
Stratus: A procedural circuit description
language based upon Python

Sophie Belloeil, Damien Dupuis, Christian Masson, Jean-Paul Chaput and Habib Mehrez
University Paris VI, LIP6/SOC Laboratory,

4, place Jussieu,
75252 Paris Cedex 05, France
Email: sophie.belloeil@lip6.fr

Abstract— In this paper we present the language Stratus
dedicated to the parametrized generation of VLSI modules.
Stratus extends the Python language with a set of methods and
functions for the procedural generation of netlist and layout views
of structured cell based designs. It also provides a programming
framework for the development of various optimization tech-
niques that can be applied during module generation. From
the designer’s point of view, Stratus takes full advantage of
Python: a portable, interpretative, easy to learn and object-
oriented language. Stratus is the design capture component of the
open-source academic Physical Synthesis platform Coriolis, based
upon the Hurricane C++ integrated data-base, which provides
both C++ and Python high level APIs. Stratus extends this Python
API, and allows the designer to use both low level and high level
placement, global routing and detailed routing directives.

I. I NTRODUCTION

The pace of technological evolution has allowed to reach
very high levels of integration, this has fostered the devel-
opment of hardware specification and modeling languages
of higher and higher abstraction level in order to describe
System-on-Chip. This follows the trend for designers to fo-
cus mainly on system architecture, behaviour modeling and
functional validation, while becoming less concerned with
physical implementation and performance issues which are
completely defered to standard EDA flows, pre-characterized
standard cell libraries and soft or hard IPs. However there are
multiple design domains where a tight control of the netlist
and layout assembly is mandatory to achieve density, speed
and power consumption objectives: the design of parametrized
regular structures like RAMs, ROMs, data-paths, signal or
image processing VLSI components.
Stratus deals more specifically with this last domain, and has
been developped as a support framework for our research team
on VLSI architectures specific to arithmetic processing. Stratus
is part of an open academic EDA Physical Synthesis platform:
Coriolis. It extends the high level Python API encapsulating
the underlying Hurricane C++ data-base and the CAD tools,
providing a fully integrated Physical Synthesis platform.
In sections 2 and 3, we present the Coriolis platform and the
Hurricane data-base. In section 4, we explain the choice of
the Python language and the mechanisms used to extend the
Hurricane C++ API into a Python API. In section 5 we present
the main features of Stratus, which are illustrated with a design

example in section 6. At last, some results are presented in
section 7, and then we conclude.

II. T HE CORIOLIS PLATFORM

Coriolis [1] is an experimental open-source integrated plat-
form dedicated to the research, development and experimen-
tation of System-on-Chip physical synthesis algorithms and
design flows (downloads under the GPL license are available
through the project homepage at [2]).
In the Coriolis back-end platform, tools act as algorithmic en-
gines operating on an integrated C++ data-base around which
they consistently interact and collaborate. Coriolis offers a
set of core functionalities (such as Lef/Def and Alliance [3]
interfaces and a graphical user interface) and a progressively
enhanced suite of physical synthesis tools intended to support
progressive refinement design flows on hierarchical designs.
The flow developed and under experimentation is a top-
down refinement process which proceeds by a succession of
interleaved phases of quadri-partitioning, global routing and
net-list timing optimizations:

Fig. 1. Overview of the Coriolis flow

Are currently available a standard cell global and detailed
placer, a global router, a detailed router, a parasitics estimator

and a static timing analyser [4], a connectivity extractor and
a layout versus netlist verifier (with shortcut and disconnect
graphical localization capabilities).

III. T HE HURRICANE DATA-BASE

Central to the Coriolis project, Hurricane is a lightweight
C++ object-oriented data structure and programming platform
which provides a unified and consistent modeling of hierar-
chical VLSI layouts through all the design steps from logic
description down to detailed layout. It is outside the scope of
this paper to detail Hurricane and interested readers will find
documentation along with Coriolis. Here, we will summarize
its main features:

• Hurricane provides a powerful object-oriented API for
fast access, incremental update and consistent management of
the logic and layout views of a hierarchical VLSI design.
It fully relieves the application programmer from memory
management issues.

• It models in a unified view both the netlist and the
routing (global or detailed) through “hooking” mechanisms
which allow the seamless forward or backward transformation
of a netlist into a global routing or a detailed layout (or a mix
of those states), ensuring built-in consistency.

• It embeds a built-in high speed graphical display engine
of the current state of the design, a feature very useful for
designing and debugging layout synthesis algorithms.

