
1

Data Path Optimization using Redundant Arithmetic
and Pattern Matching

Sophie Belloeil, Roselyne Chotin-Avot, Habib Mehrez
University Paris VI, LIP6/SOC Laboratory,

4, place Jussieu,
75252 Paris Cedex 05, France
Email: sophie.belloeil@lip6.fr

Abstract— Considering the performance increase provided by
redundant operators such as adders and multipliers, it appears
interesting to generalize the use of those operators in high
computational digital circuit design. However, using redundant
arithmetic in conjunction with classical arithmetic is a complex
task for circuit designers who might not have necessarily the
required arithmetic knowledge. Therefore, it becomes mandatory
to develop optimization CAD tools which automate the use
of redundant arithmetic in circuit design. This paper presents
such an optimization tool which, based on non redundant
representations, introduces automatically redundant operators
thanks to pattern matching techniques. To illustrate this, the
optimizations of a filter and a Discrete Cosine Transform (DCT)
generators are presented.

Index Terms— automatic, optimization, redundant arithmetic,
pattern matching, CAD tool

I. I NTRODUCTION

REDUNDANT operators such as adders and multipliers
[1], [2] have very good performances in terms of timing

and area [3]. Using those operators in VLSI circuit design
can thus appear advantageous, enabling architecture optimiza-
tions and consequently further improvements as for circuits’
performances. To illustrate this, we can consider the hand-
made implementations of a DCT macro bloc [4] and a distance
computation unit [5] using those architectures, which both
result in a significantly increase of the timing performances
with a small area overhead.

Mixing classical and redundant arithmetics in an explicit
way can nevertheless appear quite tedious to non initiated
designers, for whom, furthermore, the rapid pace of tech-
nological evolution puts a great ”time to market” pressure.
That is why redundant arithmetic is not very often used
for high computational digital circuits. Such a pressure on
design cycle combined with strict performance contraints make
more and more useful the automation of the introduction
of redundant arithmetic in high computational digital circuit
design, bringing it more accessible. Research works on au-
tomatic arithmetic optimization tools have therefore existed
for some time, in several areas such as high level synthesis
[6], [7] and logical synthesis [8]–[11]. Our work, based on
pattern matching techniques, consists in studying the chains
of arithmetical operators, and proposing general rules for
optimization. High computationnal digital circuits involving
signal, image and control processing indeed include arithmetic

data paths composed of such kind of chains of arithmetical
operators.

This paper presents an optimization tool which, starting
from a representation of a circuit in classical arithmetic,
introduces redundant operators through the analysis of the
arithmetical operators chains by applying local transformations
on the circuit. Furthermore, several kind of optimizations are
presented as we aim at proposing a flexible technique. The
automatic optimizations of a filter and a DCT generators show
the results obtained with this tool. The remainder of this paper
is organized as follow: Section 2 contains a global description
of the redundant arithmetic and its main advantage. In Section
3, we describe our redundant optimization tool. Section 4
presents the results of our experiments. Finally, in Section 5,
possible improvements are listed and then we conclude.

II. REDUNDANT ARITHMETIC

A. Number representations

Redundant arithmetic involves two number representations
[12]:

• Carry-Save representation: A digit is defined bycsi =
cs0

i + cs1
i with csi ∈ {0, 1, 2} so that a number is

considered as the sum of two terms:CS = CS0 + CS1

• Borrow-Save representation: A digit is defined by
bsi = bs0

i − bs1
i with bsi ∈ {−1, 0, 1} so that a

number is considered as the substraction of two terms:
BS = BS0 −BS1

The abbreviations CS and BS are commonly used for Carry-
Save and Borrow-Save representations, as well as NR and R
for classical (Non Redundant) and Redundant representations.

