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Abstract. This paper formalizes an incremental
approach to design flow-control oriented hardware de-
vices described by Moore machines. The method is based
on successive additions of new behaviours to a simple
device in order to build a more complex one. The new
behaviours added must not override the previous ones.
A set of CTL formulae is assigned to each step of the
design. The links between the formulae of two consec-
utive design steps are formalized as a set of formula-
transformations F , stating that: for all CTL formula f

with atomic propositions related to step i, f is satisfied
on a design at step i, iff F (f) is satisfied on the design
extended at step i+1. This result extends the classical
CTL property preservation results in a particular con-
text. Moreover, it simplifies the writing of properties for
a new device. This approach has been applied in the de-
sign of bus protocol converters and the transformations
were useful to perform non-regression analysis. It could
also be applied in order to simplify both system and for-
mulae in particular cases.

Key words: System Design and Verification, Simulation
Relation, Computational Tree Logic.

1 Introduction

This paper stems from the observation of the way some
hardware components may be designed. In some cases,
hardware designers adopt an incremental strategy : af-
ter having defined the information flow of the design,
the rough structure of the data-paths and the control
part, they proceed to the implementation of the sim-
plest cases up to the most complex ones. This is accom-
plished by adding new functionalities, thus building a
more and more complex device. This is particularly true
for devices implementing a pipe-line flow: stages of the

pipe-line can be roughly drawn and then the stalling ac-
tions are added. We believe this incremental approach
provides a framework that simplifies the design process,
by treating difficulties one by one instead of having to
face them altogether.

Often, the verification of such devices is performed by
simulation of test cases. Specification of components by
means of a list of properties expressed as CTL formulae
and verification by symbolic model-checking [2] emerge
as a verification method complementary to simulation.
For instance a bus protocol can be expressed by means of
CTL formulae, and a new design conformable to the pro-
tocol, may be checked by plugging it into a verification
environment mimicking the bus, and then check that all
properties of the specification are verified. In particular,
verification of a single component in isolation by means
of CTL or LTL specification is commonly used in the
assume-guarantee verification process [16,10].

In a general way, the incremental design approach
does not preserve the set of properties from a simple
component to a more complex one. Once a behaviour is
added to an simple model, a global property, which was
true in the simple model, may be wrong in the extended
one. Consequently, local and global properties (about the
component plugged in a complex environment consisting
of other components) have to be re-adapted for each in-
cremental step of the design. The method we propose
overcomes this limitation : the properties satisfied in the
simple model are transformed into others satisfied in the
complex model. The limit of the model’s complexity is
related to the symbolic model-checking: each component
has to pass into the model-checker (this is sufficient to
perform assume-guarantee verification) and if one needs
to verify a global property among several components,
the complete system has to fit into the model-checker.
In practice, this corresponds to medium-sized systems
(reducible to about 10K logical gates).
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This incremental design process is complementary to
those applying a refining strategy as in the B method[13].
In refining strategies, the global information flow is ini-
tially defined, and all cases, the simplest ones up to the
most complex ones, are obtained by incremental refine-
ments of the initial model. Each refinement is considered
as a step towards a real implementation. The strength
of these approaches resides in the preservation of global
properties along the refinement process: if a property is
true in a given model, then, if the refinement is well-
defined, the refined model will preserve the initial prop-
erty. This design method ensures that the implementa-
tion respects the properties of the specification. But this
refining strategy excludes the addition of new function-
alities during the design process: a refinement is a spe-
cialization of a pre-defined set of behaviours, whereas
the incremental method we propose is built on addition
of new behaviours. In our case, the price to pay is the
lack of property-preservation.

The way several increments interfere with each other
has been extensively studied in the context of feature in-
consistencies detection in telecommunication or software
plug-ins. For instance, Plath and Ryan have proposed in
[17,18,4] a feature integration automating tool coupled
with model-checkers ([18] for Promela/SPIN [11], [17] for
SMV [15]). The inconsistencies between several added
features are detected by LTL or CTL property viola-
tion. More recently in [4], Ryan, Cassez and Schobbens
have stated a ATL-property (Alternating-time Tempo-
ral Logic1) preservation for a restricted type of feature.
This is the transposition of the classical results of CTL-
property preservation [9] into the context of ATL for-
mulae, well-adapted to systems described in the game
theory. They also integrate this feature inconsistency de-
tection with ATL in MOCHA [1]. Others, as Cansell and
Mery in [3] have proposed a method to compose features
integrated into the Atelier B tool [6]: the refining strat-
egy is applied to guarantee the correctness of the im-
plementation with respect to an abstract specification
of the basic component plus the added services. The in-
consistencies between services appear as non provable
proof-obligations.

