ϕ2

,Lϕ2 ,Rϕ2 ,Fϕ2〉 be
the AKS representing ϕ1 and ϕ2,
let Kϕ1∧ϕ2 = 〈APϕ1∧ϕ2 ,Sϕ1∧ϕ2 ,S0ϕ1∧ϕ2

,Lϕ1∧ϕ2 ,Rϕ1∧ϕ2 ,Fϕ1∧ϕ2〉 be the AKS repre-
senting ϕ1 ∧ϕ2. Kϕ = 〈APϕ,Sϕ,S0ϕ ,Lϕ,Rϕ,Fϕ〉 is built such that :

– APϕ = APϕ1 ∪APϕ2
– Sϕ is defined as follows: Let S′ be the set of new intermediary states: for each

s0 ∈ S0ϕ1
∩ SpredNϕ1

, we associate a new intermediary state s′. We have Sϕ =
Sϕ1 ∪S′∪Sϕ2 ∪Sϕ1∧ϕ2 .

– S0ϕ = S0ϕ1
∪S0ϕ2

∪S0ϕ1∧ϕ2
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p ¬p sTRUE p ¬p sTRUE

p ¬p

sNEG

sTRUE

KAF p KAGp KEGp

Fig. 3. The three AKS representing KAF p, KAGp, KEGp respectively. State sT RUE is removed in
KAGp and KEGp

– Lϕ = L+AP2
ϕ1 ·L+AP1

ϕ2 is the composition of atomic proposition-and state-extensions
and all states s′ ∈ S′ are such that : l(s′, p) = l(s0, p) and l(s′, p) = l(s0, p)

– Rϕ is defined as the union of Rϕ2 , Rϕ1∧ϕ2 and R′
ϕ. The latest transition set is

obtained by the following transformations of Rϕ1 :
1. for each state s ∈ Sϕ1 ∩SpredTϕ1

, remove transition from s to sT RUE , and add
a new transition from s to each initial state of S0ϕ1

.
2. for each state s ∈ Sϕ1 ∩SpredNϕ1

, a corresponding state s′ has been created.
Remove transition from s to sNEG and add a transition from s to s′.

3. for each newly created intermediary state s′, add a transition from s′ to
each initial state in S0ϕ1

.
4. from each state s ∈ Sϕ1 \SpredTϕ1

∪S′ add a transition from s to each initial
state in S0ϕ1∧ϕ2

5. from each states s ∈ Sϕ1 ∩ SpredTϕ1
add a transition from s to each initial

state in S0ϕ2
.

– Fϕ = Fϕ2 ∪Fϕ1∧ϕ2
ϕ = E[ϕ1Uϕ2] ,

let Kϕ1 = 〈APϕ1 ,Sϕ1 ,S0ϕ1
,Lϕ1 ,Rϕ1 ,Fϕ1〉, Kϕ2 = 〈APϕ2 ,Sϕ2 ,S0ϕ2

,Lϕ2 ,Rϕ2 ,Fϕ2〉 be
the AKS representing ϕ1 and ϕ2,
let Kϕ1∧ϕ2 = 〈APϕ1∧ϕ2 ,Sϕ1∧ϕ2 ,S0ϕ1∧ϕ2

,Lϕ1∧ϕ2 ,Rϕ1∧ϕ2 ,Fϕ1∧ϕ2〉 be the AKS repre-
senting ϕ1 ∧ϕ2. We built Kϕ = 〈APϕ,Sϕ,S0ϕ ,Lϕ,Rϕ,Fϕ〉 such that

– APϕ = APϕ1 ∪APϕ2
– Sϕ = Sϕ1 ∪Sϕ1∧ϕ2 ∪Sϕ2 ∪{sNEG}
– S0ϕ = S0ϕ1

∪S0ϕ2
∪S0ϕ1∧ϕ2

– Lϕ = L+AP2
ϕ1 ·L+AP1

ϕ2
– Rϕ is defined as the union of all transitions of Rϕ2 and Rϕ1∧ f2 , {R(sNEG,sNEG)}

and R′
ϕ. The latest transition set is Rϕ1 with the following transformations :