B. Mixed arithmetic

The arithmetic used is calledmixed arithmetic, defined
as the combination between classical and redundant represen-
tations. The sole use of redundant arithmetic is indeed not
conceivable for several reasons:

• Firstly, we must preserve the NR representations of the
inputs/outputs of the circuits

• Secondly, we have to deal with operators which are
not arithmetic operators such as multiplexors, boolean
operators, etc ...

2

In order to make those two arithmetics compatible, we have
at disposal all kind of arithmetic operators accepting both
redundant or non redundant inputs/outputs. We also are able
to convert one representation to the other. For example, the
conversion from a CS representation to a NR representation is
the addition between the two terms composing the redundant
number.

C. Architectures

1) Adder: The architecture of amixed adder (adding a CS
number and a NR number) is shown in Figure 1.

A similar architecture exists for aredundant adder (adding
two CS numbers). Both adders provide a CS output made of
the effective sum and the carries (Output = S + C).

Fig. 1. Implementation of a mixed adder

The architecture presented shows the main advantage
of redundant arithmetic: it allows to suppress the carry
propagation in the computation of an addition.

2) Multiplier: The principle of multipliers’ architectures is
shown in figure 2.

Those architectures are divided into four parts:
• Recoding (optionnal): Recoding of the inputs in R form
• Partial Products + Sum (mandatory): Effective computa-

tion of the multiplication
• Conversion (optionnal): Conversion of the output in NR

form

Fig. 2. Implementation of a multiplier

As we can see, the output of the Wallace tree is in CS
form, so authorizing the output of the multiplier to be in a
CS form allows the deletion of a CS to NR converter. CS
multipliers are therefore bound to have a better critical time
than classical multipliers, but a bigger area because of the
input recoders (especially with two R inputs).

3) Representations:Schematic representations used for
mixed/redundant operators are shown in Figure 3.

a. Mixed adder b. Redundant adder

Fig. 3. Schematic representations of redundant operators

D. Advantage of redundant/mixed arithmetics

The main drawback of classical arithmetic is the carry
propagation which is, indeed, the main issue for critical
paths. Therefore, many researches have been done in order to
minimize the carry propagation time in addition computation,
such as carry-skip, carry-lookahead or parallel prefix adders
[13]. All those architectures manage to minimize the carry
propagation time, but do not suppress carry propagation.
Furthermore, the shorter the carry propagation time is, the
bigger the area is.

Whereas removing carry propagation is not possible using
classical arithmetic, using redundant arithmetic allows to sup-
press it as shown in the mixed adder architecture in Figure 1.
Consequently, the time to perform an addition of two numbers
is constant and independent of the number of digits. Besides,
the area of redundant and mixed adders is smaller than most
classical adders area. Addition being an essential operator,
the potential benefit of using redundant and mixed adders is
significant for timing and for area. This benefit represents the
main advantage of redundant arithmetic.

III. A UTOMATION TOOL

A. Aim

The aim of our CAD tool is to take advantage of redundant
arithmetic by introducing automatically redundant operators in
the process of circuit design.

B. VLSI design flow

Our CAD tool is part of a classical VLSI design flow
as shown in Figure 4 and takes place just before logical
synthesis. It is part of theCoriolis platform1 [14] and it’s input
format is therefore made inStratus, the procedural netlist
description language [15] of this platform. From this functional
specification of a circuit and a knowledge in arithmetic, we
obtain an optimizedvirtual description (i.e. before structural
mapping) of the circuit. The tool modifies the specification
of the different operators and interconnections, while ensuring
the feasibility of the mapping toward a target technology. After
this process, the VLSI design flow remains unchanged.

C. Pattern macthing

1) Pattern: A pattern is a collection of arithmetical oper-
ators (typically two or three operators) and their interconnec-
tions.

1formerly named Tsunami

3

Fig. 4. Design flow

2) Principle: The aim of the tool is to search for patterns
which are bound to be replaced by more competitive ones.
The new patterns are composed of redundant operators, which
make them more optimized than the previous ones, in terms
of timing and area.

3) Rule: The pattern couples are calledrules.