Our purpose differs from those described in [3,17,18,
4] since our increment definition is much simpler than the
feature integration they propose. Indeed, our increment
is monotonic: there is no overriding of behaviours, all
behaviours that were in the simple component are pre-
served in the more complex one and new behaviours are
tagged with a particular value, thus one can recognize
them. Hence property-preservation results we propose
are stronger.

We are interested in exploring the links between prop-
erties that are true in an initial model and those that are
true in the extended one. This might be expressed as:

1 ATL is a branching logic used to model systems evolution con-
trolled by a set of agents, that may affect the future by making
choices.

“ May we transform the CTL formulae that are true in
the initial model into other CTL properties that are true
in the extended one, capturing the way the extension
was performed ?”. If we can perform this, we can insure
that the extended model preserves the behaviours that
were checked on the initial one. Conversely, from some
property satisfied on the complex model, we can derive
a simpler property to verify on the simpler one. Our
goal is to build a set of CTL formulae that represents a
specification for the complex component by re-using the
specification of the simpler component (and adding new
properties specific to the added behaviours).

Given an additive increment, the initial model and
the extended one, we show that this CTL transforma-
tion is possible. The transformed CTL formulae, applied
to the extended model, restrict the verification state-
space traversal to a sub-graph isomorphic to the one
derived from the initial model. This guarantees that, if
the extended model respects the extension rules, then
the verification results of the transformed CTL formu-
lae, applied to the extended model, and the verification
of the initial CTL formulae, applied to the initial model,
are identical.

We show how these transformations can be used to
perform non-regression analysis. In a general way, when
a designer modifies a component, he has to insure that
the modification did not induce regression: the correc-
tion does not disturb other correct functionalities. This
is generally done by simulation: one has to re-simulate all
the test cases that were successful on the previous model
on the corrected one. By applying our approach, if the
correction is manually performed, we can automatically
derive the set of CTL formulae that will represent the
specification of the corrected component. These proper-
ties will have to be verified on the complex system. If
the correction is automatically performed by applying a
pre-defined increment, the non-regression is guarantied
by construction.

The paper is organized as follows: In the second sec-
tion we present how a new behaviour is added to an
existing model and the associated definitions. The third
section presents the Kripke structures derived from an
initial model and the extended model, and characterizes
the main properties of the latest. From these considera-
tions, the fourth section presents a set of transformations
of CTL formulae, restricting the verification of CTL for-
mulae in the Kripke structure of the extended model to
the Kripke structure of the initial one it includes. Then
we present, in the fifth section, the way these transforma-
tions were applied during the incremental design process
of protocol converters (between VCI (Virtual Compo-
nent Interface) [7] and PI-bus [12]). Finally in the sixth
section we draw some conclusions.



Cécile Braunstein and Emmanuelle Encrenaz: CTL-Property transformations along an incremental design process 3

2 Increment formalization

In this section, we formalize the component being de-
signed and the increment. Then we characterize the ex-
tended component.

A component is viewed as a control part driving a
data-path. Its state-space is modeled by a complete and
deterministic synchronous Moore machine. The compo-
nent presents an interface made of directed typed signals.

2.1 Definitions of a signal and a configuration

Definition 1. Each signal is defined by a variable name
s and an associated finite definition domain Dom(s) of
possible value.

Definition 2. Let E be a set of signals E = {s1, . . . , sn}.
A configuration c(E) is a conjunction of the association:
for each signal in E, one associates one value of its defi-
nition domain. The set of all configurations c(E), named
C(E) is Dom(s1) × Dom(s2) × . . . × Dom(sn).

2.2 Definition of a component

Our approach iteratively applies an increment to a com-
ponent W to build a more complex component. Wi refers
to the component resulting from i successive increments.

Definition 3. A component Wi = 〈Si, Ii, Oi, Ti, Li, si0〉
is described as a deterministic and complete Moore ma-
chine:

Si: Finite set of states.
Ii: Finite set of input signals with their finite definition

domain.
Oi: Finite set of output signals with their finite defini-

tion domain.
Ti ⊆ Si×C(Ii) ×Si: Finite set of transitions,

∀s ∈ Si , ∀c ∈ C(Ii), ∃! s′ ∈ Si s.t. (s, c, s′) ∈ Ti (∃!
means “there exists exactly one”).

Li = {l0, . . . , l|Oi|−1}: Vector of generation functions,
each function defining the value of exactly one output
signal in each state; for all output signals oj

0 ≤ j < |Oi| we have lj : Si → Dom(oj).
si0 ∈ Si: the initial state.