• It provides extensibility mechanisms and offers a rich
(and extensible) set of powerful and generic query objects
named Collections. Collections are not containers but “set
descriptors” which provide an associatedLocator for tracing
through the corresponding set of elements.Collections can
hide a fairly complex algorithmic trace process, visiting huge
sets, but with very low memory foot print.

• Like all modern design data-bases, Hurricane represents
hierarchical layout as afolded memory data model, but pro-
vides avirtually unfolded view to the tools tracing, annotating
or displaying its content. For that purpose it manages the
concept ofOccurrenceswhich can refer any logical or physical
item anywhere within thevirtually unfolded design hierarchy.

IV. A PYTHON-BASED LANGUAGE

A. Justification of the Python language choice

Module generator languages differ from high level hardware
description languages like VHDL or Verilog, as they focus
more specifically on the programmability of parametrized
descriptions at structural and layout assembly levels. There
are for both classes of languages two implementation choices:
either develop a specialized language and compiler (like
VHDL, Verilog or Skill [5]) or extend a general purpose
language such as C/C++/Python by enriching it with special-
ized functions (like SystemC orGenlib [6]). As we wanted
to easily implement an object-oriented circuits description
language providing a rapid protyping and development cycle,
the choice of enriching the open-source Python language
became natural. Our choice is strengthened by the emergence
of languages such asMyHDL [7] which has challenged

conventional wisdom by making possible the use of Python
as a high-level general-purpose language for hardware design.
For circuit designers, Stratus is a descripton language which
handles VLSI objects while permitting the use of all Python
programming capabilities, so they fully benefit from a well-
designed, interpretative, easy to learn and widely used open-
source language.

B. The Python API

Hurricane provides a python API which is in fact a wrap-
per around the C++ API. This API: (1) mimics as closely
as possible the C++ class hierarchy, (2) maintains a strict
one-to-one object pairing between Python and C++ and (3)
manages cleanly deletion process. Similar approaches have
been developped in generic wrappers such asswig [8], but
hierarchy and deletetion process control make their use very
difficult, therefore a specific wrapper was implemented.

V. FEATURES OFSTRATUS

A. General points

A cell is a hierachical structural description of a circuit
in terms of instances and signals (external or internal). It is
described as a class with different methods defined, depending
on the needs:

• Interface : Description of the external ports
• Netlist : Description of the logical view
• Layout : Description of the physical view
• Pattern : Description of stimuli

The created class is derivated from classModel which
provides useful methods such asView (visualization of the
layout thanks to Coriolis editor),Save (save to disk thanks
to Coriolis interface) andSimul (call of a simulation tool).
The main frame description of the class and its methods is:

class myCell (Model):
def Interface (self):

...
def Netlist (self):

...
def Layout (self):

...

A script is then used in order to create the circuit by calling
these methods:

Ex = myCell ("my_cell")
Ex. Interface ()
Ex. Netlist ()
Ex. Layout ()
Ex. View ()
Ex. Save ()

B. Interface

All the cell’s external ports are described in this
method. Stratus provides the commonly used types of
external ports: input/output (SignalIn , SignalOut ,
SignalInOut), clock (CkIn), supply (VddIn , VssIn).
A signal’s instanciation has always the same frame:
signal = SignalType ("name", arity) . Besides, clock

and supplies are marked as special types in order to identify
them for specific treatments.

C. Netlist

In this method instances and their connections are specified.
1) Instanciation:Two ways of doing this description exist:

• By creating explicitly the instances and their connections
• By considering the operators as simple mnemonics

The following examples show how to implement aANDgate:

Inst ("a2", "inst0"
, map = { ’i0’ : in0

, ’i1’ : in1
, ’q’ : out
, ’vdd’ : vdd
, ’vss’ : vss })

or:

out <= in0 & in1

In the explicit notation, the instance’s model is given (”a2”) as
well as its name (”inst0”) and a list of pairs (mapdictionnary)
consisting in an instance port name and the net to which
that port is connected. With the mnemonic notation, the same
instanciation is automatically done by Stratus. The aim of this
notation is basically to ease designers’ work. Obviously this
notation is available for boolean and arithmetic operators.
In order to make designers’ work even easier, several methods
have been implemented. For example let’s consider a multi-
plexor with the following behavior (VHDL like description):

q <= i0 when (cmd in (0, 4)) else
i1 when (cmd in (1, 2, 3, 5) else
0;