• The fundamental assumption is that a pattern and its
substitute have the same behavior and the same input-
s/outputs.

• The second assumption is that the substitute pattern of a
rule is more optimized than the one it is substituted to.

4) Set: We have chosen to deal with patterns that contain
chains of two operators, because working on bigger chains
would become complicated to handle without leading to
better results. A set of twenty-four rules has therefore been
established in order to be sufficient to handle most cases of
connection between adders and mutlipliers. With a smaller set,
results might not be optimal. In opposition, a bigger set would
not lead to better results, and would make tough the choice of
an optimal rule if several patterns matched.

Fig. 5. Operators’ color

In the reminder of this paper, colors are going to be used
in order to distinguish different kinds of operators (classical
or redundant). Those colors are shown in Figure 5.

The rules selected are divided into four categories. One rule
of each category is shown in Figure 6. Other rules derive
from the ones presented. We can notice that our main way
to optimize is to consider the addition of two NR signals as a
CS signal.

a. Before b. After a. Before b. After

First Rule: Second Rule:

o=(a+b)+(c+d) o0+o1 = (a*b)+(c0+c1)

a. Before b. After a. Before b. After

Third Rule: Fourth Rule:

o0+o1=(a+b)+(c+d)+(e0+e1) o0+o1 = (a+b)+c+(d0+d1)

Fig. 6. Example of rules

5) Evaluation: Each pattern has been evaluated in terms of
timing and area in order to verify that thesubstituteredundant
pattern of each rule has better performances than the one it
is substituted to. The architectures we used for adders and
multipliers are [12], [13]:

• NR adder and CS/NR converter: Sklansky algorithm
• NR/R multiplier: Booth modified algorithm
The results obtained with the rules presented are shown in

Table I which outlines the performances of the two patterns
of each rule, in terms of timing and area, before and after
optimization. Those results tend to prove that an optimization
with redundant operators can improve timing and area. We can
see that the improvements are up to 64.5% for the critical path,
and 62.5% for the area. We can also notice that, in most cases,
the bigger the number of digits is, the better the improvements
are.

The evaluation of each rule has shown that, in every rule,
the timing is improved with the substitution of the pattern.
As for the area, only one kind of rules alters it: the ones that
introduce redundant multipliers. As already discussed, those
operators are indeed big. Whereas some studies suggest not
to use redundant multipliers [6], we have decided to let the
designer choose whether or not to use such kind of rules,
depending on the goal to achieve: an optimization of the timing
with a possible deterioration of the area allowed or forbidden.

6) Description of the rules:The rules are described in a
configuration file. We have chosen the .xml file format which

4

Pattern Number Area Time
of (mm2) (ns)

digits before after before after

First 8 0.05 0.03 21.6 20.6
ref -40% ref -4.6%

16 0.12 0.06 27.8 23.4
ref -50% ref -15.8%

32 0.27 0.13 35.4 28.2
ref -51.9% ref -20.3%

Second 8 0.14 0.11 39.8 30.8
ref -21.4% ref -22.6%

16 0.44 0.36 55.5 43.2
ref -18.2% ref -22.2%

32 1.5 1.3 76.2 56.5
ref -13.3% ref -25.8%

Third 8 0.05 0.02 20.1 17.5
ref -60% ref -12.9%

16 0.1 0.05 23.5 17.5
ref -50% ref -25.5%

32 0.22 0.09 27.8 17.5
ref -59.1% ref -37%

Fourth 8 0.03 0.02 20.1 13.2
ref -33.3% ref -34.3%

16 0.06 0.03 23.5 13.2
ref -50% ref -43.8%

32 0.13 0.07 27.8 13.2
ref -46.2% ref -52.5%

TABLE I

PATTERNS PERFORMANCES

is a quite simple kind of description so that designers can
easily add or delete one pattern if they want to.