Remark 1. Applying the vector of generation functions
to a given state of Si produces a configuration c(Oi).

2.3 Increment

An increment is a set of modifications applied to a com-
ponent’s architecture in order to build a more complex
component. It reflects the occurrence of a new event at
the component’s interface. The architecture of Wi does
not consider the occurrence of this new event, while the

architecture Wi+1 does. The new event implies new be-
haviours and a new set of output signals but it preserves
all behaviours that already existed. Moreover, it may be
active or not, and in the second case the new component
Wi+1 behaves exactly like Wi.

The occurrence of the new event implies new be-
haviours and (possibly) new sets of states and output
signals. The new event cannot remove or override be-
haviours that already existed, it only adds new ones. It
can occur in different manners:

– Either the definition domain of one or more existing
input signals is extended. The interfaces of the com-
ponent are fixed, but the incremental design process
takes into account values of these interfaces that were
not previously considered.

– One or more new input signals are added (with a
definition domain). This is the case of an increasing
complexity of the data-path of the component.

In both cases, the new event is modeled by the ap-
pearance of a new set of input signals (with their def-
inition domain), I+, extending Ii. In the first case we
treat the extended signal as a new one. For example let
be a signal l with an initial domain Dom(l) = {a, b}. A
more complex component has to take into account a new
possible value, c, of signal l. This can be expressed by in-
troducing a new signal j such that Dom(j) = {0, 1} and
”j takes value 0” means ”l takes a previously considered
value (a or b)” and ”j takes value 1” means l takes a
new value c (that was not previously considered). The
domain of l is unchanged.

The set of all configurations corresponding to the new
input signals is split in two disjoint sets representing that
the new event is active or not.

Definition 4. The event e is a triple e =
〈I+, CACT (I+), CQT (I+)〉 such that :

I+ = The set of new input signals and their definition
domain, I ∩ I+ = ∅.

CACT (I+): The set of configuration representing the oc-
currence of the new event. If one such configuration
occurred the event would be said to be active.

CQT (I+): The set of configuration representing the ab-
sence of the new event. If one such configuration oc-
curred the event would be said to be quiet.

We have CACT (I+)∪CQT (I+) = C(I+) and CACT (I+)∩
CQT (I+) = ∅.

In the following we denote e qt a configuration of
signals in I+ belonging to CQT (I+), respectively e act
represents a configuration of signals in I+ belonging to
CACT (I+).

Figure 1 presents an admissible increment. On the
left, the Moore machine describing a component Wi con-
tains three states and the input signal k with Dom(k) =
{0, 1} drives the transitions. On the right, the compo-
nent Wi+1 resulting from the increment of Wi with an
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Fig. 1. Increment example

additional input signal j with Dom(j) = {0, 1}. j = 0
belongs to the quiet configurations’ set, and j = 1 to
the active one. In Wi+1, j = 0 labels all transitions that
were in Wi (j = 0 is represented by the literal j); new
transitions leaving from states that existed in Wi are la-
beled with the active configuration of j(that is, j = 1,
represented by the literal j); Labels of transitions exiting
new states in Wi+1 can either be j or j.

The occurrence of the new event induces new behav-
iors in the more complex component. It introduces new
transitions, and possibly new states and actions: either
one or more existing output signals may have their do-
main extended, or one or more new output signals may
be created, but no one is deleted. All behaviours that
previously exist in Wi are present in Wi+1.

In the following definition, if E2 ⊂ E1 be sets of
signals, let c be a configuration in C(E1), we note c′ =
proj(c, E2) the sub-configuration of c restricted to the
signals in E2 (c′ ∈ C(E2)).

Definition 5. An increment from a component Wi is a
4-tuple INC = 〈e, Σ+, T+, O+〉

e: the event describe above.
Σ+: the set of new reachable states. Σ+ ∩ Si = ∅
T+ ⊆ (Si×C(Ii∪I+)×Si)∪(Si×C(Ii∪I+)×Σ+)∪(Σ+×

C(Ii ∪I+)×Σ+)∪ (Σ+×C(Ii∪I+)×Si) : each tran-
sition (s1, c

′, s2) in T+ leaving a state that was in Si

has an input configuration whose sub-configuration
of the new input signals belongs to CACT (I+). We
have ∀t = (s1, c

′, s2) ∈ T+ ∩ (Si × C(Ii ∪ I+) ×
Σ+ ∪ Si × C(Ii ∪ I+) × Si) , c′ is such that : c′ ∈
C(Ii)∪CACT (I+). In the following we will write c′ =
c ∧ e act, with c ∈ C(Ii) and e act ∈ CACT (I+).