Stratus offers the possibility to write a concise and powerful
description instead of an explicit instanciation:

q <= cmd. Mux ({"0,4": i0 , "1-3,5": i1 , "default":0})

Such improvement also exists for:

• Buffer: out <= in.Buffer()

• Register: out <= ck.Reg(in)

• Shifter: out <= cmd.Shift(in, direction, type)

2) Libraries: As for every circuit description language,
Stratus relies on cell libraries. Various kind of static libraries
are provided: standard cells, symbolic pad cells and full
custom cells, as well as a virtual library, permitting to map
a circuit to different standard cell libraries without having to
modify it. Two other libraries exist, called dynamic libraries,
as their blocs are produced by running customizable generators
(written in Stratus) with fixed parameters:

• Dpgen: a library of pre-placed regular operators (such as
RAM, Fifo, Shifter...) dedicated for data-path generation

• ArithLib: a library of arithmetic operators (such as Sklan-
sky adder, Booth multiplier...)
For example, the generation of aRAMof the Dpgen library
with 4 words (parameternword) of 8 bits (parameternbit)
named ”ram4x8” is done as follow:

Generate ("DpgenRam", "ram_4x8"
, param = { ’nbit’ : 8, ’nword’ : 4 })

The instanciation is then done as above, with the name of the
generated operator as model.

D. Layout

The physical view is created in this method. This view may
contain cells placement as well as routing directives.

1) Placement:The placement can be automatic or hand-
made depending on what the designer wants to do. The
automatic placement, commonly used for irregular control
logic, is performed byPlaceGlue method, which uses one
of the placement tools provided by the Coriolis platform
(an argument specifies which tool to use). The handmade
placement, commonly used for data-path description, is done
with the abutment technique, with the following methods:

• Place : exact placement with x,y coordinates
• PlaceTop , PlaceBottom , PlaceRight ,

PlaceLeft : placement relative to current reference instance
(with optionnal offset in both directions)

• SetRefIns : change of reference instance
• DefAb , ResizeAb : definition / resize of the abutment

box of the cell being described
• FillCell : automatic placement of tie cells
• PadNorth , PadSouth , PadEast , PadWest : pads

placement at the periphery of the cell (automatic repartition
on routing grid)

2) Routing: Handmade routing can not be easily exploited
in Stratus because there are no functions to describe routing
directives and/or routing constraints. Designers can neverthe-
less create segments (PlaceSegment , CopyUpSegment)
and vias (PlaceContact) (using x,y coordinates). As for
automatic routing, it is performed, thanks to Coriolis tools,
with different methods:

• AlimVerticalRail , AlimHorizontalRail :
generation of the power / ground rail network

• PowerRing : generation of a supply ring
• RouteCk : generation of a simple grid clock
• Route : automatic routing of all signals of a cell

E. Pattern

In addition of creating a cell, Stratus offers the possibility to
create test patterns compliant with Alliance (pat) and Synopsys
(VHDL IEEE). An object of thePatWrite class is created
and its methods are used in order to: create the interface
(declar_interface), assign the values (assign) and
create a stimulus with the chosen values (addpat).
Considering aAnd gate thePattern method would be:

def Pattern (self) :
pat = PatWrite (filename)
pat . declar_interface (self)
pat . pattern_begin ()
pat . assign (self . vdd , 1)
pat . assign (self . vss , 0)
for vala in range (2) :

for valb in range (2) :
pat . assign (self . a, vala)
pat . assign (self . b, valb)
pat . assign (self . s , vala & valb)
pat . addpat ()

VI. A DESIGN EXAMPLE

In this section, we present a circuit description made with
Stratus. The design and the corresponding data-path of the
circuit are shown in figure 2.

Fig. 2. Circuit

class myCell (Model) :
def Interface (self) :

self . a = SignalIn ("a", 4)
self . b = SignalIn ("b", 4)
self . c = SignalIn ("c", 4)
self . v = SignalIn ("v", 1)
self . cmd = SignalIn ("cmd", 1)
self . cout = SignalOut ("cout", 1)
self . s = SignalOut ("s", 4)
self . vdd = VddIn ("vdd")
self . vss = VssIn ("vss")

def Netlist (self) :
d_aux = Signal ("d_aux", 4)
e_aux = Signal ("e_aux", 4)
ovr = Signal ("ovr", 1)
temp = Cat (self . v , self . v , self . v , self . v)
Generate ("DpgenNand2", "nand2_4bits"