Therefore:
• On one hand, our tool is suitable for designers who want

to use automatically redundant arithmetic without having
the needed arithmetic knowledge.

• On the other hand, the simpleness of the patterns’ descrip-
tion allows designers who have the arithmetic knowledge
to modify the list of patterns.

One can consequently notice one of the advantages of using
the proposed pattern matching approach: compared to other
solutions, this approach is very modular and our tool can be
dedicated to basic optimization, it can as well be a testing
platform for new architectures for example.

D. Algorithm

Based on the pattern matching approach, our algorithm
is a recursive process which skims through a model with
non redundant operators, from its outputs to its inputs, and
introduces redundant operators by doing local transformations.
This bottom-upapproach is inspired by [9]. This algorithm is
illustrated in the example of Figure 7.

Algorithm (net) is
if (net is an input)

stop

while (pattern = SearchPattern ())
Replace (pattern)

operator = input operator of the net

foreach input of the operator
Algorithm (input)

foreach output of the cell
Algorithm (output)

1. One pattern found with the output net of the cell

2. One pattern found with the input net of the operator

3. Another pattern found with the same net

Fig. 7. Example

E. Multiple operation trees

One important issue to handle is the management of multi-
ple operation trees such as shown in Figure 8.

Let us consider the operation of Figure 8.a:

• A conventional transformation is to optimize each tree
separately, which produces a circuit with the minimum
area, but a non optimal optimization of the timing (be-
cause of an extra cost of CS to NR conversions): This
kind of transformation is therefore calledPriority to the
area and the result is shown in Figure 8.b.

• In order to deal with that problem, another behavior of the
tool has been implemented which can be calledPriority
to the timing: The rule is to treat every expression
with a separate tree and without any ressource sharing.
This generates a circuit with a minimal timing, but an
excessive overload as for the area. The result is shown in
Figure 8.c.

• One last solution has been implemented in order to
be able to make trade-offs between area and timing as
discussed in [11]: it allows to optimize the timing while
minimizing the area penalty. This behavior is therefore
called Trade-off and the result, shown in Figure 8.d, is
the most optimal.

5

In view of modularity, the three possible ways to handle the
issue of multiple operation trees are implemented in the tool.
Designers can therefore choose which one to use depending
on their needs.

a. Circuit b. Priority to the area

c. Priority to the timing d. Trade-off

Fig. 8. Multiple operation trees

F. Conclusion

The innovative parts of our work are:

• Applying a very well known technique in order to convert
operators into a redundant form

• Including mixedand redundantadders as well asmixed
and redundantmultipliers

Furthermore, as already discussed, we mainly aim at mod-
ularity and flexibility. Following that idea, two factors are
provided :

• Several parameters exist in order to specify which be-
havior to choose concerning (1) the use of redundant
multipliers (2) the way to handle multiple operation trees

• The set of patterns provided relies on our arithmetic
knowledge and is bound to provide the best results but
designers can nevertheless choose to modify it thanks to
the easiness of the description

As for the treatment of subtraction, we have chosen to
replace it by adding the negation (using two’s complement)
of the subtraction, that is:

a - b = a + not (b) + 1

The use of only the CS representation is indeed quite
common and leads to good results [6]–[11]. Note that we also
consider the possibility of using the BS representation in order
to deal with the substraction which could lead to even better
results.

IV. EXPERIMENTAL RESULTS

First of all, we tested our algorithm on arithmetic computa-
tions which are typically used in applications involving signal,
image and control processing and are therefore representative

of arithmetical blocks which can be instanciated inreal
benchmarks. Second of all, we tested our algorithm on several
benchmarks: four different implementations of a filter and two
different implementations of a DCT macro generator.

In order to perform those tests, we used the place and route
tools of the Cadence CAD System using the Alliance [16]
Standard Cell Library in 0.35µm. Several tables are going to
be presented, showing the results in terms of timing and area,
before and after optimization.