1. ∀s ∈ Sϕ1 ∩ SpredTϕ1
, remove transitions from a state s to sT RUE and add a

transition from s to all states in S0ϕ1
∪S0ϕ2

∪{sNEG}.
2. ∀s ∈ Sϕ1 \SpredTϕ1

add a transition from s to each initial state of S0ϕ1∧ϕ2
– Fϕ = Fϕ2 ∪Fϕ1∧ϕ2 ∪{sNEG}

ϕ = A[ϕ1Wϕ2] proceeds as A[ϕ1Uϕ2] except that the set of states Sϕ1 is not a part of
the fairness of Kϕ.

ϕ = E[ϕ1Wϕ2] proceeds as E[ϕ1Uϕ2] except that the set of states Sϕ1 is not a part of
the fairness of Kϕ.
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p ¬p q ¬q

p ¬p
q ¬qsTRUE

sTRUE

q ¬q
p ¬p

sTRUE
p ¬p q ¬q

sNEGsTRUE

KA[pUq] KE[pUq]

Fig. 4. The two AKS representing KA[pUq] and KE[pUq] respectively

Definition 11. Let C = 〈K,P,A〉 be a component, the component abstraction of C with
respect to ϕ ⊆ P is a tuple Cϕ = 〈Kϕ,ϕ,KA〉 where Kϕ and KA are built following the
algorithm of Def. 10.

4 AKS’s properties

4.1 Properties of AKSϕ

This section deals with the relation between a formula ϕ expressed in a positive normal
form of CTL\X, a concrete component C with ϕ ⊆ P and an abstract component Cϕ.
First, we state that for each formula ϕ defined as in Section 2, we can construct an AKS
Kϕ such that Kϕ |= ϕ. Then, we prove that there exists a simulation relation between
K the Kripke structure of concrete component satisfying ϕ and Kϕ the abstract Kripke
structure. In order to alleviate the reading, long proofs are given in appendix.

Property 1. The AKS Kϕ built by definition 10 is such that ∀s0 ∈ S0ϕ , Kϕ,s0 |= ϕ.

Proof. (Sketch)
The complete proof is given in appendix The proof proceeds by induction over the
length of the formula.

As in [1, 20], interpretation vector L induces a partial ordering (v) of states accord-
ing to the information level of each atomic proposition in each state : s′ v s if there
exists p ∈ AP such that p is less constrained in s′ than in s and for all q ∈ AP and q 6= p,
q has the same truth value in s and in s′. As in their work we deduce that there exists a
simulation relation between K and Kϕ, denoted by K � Kϕ, and � is a preorder.

4.2 Composition of component abstractions

After having abstracted all components with a subset of specification, we want to com-
pose all these abstractions in order to obtain an abstraction of the complete system. First
of all, we need to ensure that the components to be combined are compatible: their out-
put signals sets are disjoint. The systems we consider are hardware components, that
can not write simultaneously to same output signal. An arbitration policy guarantees the
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exclusive driving of shared output signals (as bus). This corresponds to a multiplexer
based architecture.

The whole system abstraction is thus obtained by composing all the abstracted com-
ponents with the parallel composition (Def. 9). By consequence of compatible compo-
nent the composition of all abstractions can not introduce new inconsistent states. Now,
we want to prove that the composition of our abstraction simulates the whole concrete
system. Each component is abstracted by some CTL properties, the proof proceeds by
applying an assume-guarantee reasoning [15].

Assumption : We can compose a component Ci with other components Ck . . .Cm if
and only if the set of specification of components Ck . . .Cm implies the assumption of
Ci:

S

j=k...m Pj =⇒ Ai [18].