, param = { ’nbit’ : 4 })
Generate ("DpgenOr2", "or2_4bits"

, param = { ’nbit’ : 4 })
Generate ("DpgenAdsb2f", "adder_4bits"

, param = { ’nbit’ : 4 })
self . I1 = Inst ("nand2_4bits", "inst_nand2"

, map = { ’i0’ : temp
, ’i1’ : self . a
, ’nq’ : d_aux
, ’vdd’ : self . vdd
, ’vss’ : self . vss })

self . I2 = Inst ("or2_4bits", "inst_or2"
, map = { ’i0’ : d_aux

, ’i1’ : self . b
, ’q’ : e_aux
, ’vdd’ : self . vdd
, ’vss’ : self . vss })

self . I3 = Inst ("adder_4bits", "inst_add2"
, map = { ’i0’ : e_aux

, ’i1’ : self . c
, ’q’ : self . s
, ’add_sub’ : self . cmd
, ’c31’ : self . cout
, ’c30’ : ovr
, ’vdd’ : self . vdd
, ’vss’ : self . vss })

def Layout (self) :
Place (self . I1 , NOSYM, XY(0,0))
PlaceRight (self . I2 , NOSYM)
PlaceRight (self . I3 , NOSYM)

VII. PRACTICAL RESULTS

Stratus contains about 50 documented classes, functions and
methods. The Dpgen library contains nearly 40 generators
whereas the ArithLib, still being developped, contains about
20 generators using both classical and redundant arithmetics.
Stratus has successfully been used for 2 years in postgraduate
projects as well as for undergraduate course on vlsi design:
during Master class, students create a pipeline version of a

RISC 32 bits processor, the Mips R3000. The Mips is divided
into two parts (each provided in behavioral description): (1)
the data-path: hand-made synthesis (students have to choose
which operators of the Dpgen library to use) and hand-made
placement (2) the controler : automatic synthesis (using a
mapper of a behavioral description onto a predefined standard
cell library). A hierarchical design is created with these two
parts. On the top level cell, automatic placement is applied
(methodPlaceGlue : placement of unplaced instances of the
controler taking into account the pre-placed cells of the data-
path), as well as pads placement and several routing directives
which leads to a layout assembly (figure 3).

Fig. 3. Mips R3000

VIII. C ONCLUSION

We have presented Stratus, a description language of struc-
tural and physical views of circuits. More specifically it can
easily deal with the design of parametrized regular structures
and has been developped for research on VLSI architectures
specific to arithmetic processing. Stratus is part of the open
academic EDA Physical Synthesis platform Coriolis which
provides several back-end tools (placement, global routing,
detailled routing, parasistic estimator, static timing analyser).
It takes therefore advantage of all those tools and provides a
powerful API with several functions specifying structural and
layout directives as well as routing directives.

REFERENCES

[1] C. Alexandre, H. Clement, J.-P. Chaput, M. Sroka, C. Masson, and
R. Escassut, “Tsunami: An integrated timing-driven place and route
research platform,” inDATE ’05: Proceedings of the conference on
Design, Automation and Test in Europe, 2005, pp. 920–921.

[2] LIP6, “http://www-asim.lip6.fr/recherche/coriolis.”
[3] A. Greiner and F. Pecheux, “Alliance: A complete set of cad tools for

teaching vlsi design,” inProceedings of the Third EuroChip Workshop,
1992.

[4] H. C. Christophe Alexandre, Marek Sroka and C. Masson, “Zephyr: a
static timing analyzer integrated in a trans-hierarchical refinement design
flow,” in PATMOS’2006: Proceedings of the Power and Timing Modeling
Optimization and Simulation conference, 2006, pp. 319–328.

[5] T. J. Barnes, “Skill: A cad system extension language,” inDAC ’90:
Proceedings of the 27th ACM/IEEE conference on Design automation,
1990, pp. 266–271.

[6] A. Greiner and F. Ṕetrot, “Using c to write portable cmos vlsi module
generators,” inEURO-DAC ’94: Proceedings of the conference on Euro-
pean design automation, 1994, pp. 676–681.

[7] J. Decaluwe, “Myhdl: a python-based hardware description language,”
Linux J., vol. 2004, no. 127, p. 5, 2004.

[8] W. Hassan, “Simplified wrapper and interface generator,”Linux J., vol.
2000, no. 71es, p. 6, 2000.