A. Designs with additions, multiplications and subtractions

1) Transformation of designs with additions:Firstly, we
tested our algorithm on summation tree designs of 16 bits
operands. The results are summarized in Table II. Those results
are quite satisfactory, reducing significantly both timing and
area. One can also notice that improvements of area are more
effective as the number of operands in expression increases.
This is due to the good performances of redundant adders:
small area combined with a constant timing.

Sum Area Time
(mm2) (ns)

Before After Before After

3 operands 0.08 0.05 27.8 18.7
ref -37.5% ref -32.7%

4 operands 0.12 0.06 27.8 25
ref -50% ref -10.1%

5 operands 0.16 0.07 39.7 28.9
ref -56.2% ref -27.2%

6 operands 0.2 0.09 39.7 33.8
ref -55% ref -14.9%

7 operands 0.24 0.1 39.7 35.2
ref -58.3% ref -11.3%

8 operands 0.28 0.11 39.7 35.3
ref -60.7% ref -11.1%

9 operands 0.32 0.12 51.2 39.1
ref -62.5% ref -23.6%

10 operands 0.36 0.13 51.2 40.1
ref -63.9% ref -21.7%

TABLE II

RESULTS FOR ADDITION EXPRESSIONS

2) Transformation of designs with a mixture of additions,
subtractions and multiplications:Secondly, our algorithm was
tested on designs with a mixture of additions, subtractions and
multiplications. We used 8 bits operands for those tests. The
results are summarized in Table III. Those results show that
our algorithm can also be applied to such kind of designs.
Both timing and area are again significantly reduced. We
can nevertheless notice that the area is less improved for
designs with multiplications, due to the big area of redundant
multipliers, it is even deteriorated once. We can also notice
one degradation of the timing in a design with a substraction:
this degradation is due to the adjunction of an inverter in the
middle of the arithmetic operators chain, such as shown in
Figure 9.

3) Conclusion:Those designs are quite trivial, but they are
a first step in order to demonstrate the usefulness of redundant
operators. They can show on which kind of designs our algo-
rithm can be applied to. Compared to results exposed in [8]–
[10], our results seem to have the same order of magnitude.
More precisely: (1) concering the summation tree designs,

6

Equation Area Time
(mm2) (ns)

Before After Before After

(a-b)+(c-d) 0.06 0.03 23.9 22.4
ref -50% ref -6.3%

(a-b)+(c+d) 0.05 0.03 23.9 21.7
ref -40% ref -9.2%

(a+b)-(c+d) 0.05 0.04 23.1 27.4
ref -20% ref +18.6%

(a*b)+c 0.15 0.14 59.4 40.7
ref -6.7% ref -31.5%

(a*b)+(c*d) 0.25 0.24 59.4 45.8
ref -4% ref -22.9%

(a*b)+(c*d)+(e*f) 0.39 0.36 67.7 54.6
ref -7.7% ref -19.4%

(a+b)*(c+d) 0.14 0.22 61.3 45.1
ref +57.1% ref -26.4%

TABLE III

RESULTS FOR MIXED EXPRESSIONS

a. Circuit b. Pre-treatment b. Optimization

Fig. 9. Problem due to a substraction

the area is better improved with our tool, but the timing less
improved, (2) concerning the designs with multiplications, the
timing is better improved with our tool (the improvment of the
area depends of the exemple) which strenghtens our choice of
using redundant/mixed multipliers.

B. Filters

In order to test the performances of our tool, we optimized
a Finite Impulse Response filter (FIR). Figure 10 presents the
architecture of a FIR.