Property 2. Let C1, . . ., Cn be concrete components 〈Ki,Pi,Ai〉, and Cϕ1 , . . ., Cϕn be
abstract components 〈Kϕi ,ϕi,KAi〉 with ∀i, ϕi ⊆ Pi. Let Σ = C1|| . . .Cn be a concrete
system and ΣA = Cϕ1 || . . .Cϕn be the abstract model, then ΣA simulates Σ.

Proof. Directly obtained by applying assume-guarantee reasoning. Example for two
components C1 and C2:

K1 ‖ KA1 � K1 (property of synchronous composition)
K1 � Kϕ1 (� : simulation relation and preorder)

K2 ‖ KA2 � K2
K2 � Kϕ2

KA1 � Kϕ2
KA2 � Kϕ1

K1 ‖ K2 � Kϕ1 ‖ Kϕ2

4.3 Model checking the abstract complete system

Up to now, during the abstraction of one component with respect to some local property
ϕ, signals not influencing the satisfaction of ϕ, were considered as being assigned with a
”don’t care” value. During the verification of a global property ψ (encompassing several
components), the value of such signals are now interpreted as ”unknown”.

To this purpose, we extend the possible truth values true and false, with the values
”unknown” (unkw) and ”inconsistent” (inct). The value ”unknown” is assigned when
in a state s, neither p nor p holds. The value ”inconsistent” is associated with a state s
where both p and p hold. In these cases we can not state whether s |= p or s 6|= p. We
have the following rules :

– [s |= p] = true if l(s, p) = true and l(s, p) = false
– [s |= p] = false if l(s, p) = false and l(s, p) = true
– [s |= p] = unkw if l(s, p) = false and l(s, p) = false
– [s |= p] = inct if l(s, p) = true and l(s, p) = true

By definition 9 and 10, the last item does not appear in the AKS.
We choose the Kleene strong 3-valued propositional logic like Bruns and Gode-

froid, so we can use the model checking algorithm described in [1]. The truth ordering,
denoted by <, over these values is false < unkw < true.
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The model checking algorithm proposed in [1] is based on a classical 2-valued
model checker algorithm. The abstract Kripke structure is checked twice. First check
the structure with a pessimistic choice in which the ”unknown” value is understood as
false. Then check with an optimistic interpretation in which the ”unknown” value is
understood as true. The model checker result is a pair of truth valued over 2-valued
interpreted in 3-valued sense described as follows. We denote mc = (x,y) the model
checker result, x is the pessimist value and y the optimist one.

[K,s |= ψ] =







true iff mc = (true, true)
false iff mc = (false, false)
unkw iff mc = (false, true)

Property 3. Model checking ACTL formulas on abstract system is conservative
Let Σ be a concrete system and ΣA be the abstract system obtained by abstracting some
of (or all) components of Σ. For all formulae ψ in ACTL (positive CTL formulae with
only the universal path quantifier), [ΣA |= ψ] = true ⇒ [Σ |= ψ] = true

Proof. (Sketch) Directly follows from the existence of a simulation relation between a
concrete and abstract Kripke structures, and property 2.

5 case study

In this section, we present an experiment illustrating our verification methodology.
Given a global property (in ACTL) to be verified on a system encompassing several
components, each component is abstracted according to selected properties (in CTL) of
its specification, and the global property is verified on the abstract complete system.

Our system interconnects VCI compliant components ([10]) through a physical PI-
bus ([16]). Our aim is to verify with model checker VIS ([11]) that the overall archi-
tecture correctly transmits messages with successive translations, from VCI to PI and
from PI to VCI in both dierections.

Using such devices, we are able to connect various VCI compliant-cores through a
PI-bus. The simplest architecture is shown in Fig. 5. We have a VCI initiator sending
requests and a VCI target responding to it. The PI protocol distinguishes the component
initiating a bus transfer, named master, and the component responding to a transfer,
named slave. A communication from (VCI) initiator to the (VCI) target is shown Fig.
5.