O+ : the set of new output signals and their definition
domain, with :
– CACT (O+): The set of configuration representing

the activation of the output.
– CQT (O+): The set of configuration representing

the non-activation of the output.
The output functions associated to O+ returns a con-
figuration in CQT (O+) for all states that were in Si.

We also need to extend the signature of the configuration
of transitions that were in Ti. The function Extend fills
the old configuration with a sub-configuration belong-
ing to quiet configuration set : let t = (s1, c, s2) ∈ Ti,

Extend(t, I+) = t′ such that t′ = (s1, c
′, s2) and c′ =

c ∧ e qt (with e qt in CQT (I+)) and proj(c′, Ii) = c.
A component Wi+1 obtained by applying an incre-

ment to a component Wi preserves all behaviours that
were present in Wi, assuming that, in Wi+1, the new
event is maintained to a quiet configuration. We have,
Si+1 = Si ∪ Σ+, Ii+1 = Ii ∪ I+, Oi+1 = Oi ∪ O+,
Ti+1 = {t′ | t′ = Extend(t, I+), ∀t ∈ Ti} ∪ T+, Li+1 con-
forms to the restriction imposed by O+ and si+10

= si0 .
We recall the definition of simulation relation as ex-

pressed by Grumberg and Long in [9].

Definition 6. (simulation relation [9]) Let M and M’
be two Moore Machines with I ⊆ I ′ and O ⊆ O′ and
let s (resp. s′) be states in S (resp. S′). A relation H ⊆
S × S′ is a simulation relation from (M,s) to (M’,s′) iff
the following conditions hold.

1. H(s, s′).
2. for all s and s′, H(s, s′) implies

(a) The projection of L′(s′) onto O′ is equal to L(s);
(b) for every p such that (s, C(I), p) ∈ T there exists

p′ (s′, C(I ′), p′) ∈ T ′ and H(p, p′).

Proposition 1. (Wi+1, si+1) simulates (Wi, si).

Proof. We build ρW a binary relation between the states
of two consecutive components Wi and Wi+1, such that
ρW ⊆ Si × Si+1 with: ∀s ∈ Si, (s, c, p) ∈ Ti there exists
c’ such that (s′, c′, p′) ∈ Ti+1 and c′ = c ∧ e qt. By con-
struction p = p′. Moreover, by construction the initial
state of Wi is equal to the initial state of Wi+1. Hence
we have (Wi+1, si+1) simulates (Wi, si).

3 Translation of Moore machine into Kripke

structure

The semantics of CTL formulae is defined on the Kripke
structure derived from the initial Moore machine de-
scribing the component Wi. Informally, the input con-
figurations that label the transitions in the Moore ma-
chine are incorporated into states in the Kripke struc-
ture. We formally define the Kripke structure K(Wi)
obtained from the component Wi.

Definition 7. A Kripke structure is a 5-tuple
K = 〈S, s0, AP,L, R〉 where:

S is a finite set of states.
s0 ⊆ S is the set of initial states.
AP is a finite set of atomic propositions.
L = {l0, . . . , l|AP |−1} is a vector of |AP| functions. Each

function defines the value of exactly one atomic propo-
sition; for all 0 ≤ i ≤|AP| we have li : S → B; for
all s ∈ S, we have that li(s) is true iff the atomic
proposition associated to li is true in s.

R ⊆ S × S is the transition relation.
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Fig. 2. Transformation of a Moore machine into a Kripke structure

Definition 8. Given a component Wi, we deduce the
Kripke structure (adapted from [5])
K(Wi) = 〈SK(Wi), sK(Wi),0, APK(Wi),LK(Wi), RK(Wi)〉

SK(Wi) = Si × C(Ii).
sK(Wi),0 = {si} × C(Ii).
APK(Wi) = Ii ∪ Oi.
LK(Wi) = {lI0, . . . , lI |Ii|−1}·{lO0, . . . , lO |Oi|−1} is a vec-

tor of | APK(Wi) | functions.· means vector concate-
nation.

RK(Wi) ⊆ SK(Wi) × SK(Wi) and ∀ (s, ci) ∈ SK(Wi),
∀(s′, c′i) ∈ SK(Wi), we have ((s, ci), (s

′, c′i)) ∈ RK(Wi)

iff (s, ci, s
′) ∈ Ti.

Figure 2 shows the transformation of a Moore ma-
chine (on the left) into a Kripke structure (on the right).
The state s1 is transformed into n states, each of which
being labeled with s1 and a different input configuration.