Fig. 10. Architecture of a filter

Given the architecture presented (with no multiple operation
tree), we used our optimization tool with the optionPriority
to the timing. We optimised four types of this filter : (1) with
four or eight coefficients, (2) with input data and constants
encoded on eight or sixteen bits. Table IV shows the results
obtained, resulting in highly increased performances in timing
and area, compared to the classic architecture implementation.
This is because: (1) all multipliers outputs are converted into
CS form, which suppresses the CS to NR converters, and (2),
all slansky adders are therefore transformed into redundant

adders. As a consequence, all arithmetical operators used have
a better timing and a better area than the previous ones. Note
also that the bigger the number of coefficients is, the better
the improvments are, for the timing as well as for the area.
Concerning the number of bits, it seems that the timing is
better improved as it grows as opposed to the area which is
less improved.

Type Area Time
(mm2) (ns)

Before After Before After

4coef/8bits 0.65 0.46 65.6 49.4
ref -29.2% ref -24.7%

4coef/16bits 1.95 1.5 87.7 64.6
ref -23.1% ref -26.3%

8coef/8bits 1.32 0.9 103.7 68.9
ref -31.8% ref -33.6%

8coef/16bits 3.97 2.94 134.4 84.6
ref -25.9% ref -37.1%

TABLE IV

OPTIMIZATIONS OF A FIR

C. Discrete Cosine Transform generator

We optimized a Discrete Cosine Transform generator [4]
also. Several algorithms have been proposed in order to
compute the 1-D DCT:

• The Loeffer Signal Flow Graph [17] has been widely
used: this implementation permits to compute the 1-D
DCT of 8 pixels in only one cycle. The corresponding
architecture is shown in Figure 12.

• A graph partitionning is possible in order to obtain a rate
of 1 pixel/cycle. This architecture is shown in Figure 11.

Both implementations contain multiple operation trees.
Those designs are therefore good examples in order to test
the performances of the three kinds of options of the tool:
Priority to timing , Priority to area andTrade-off.

1) Partitionning graph: Figure 11 shows the architecture
of the 1-D DCT partitionning graph.

Fig. 11. Architecture of the partitionning graph

Table V shows the results obtained with the different
behaviors as for timing and area:

7

• Time:
– Improvement of the critical time whatever the option

of the tool is
– Better improvement with optionsPriority to the

timing andTrade-off because more patterns can be
subsituted

• Area:
– Priority to the area : Improvement of the area
– Priority to the timing : Deterioration of the area

because of the lack of ressource sharing
– Trade-off: Improvement of the area thanks to the

ressource sharing
Note that the architecture generated with the optionTrade-

off of our tool is the same one than the hand-coded one
presented in [4].

Mode Area Time
(mm2) (ns)

Before After Before After

Priority 1.88 1.65 133.6 124.7
to the area ref -12.2% ref -6.7%

Priority 1.88 1.95 133.6 113.1
to the timing ref +3.7% ref -15.4%

Trade-off 1.88 1.61 133.6 110.2
ref -14.4% ref -17.5%

TABLE V

OPTIMIZATIONS OF THE PARTITIONNING GRAPH

2) Complete Signal flow graph:Figure 12 shows the archi-
tecture of the 1-D DCT complete signal flow graph.

Fig. 12. Architecture of the complete signal flow graph

Table VI shows the results for this implementation:
• Time:

– Improvement of the critical time whatever the option
of the tool is

– Better improvement with optionsPriority to the
timing andTrade-off because more patterns can be
substituted

• Area:

– Priority to the area : Improvement of the area
– Priority to the timing : Major deterioration of the

area because of the lack of ressource sharing
– Trade-off: Minor deterioration of the area because

the ressource sharing is not sufficient

Mode Area Time
(mm2) (ns)

Before After Before After

Priority 3.96 3.9 115.7 114.9
to the area ref -1.5% ref -0.7%

Priority 3.96 7.4 115.7 106.3
to the timing ref +86.9% ref -8.1%

Trade-off 3.96 4.1 115.7 100.5
ref +3.5% ref -13.1%

TABLE VI

OPTIMIZATIONS OF THE COMPLETE SIGNAL FLOW GRAPH

3) Conclusion:The examples of the Discrete Cosine Trans-
form generators corroborate the two following assumptions:
(1) the use of the Carry-Save representation leads to good
results, even for benchmarks with several substractions, and
(2) several multipliers in a benchmark can restrict a lot the
reduction of the area. Those two examples contain several
operators with multiple fan out also, which leads to the
following conclusion as for the different kind of treatments:

• Time: Options Priority to the timing and Trade-off
always give a better result than optionPriority to the
area

• Area:

– Option Priority to the area always gives a better
result than optionPriority to the timing

– The result obtained with optionTrade-off is depen-
dant from the context, it can be better or worse than
with option Priority to the area

Furthermore, we can conclude that the choice of those
options change significaly the results obtained with our tool.
It is therefore important to have the control of the option to
use in function of the performances to achieve.

V. FUTURE WORKS

A. Borrow-Save

The use of the two’s complement for the treatment of the
subtraction is common and leads to good results. However,
the introduction of an inverter cell is not always optimal:
the design of Table III illustrated in Figure 9 is a good
example. Therefore, the use of the BS representation can be an
interesting idea which needs to be studied in order to improve
the results obtained.

B. Timing and area analysis

Another idea is to be able to estimate automatically the
performances of the patterns in terms of:

• Area: addition of all the areas of the operators
• Timing: critical path considering the critical paths of the

operators

8

This would improve the modularity of the tool, allowing to
automatically evaluate all the patterns. A designer could there-
fore easily test new patterns. Furthermore, it would improve
the perennity of the tool. The set of rules that have been tried
indeed depends on the architectures of the arithmetic operators
as well as on the technology used. Our tool could therefore be
obsolete because of a new architecture of adder for example.
Being able to estimate automatically all rules would avoid
that issue. In addition, applying such an evaluation on the
circuits to optimize would allow to create new behaviors of
the tool such as searching for patterns only while skimming
through the critical path. This process would minimize the
changes done to the design while ensuring an improvement of
the critical path.

C. Optimal solution

The chosen approach is an heuristic based on positive
cases (the set of rules). It therefore is a greedy algorithm
generating an optimized solution but not necessarily the best
one. Considering the time to process the complete signal flow
graph of the 1-D DCT in classical arithmetic: 27,5 seconds,
the optimizations take from 46,6 seconds to 200 seconds
given the behavior chosen as for multiple operation tree.
The overcost not being important, the implementation of an
algorithm generating all possible solutions and choosing the
optimal one can appear as an interesting approach.

D. Treatment of the non arithmetic blocks

Making a specific treatment to non arithmetic blocks can
be a good idea for heterogeneous designs containing both
arithmetic and non arithmetic operators. A process such as the
one shown in Figure 13: duplication of a non arithmetic block,
e.g. a multiplexor (in order to use two mixed adders instead of
two classical adders), would allow to improve performances.

a. Before b. After

Fig. 13. Treatment of a multiplexor

VI. CONCLUSION

This paper describes an algorithm based on pattern matching
techniques, that introduces redundant operators in high com-
putational digital circuits. The idea of using pattern matching
techniques in order to find operators that can be redundant is
new and leads to good results.

More powerful solutions for this problem have existed for
some time, such as including the use of redundant arithmetic in
high level synthesis [6], [7]. Those approaches are nevertheless

far less flexible than our approah. The advantages of using
the proposed pattern matching approach are indeed based on
flexibility and modularity as first of all several parameters exist
in order to guide the behavior of the tool and second of all
the set of rules can easily be modified in order to test new
architectures.

Experimental results indicate that our work can be used
effectively on several designs with mixture of additions, sub-
straction and multiplication. This encourages us, first of all
to investigate the different kinds of improvements which can
be applied to this algorithm, and second of all, to create new
benchmarks (such as a distance computation unit) on order to
corroborate our results.

REFERENCES

[1] Marc Daumas and David W. Matula “A Booth multiplier accepting both a
redundant or a non redondant input with no additional delay.”ASAP’00:
Proc. of IEEE International Conference on Application-Specific Systems,
Architectures and Processors, pp. 205–214, july 2000.