P
I

B
U
S

VCI

TARGETINITIATOR

VCI VCI-PI

master

wrapper

VCI-PI

slave

wrapper

Arbitrer

Bus

(5)

(3)

(4)

(2)

(3)

(1)

(10) (9) (8) (7)

(6)

Fig. 5. The architecture performing the VCI-PI-VCI translation and illustration of a VCI transfer
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Here we focused on the following three global properties (extended to n initiators
and m targets) :

Property 1: AG(initiator[i] state = TRANS ⇒ AF (bus arbiter signal gnt[i] = 1))
Property 2: AG(initiator[i] state = TRANS ⇒ AF (master wrapper[i] state = WRITE))
Property 3: AG(initiator[i] state = TRANS ⇒ AF (target[j] signal rsp = 1))

Although the atomic propositions of these CTL properties relate two components, only
components not appearing in the property may play a role in the action sequence of the
communication protocol :

– Property 1: its atomic propositions relate components initiator[i] and bus arbiter.
Their communication protocol also involves the master wrapper[i].

– Property 2: its atomic propositions relate components initiator[i] and master wrap-
per[i]. Their communication protocol also involves the bus arbiter.

– Property 3: its atomic propositions relate components initiator[i] and target[j]. Their
communication protocol also involves the bus arbiter, master wrapper[i] and slave
wrapper[j].

The verification of property 1 took 3 refinement iterations of the CEGAR verification
process. A total of 6 formulas of the specification of the three components (in Grey on
Fig. 5) were necessary to terminate the process. The verification of property 2 took 2
iterations and 4 formulas. In the same way, the verification of property 3 took 4 itera-
tions and 10 formulas were needed. Property 3 exhibited a bug in the implementation
of VCI protocol between the slave wrapper and the VCI target.

Table 1 summarizes the profits in term of time and state space for three global
properties. We note an obvious profit in term of time for the reachability analysis and
the model checking of the 3 global properties on the abstracted systems. This is due to
the reduction of the tree explored depth. The number of BDD variables did not really
fall but, because a lot of signal are free in the abstraction the BDD structures are smaller
(number of nodes).

6 Conclusion

We defined an algorithm for building directly an abstract Kripke structure from a set
of CTL formulas. We used a 3-valued logic that nicely models the ”don’t care” infor-
mation about the atomic propositions irrelevant for the satisfaction of a CTL formula.
We then stated that the abstract Kripke structure, modeling a formula ϕ, can be used
as an abstraction of a concrete component, where ϕ is in its specification. We showed
that this abstraction can be employed in a modular verification process. Furthermore,
we determined how our composition of abstractions can be integrated into Bruns and
Godefroid’s 3-valued model checking framework. We pointed out that a ”don’t care”
value for an atomic proposition of a ”local” property ϕ becomes a ”don’t know” infor-
mation when the complete abstract system is checked against a ”global” property ψ.
We finally exhibited the benefit of our approach in term of time consumption. We ap-
plied our method for the verification process of a real architecture dealing with several
components that contains VCI compliant components, a PI-bus and VCI-PI wrappers.
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FSM depth Property

540 308 21 390 3,64E+06 35.82s
1 0,82s
2 0,74s
3 0,92s

All abstract
7 261  522 2,73E+16 2,1s 1 0,1s
8 292  796 1.42E+21 5,3s 2 0,2s

10 302 1 002 1,69E+22 8s 3 0,25s
12 360 2 296 8,77E+15 4,26s 1 0,31s
12 320 1 982 5,63E+15 6,22s 2 0,36s
10 302 1 002 1,69E+22 8s 3 (all) 0,25s

705 453 134 233 2,45E+11 1626,76s
1 423s
2 597s
3 331s

All abstract
10 395 1 005 2,83E+20 3,5s 1 0,8s
11 442 1 079 4,93E+24 3,8s 2 0,52s
14 501 1564 2,50E+26 12,1s 3 8,25s
12 532 14 025 6,49E+24 35,21s 1 0,46s
12 544 14 492 7.49E+24 33,77s 2 0,47s
14 501 1 564 2,50E+26 12,1s 3 8,25s

Platform
name

Number of
BDD variables

BDD size
(\# of nodes)

Number of
Reachable 
states

Reachable states
space analysis
time

Checking 
time

Concrete 
1 master
1 slave

Concerned
component
abstracted

Concrete 
2 masters
1 slave

Concerned
component
abstracted

Table 1. Comparative results of the concrete models and 3 global properties. Results are obtained
with VIS model checker with the reordering algorithm sift. The machine was a Pentium IV,
3.20GHz with 1MB of cache and 1GO of RAM

We are currently working on an integration of our algorithm into the model checker
VIS (automatizing the CEGAR verification process)([11]). Another important direction
concerns the choice of the set of properties to initiate the abstraction, and to refute a
counter-example.
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Appendix (We do not plan to include all the proof in the final version)
The proof of Property 1 stating that Kϕ is a model of ϕ needs preliminary properties

about the structure we obtain from Definition 10.

Property 4. All AKS without conjunction contains only fair paths from initial states to
sT RUE or sNEG or s ∈ S0.

Proof. Property 4
The proof proceeds by induction over the formula length. Basic cases are CTL formulae
with no nested operator.

ϕ = p or ϕ = p, the resulting AKS contains one initial states with only one transition
to sT RUE .

ϕ = p∨q, the resulting AKS contains two initial states and two transitions from an
initial states to sT RUE .
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ϕ = AF p, the resulting AKS contains one state s in SpredT ∩ S0AF p , and another
initial state s′ such that R(s,s),R(s,s′) ∈ RAF p and s is not in the fairness constraint. The
transition from s to s′ will be finally taken.

ϕ = EF p, the resulting AKS contains only one state s in SpredT ∩S0AF p , and another
initial state s′ such that R(s′,s′),R(s′,s) ∈ REF p and s is not in the fairness constraint.
The transition from s′ to s will be finally taken. Moreover there exists a transition from
s′ to sNEG.

ϕ = AGp, the resulting AKS contains a single state which is initial and have a unique
transition to itself.

ϕ = EGp, the resulting AKS contains two states: an initial one s with a transition to
itself and a state sNEG such that R(s,NEG).

ϕ = A[pUq] the resulting AKS is built from Kp and Kq. From sp ∈ S0p there exists
a transition to itself, this transition reach an initial state. Moreover the state sp is not
in the fairness constraint of KA[pUq]. Thus state sq ∈ S0q is always reachable and there
exists a transition from s0q to sT RUE .

ϕ = E[pUq] the resulting AKS is built from Kp and Kq. In KE[pUq],sNEG is reach-
able from sp ∈ S0p , because sp ∈ SpredN , moreover there exists a transition R(sp,sp),
this transition reach an initial state. Finally, state sp is not in the fairness constraint of
KE[pUq]. Thus state sq ∈ S0q is always reachable and there exists a transition from s0q to
sT RUE .

Induction Hypothesis: all AKS representing formula with no conjunction contains
only fair path from initial states to sT RUE or s ∈ S0.

ϕ = f1 ∧ f2, the resulting AKS is the parallel composition of K f1 and K f2 . (cf. prop
5)

ϕ = AF f , the resulting AKS is build from K f all fair path in K f are preserves in
KAF f . A new initial states s is added with a transition to itself, one transition to each
initial state of K f and s is not in the fairness constraint of KAF f . Thus from all initial
state of KAF f there exists a fair path to all initial state of K f and by induction hypothesis
they verifies the property. No other paths are added.

ϕ = EF f , the resulting AKS is build from K f all fair path in K f are preserves
in KEF f . The behavior added contains only a new state s which do not belong to the
fairness constraint of KEF f . The added transition are one to sNEG and one to each initial
state of K f The fairness constraint insure that a path from s will always take a transition
to sNEG or an initial state of K f . Thus by induction hypothesis KEF f verifies the property.