[2] Yannick Dumonteix and Habib Mehrez “A family of redundant multipliers
dedicated to fast computation for signal processing.”ISCAS’00: Proc. of
IEEE International Symposium on Circuits and Systems, volume 5, pp.
325–328, mai 2000.

[3] Yannick Dumonteix “Optimisations des chemins de données
arithmétiques par l’utilisation de plusieurs systèmes de nuḿerations”
PhD thesis, Universit́e Pierre et Marie Curie Paris VI, october 2001.

[4] Yannick Dumonteix, Roselyne Chotin, and Habib Mehrez “Use of redon-
dant arithmetic on architecture and design of a high performance DCT
macro-bloc generator.”DCIS’00: Proc. of 15th Conference on Design of
Circuits and Integrated Systems, pp. 428–433, november 2000

[5] Yannick Dumonteix, Yann Bajot, and Habib Mehrez “A fast and low-
power distance computation unit dedicated to neural networks, based on
redundant arithmetic.”ISCAS’01: Proc. of IEEE International Symposium
on Circuits and Systems, volume 4, pp. 878–881, mai 2001.

[6] Anne Mignotte, Jean-Michel Muller, and Olivier Peyran. “Mixed arith-
metic: Introduction and design structure.”2nd International conference
on Massively Parallel Computing Systems, 1996.

[7] Olivier Peyran “Synth̀ese d’architectures intégŕees utilisant des
arithmétiques redondantes”PhD thesis, Institut National Polytechnique de
Grenoble, Laboratoire d’Informatique du Parallélisme de l’́Ecole Normale
Suṕerieure de Lyon, december 1997.

[8] Taewhan Kim, William Jao, and Steve Tjiang. “Circuit optimization using
carry-save-adder cells.”IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 17(10):974–984, october 1998.

[9] Taewhan Kim, William Jao, and Steve Tjiang “Arithmetic optimization
using carry-save-adders”DAC’98: Proc. of the 35th Design Automation
Conference, pp. 433–438, june 1998.

[10] Junhyung Um and Taewhan Kim and C. L. Liu “Optimal Allocation
of carry-save-adders in arithmetic optimization”ICCAD’99: Proc. of
IEEE International Conference on Computer-Aider Design, pp. 410–413,
november 1999.

[11] Youngtae Kim and Taewhan Kim “Accurate exploration of timing and
area trade-offs in arithmetic optimization using carry-save-adders”ASP-
DAC’01: Proc. of the conference on Asia South Pacific design automation,
pp. 622–628., january 2001.

[12] A. Avizienis. “Signed-digit number representation for fast parallel arith-
metic.” IRE Trans. Electronic Computers, 10:389–400, 1962.

[13] I. Koren. “Computer Arithmetic Algorithms.” Prentice Hall, 1993.
[14] Christophe Alexandre, Hugo Clement, Jean-Paul Chaput, Marek Sroka,

Christian Masson and Remy Escassut “TSUNAMI: An Integrated Timing-
Driven Place And Route Research Platform.”DATE’05: Proc. of the
conference on Design, Automation and Test in Europe, pp. 920–921,
march 2005.

[15] Sophie Belloeil, Damien Dupuis, Christian Masson, Jean-Paul Chaput
and Habib Mehrez “Stratus : a procedural circuit description language
based upon Python.”ICM ’07: Proceedings of the 19th International
Conference on Microelectronics, december 2007

[16] A. Greiner and F. Pecheux. “Alliance: A complete set of cad tools for
teaching vlsi design”, 1992.

[17] C. Loeffler, A. Lightenberg and G.Moschytz. “Practical Fast 1D-DCT
Algorithls with 11 Multiplications” ICASSP’89: Proc. of Intl. Conf. On
Acoustics, Speech and Signal Processing, pp. 988-991, 1989.