ϕ = AG f , f is not a conjunction of formulae. The resulting AKS is build from K f

all fair path in K f are preserves in KAG f . From all intermediary states s (in S′) built from
s, s′ has got the same outgoing transitions as s and belong to the set of fairness. From
all state in SpredT the transition is removed and a transition to initial states are added.
No other transition are added, thus KAG f verifies the property.

ϕ = EG f , f is not a conjunction of formulae. The resulting AKS is build from K f

all fair path in K f are preserves in KEG f . All state that reach sT RUE in K f , reach an initial
state and sNEG after performing the transformation. No other transition are added, thus
KEG f verifies the property.

ϕ = A[ f1U f2], f1 is not a conjunction of formulae. The resulting AKS is build from
K f1 , K f2 and K f1∧ f2 , all fair path in these AKS are preserves in KA[ f1U f2]. All states of
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S f1 are not in the fairness constraint of KA[ f1U f2] and by construction we add a transition
from all states of S f1 to initial states of K f2 or K f1∧ f2 . By induction hypothesis the
property holds in K f2 and K f1∧ f2 , thus the property holds in KA[ f1U f2].

ϕ = E[ f1U f2], f1 is not a conjunction of formulae. The resulting AKS is build from
K f1 , K f2 and K f1∧ f2 , all fair path in these AKS are preserves in KE[ f1U f2]. All states of
S f1 are not in the fairness constraint of KE[ f1U f2] and by construction we add a transition
from all states of S f1 to initial states of K f2 or K f1∧ f2 or sNEG. By induction hypothesis
the property holds in K f2 and K f1∧ f2 , thus the property holds in KE[ f1U f2].

Property 5. Let K f‖g, K f and Kg be three AKS, the have (1) ⇒ (2) :

1. All paths π = s0 → s1 . . . and π′ = s′0 → s′1 . . . are fair paths in K f and Kg reaching
sT RUE , sNEG, and respectively s ∈ S0 f , s′ ∈ S0g .

2. All paths π′′ = (s0,s′0) → (s1,s′1) . . . are fair paths in K f‖g reaching sT RUE , sNEG, or
a composed state s such that one of its component is in S0 f ∪S0g .

Proof. Property 5
Assume that there exists a path in K f‖g, π′′ = (s0,s′0) → (s1,s′1) . . . such that si 6∈ S0 f

or si 6= sT RUE or s0 = sNEG for all i ≥ 0. By definition of composition π = s0 → s1 . . .

is a path in K f and this is a path never reached sT RUE , sNEG or s f ∈ S0 f . Similarly
π′ = s′0 → s′1 . . . and this is a path never reached sT RUE , sNEG or sg ∈ S0g . This contradicts
(1).

The proof can be easily extended with a composition for any number of AKS.

Property 6. An AKS contains only state s such that

– s = sT RUE or s = sNEG.
– s ∈ S0, s is an initial state.
– s′ ∈ S′, where S′ is a set of intermediary state such that s′ is built from s and has the

same labeling function and same outgoing transitions as s.
– s is a state obtained by a composition of states (s f ,sg) and s f , sg are in {sT RUE}∪
{sNEG}∪S0g ∪S0 f ∪S′f ∪S′g.

Proof. (Sketch) Property 6
The proof proceed by induction over the formula. All operator preserves the previously
existing initial state and may add some new or some intermediary state. In case of
composition of K f and Kg one has to prove that all state obtained are composed with
state of S f and Sg that verifies the property.

Proof. Property 1: ∀s0 ∈ S0ϕ , Kϕ,s0 |= ϕ.
The proof proceeds by induction over the formula length. Basic cases are CTL formulae
with no nested operator.

ϕ = p or ϕ = p, the resulting AKS contains one initial state s0 such that s0 |= p and
s0 6|= ¬p.

ϕ = p∧ q, the resulting AKS is build from Kp and Kq. The initial state s0 is com-
posed by s0p and s0q . Thus s0 |= p, s0 |= q and s0 6|= ¬p, s0 6|= ¬q. The formula ϕ holds
for the single initial state of Kp∧q.

ϕ = p∨q, the resulting AKS contains two initial states s0 ans s′0 such that
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– s0 |= p and s0 6|= ¬p thus s0 |= p∨q.
– s′0 |= q and s′0 6|= ¬q thus s′0 |= p∨q.

The formula ϕ holds for all initial state of the resulting AKS.
ϕ = AF p, the resulting AKS KAF p contains exactly two initial states s0 and s′0 such

that

– s0 |= p and s0 6|= ¬p thus s0 |= AF p.
– s′0 6|= p and s0 6|= ¬p, there exists two outgoing transitions from s′0, one to itself and

one to s0. As s′0 is not in the fairness FAF p s0 will always be reach, thus s′0 |= AF p

The formula ϕ holds for all initial state of KAF p.
ϕ = EF p, the resulting AKS KEF p contains two initial states s0 and s′0 such that

– s0 |= p and s0 6|= ¬p thus s0 |= EF p.
– s′0 6|= p and there exists three outgoing transitions from s′0, one to itself, one to sNEG

and one to s0. As s′0 is not in the fairness FAF p and there exists a transition reaching
s0, thus s′0 |= EF p

The formula ϕ holds for all initial state of KEF p.
ϕ = AGp, the resulting AKS is build from Kp such that initial state s0 is the initial

state of KAGp. Thus p hold in the initial state of KAGp. Furthermore sT RUE do not belong
to SAGp and there exists only one transition from s0 to s0. The formula ϕ holds for the
single initial state of KAGp.

ϕ = EGp, the resulting AKS is build from Kp such that initial state s0 is the initial
state of KEGp. Thus p hold in the initial state of KEGp. From s0 there exists two outgoing
transitions: one to itself and one to sNEG. s0 belong to the fairness constraint, thus there
exists an infinite path composed with state s0 only where p always holds, and another
where sNEG is reached where p may does not hold. The formula ϕ holds for the single
initial state of KEGp.

ϕ = A[pUq], the resulting AKS is built from Kp and Kq. The initial state of KA[pUq]

is exactly {s0 ∈ Sp}∪{s′0 ∈ Sq}∪{s′′0 ∈ Sp∧q}.

– s′0 |= q, thus s′0 |= A[pUq].
– s′′0 |= p and s′′0 |= q, thus s′0 |= A[pUq].
– s0 |= p and there exists two outgoing transitions from s0 : one to itself and one to

s′0. Moreover, s0 is not in the fairness constraint of KA[pUq] thus state s′0 will always
be reached and s0 |= A[pUq].

The formula ϕ holds for all initial states of KA[pUq].
ϕ = E[pUq], the resulting AKS is built from Kp and Kq. The initial state of KA[pUq]

is exactly {s0 ∈ Sp}∪{s′0 ∈ Sq}∪{s′′0 ∈ Sp∧q}.

– s′0 |= q, thus s′0 |= E[pUq].
– s′′0 |= p and s′′0 |= q, thus s′0 |= E[pUq].
– s0 |= p and there exists three outgoing transitions from s0 : one to itself, one to sNEG

and one to s′0. s0 is not in the fairness constraint of KE[pUq] thus there exists one path
leading to state s′0 and one path reaching NEG. We have s0 |= E[pUq].
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The formula ϕ holds for all initial states of KE[pUq].
Induction Hypothesis : let K f and Kg be two AKS such that f holds for all initial

state in S0 f and g holds for all initial state in S0g .
ϕ = f ∨ g, the resulting AKS is build from K f and Kg such that S0 f∨g = S0 f ∪ S0g .

By induction hypothesis we have

– ∀s f ∈ S0 f ,s f |= f , thus s f |= f ∨g
– ∀sg ∈ S0g ,sg |= g, thus sg |= f ∨g

f hold for all initial state of K f∨g.
ϕ = f ∧ g, the resulting AKS is build from K f and Kg by parallel composition and

S f∨g = (S0 f ×S0g) By induction hypothesis f holds in all initial state in S0 f and g holds
in all initial state in S0g . By property 5 the parallel composition preserves the fair path
in both structure, thus f ∨ g holds for all initial state of K f‖g. ϕ = AF f , the resulting
AKS is build from K f in which a new initial state s0 is added. There exists a transition
from s0 to itself and a transition from s0 to all initial state of K f . Moreover s0 is not in
the fairness constraint of KAF f , thus all path from s0 will always reach an initial state of
K f . By induction hypothesis f holds for all initial state of K f thus s0 |= AF f . Moreover,
f holds for all initial state that belonging to K f , thus AF f holds for all initial state of
KAF f .

ϕ = EF f , the resulting AKS is build from K f in which a new initial state s0 is
added. There exists transitions from s0 to itself, to sNEG and to all initial state of K f .
Moreover s0 is not in the fairness constraint of KEF f , thus all path from s0 will always
reach an initial state of K f or sNEG. By induction hypothesis f holds for all initial state
of K f thus s0 |= EF f . Moreover, f holds for all initial state that belonging to K f , thus
EF f holds for all initial state of KEF f .

ϕ = AG f , the resulting AKS is build from K f and S0AG f = S0 f . By property 6 all
state in SAG f are initial, intermediary state or composed state.

1. By induction hypothesis, f holds in all state s0 ∈ KAG f .
2. All intermediary states s′ introduce in KAG f are obtained from s0 ∈ S0 f ∩SpredN and

have the same transition relation as s0. Thus f holds in s′.
3. All composed state comes from a nested until operator, the premises of the until

formulae holds in all such state, by property 5 all paths in KAG f reach an initial
state. Thus f holds in all composed state.

ϕ = A[ fUg], the resulting AKS is built from K f , Kg and K f‖g and S0A[ fUg]
= S0 f ∪

S0g ∪S0 f‖g
.

– g holds in all initial state sg ∈ S0g , thus A[ fUg] holds for all sg.
– g and f holds in all initial states s f‖g ∈ S0 f‖g

,thus A[ fUg] holds for all s f‖g.
– f holds in all initial state s f ∈ S0 f , and all states are not in the fairness constraint of

KA[ fUg].
• For all state s f ∈ S0 f ∩SpredT there exists an outgoing transition to each initial

state of S0g , A[ fUg] holds for all s f .
• For all state s′f ∈ S0 f \SpredT there exists an outgoing transition to each initial

state of S0 f‖g
, A[ fUg] holds for all s′f .
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• For all intermediary state s′′f , we prove that s′f |= f by applying the same rea-
soning as operator G. By property 4 there exists a fair path reaching the initial
state s f and s′f , A[ fUg] holds for all s′′f .

ϕ = E[ fUg], the resulting AKS is built from K f , Kg and K f‖g and S0E[ fUg]
= S0 f ∪

S0g ∪S0 f‖g
.

– g holds in all initial state sg ∈ S0g , thus E[ fUg] holds for all sg.
– g and f holds in all initial states s f‖g ∈ S0 f‖g

,thus E[ fUg] holds for all s f‖g.
– f holds in all initial state s f ∈ S0 f , and all states are not in the fairness constraint of

KA[ fUg].
• For all state s f ∈ S0 f ∩SpredT there exists an outgoing transition to each initial

state of S0g , E[ fUg] holds for all s f .
• For all state s′f ∈ S0 f \SpredT there exists an outgoing transition to each initial

state of S0 f‖g
and one to sNEG, E[ fUg] holds for all s′f .

• For all intermediary state s′′f , we prove that s′f |= f by applying the same rea-
soning as operator G. By property 4 there exists a fair path reaching the initial
state s f and s′f , A[ fUg] holds for all s′′f .