Applying an increment to a component Wi produces
a component Wi+1. The CTL formulae associated to Wi

are verified over the Kripke structure K(Wi). One can
derive a Kripke structure K(Wi+1) from the component
Wi+1 by applying Definition 8. We are now interested
in characterizing the properties of K(Wi+1) with re-
spect to K(Wi), i.e. to show that K(Wi) is included into
K(Wi+1), with all states that were present into K(Wi)
tagged with a quiet configuration of the new event.

3.1 Properties of K(Wi+1)

By construction, the tree of behaviours of K(Wi) is pre-
served in K(Wi+1), labeled with a quiet configuration
of the new event. This preservation property can be ex-
pressed as the existence of a simulation relation between
the Kripke structures’ states obtained from two consecu-
tive components. More precisely, the enrichment relation
captures the fact that behaviours of the previous compo-
nent are enclosed in the newer one, tagged with a quiet
configuration of the event.

Definition 9. Enrichment Relation For all states
t = (s, c) ∈ K(Wi), there exists t′ = (s′, c′) and t′′ =
(s′′, c′′) ∈ K(Wi+1) such that :

s′ = s, c′ = c ∧ e qt
s′′ = s , c′′ = c ∧ e act.

t′ and t” are said to enrich t (with e qt in the first case).

In the following we denote sK(Wi),0 by t0 and
sK(Wi+1),0 by t′0.

In [9] a simulation relation between Kripke structure
is also defined. We apply it here.

Proposition 2. (K(Wi+1), t
′
0) that enriches the initial

state of (K(Wi), t0) with e qt simulates the latter.

Proof. We define ρKW
⊆ SK(Wi) × SK(Wi+1), such that

∀t = (s, c) ∈ SK(Wi), s ∈ Wi and c ∈ C(Ii), ∃t′(s′, c′) ∈
SK(Wi+1), with s′ ∈ Wi+1 and c′ ∈ C(Ii+1), then (t, t′) ∈
ρKW

iff s′ = s and c′ = c ∧ e qt. By construction, ρKW

is a simulation relation.

Remark 2. From above,
t′ enriches t with e qt ⇒ t′ simulates t.
t′ enriches t with e act 6⇒ t′ simulates t

t′ simulates t 6⇒ t′ enriches t.
Indeed, nothing can be said once a state t′ enriching t

with e act is encountered, since it represents the begin-
ning of a new behaviour.

Figure 3 summarizes the incremental design process
and the transformation of a Moore machine into a Kripke
structure. The Moore machine Wi (top left) is incre-
mented by an event e. The result is a Moore machine
Wi+1 (top right). Wi+1 has got a new state r′ that is not
in Wi. Bottom of the figure shows the Kripke structures
derived from the Moore machines. The state r′ ∈ Wi+1

produces a set of states in K(Wi+1) labeled with r′ (and
an input configuration of Ii+1), that may only be reached
by a state t′′ labeled with e act.

Corollary 1. 1. If there exists some infinite path in
K(Wi), then there exists some infinite path in K(Wi+1)
along which the event e has always a quiet config-
uration. Let be σ = s0 . . . sn . . . in K(Wi), ∃σ′ =
s′0 . . . s′n . . . in K(Wi+1) such that all s′i enriches si

with e qt.
2. K(Wi) is the maximal sub-graph in

K(Wi+1), reachable from s′0,(that enriches s0 with
e qt) when e remains in a quiet configuration.

3. The states in K(Wi+1) obtained by the expansion of
a state ∈ Σ+ are only reachable from the initial state
s′0 that enriches s0 with e qt by a path along which
at least one state is labeled by e act.

4. Let be s′ ∈ K(Wi+1) that enriches s ∈ K(Wi) with
e qt , then for all t′ ∈ K(Wi+1) such that s′ → t′,
there exists t ∈ K(Wi) such that t′ is produced by the
expansion of t due to the increment, and s → t.

Proof. 1. By induction on the length of σ.
2. By construction of K(Wi+1), we have that s′0 en-

riches s0. By Corollary 1 item 1, all paths that where
in K(Wi) are present in K(Wi+1) with e remain-
ing to a quiet configuration. If there exists a state
t′ ∈ K(Wi+1) reachable from s′0 along a path where
e is maintained to a quiet configuration and such that
t′ satisfied e act then t′ does not belong to K(Wi).
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Fig. 3. Incremental rules and Kripke structure transformation

3. From Corollary 1 item 2.
4. Let s′ ∈ K(Wi+1) enriches s ∈ K(Wi) with e qt, and

s′ → t′, assume t′ is not obtained by expansion due to
the increment of a state t in K(Wi). By construction,
t′ is produced by the expansion of a state r in Wi+1

(that is not in Wi) reached by a transition labeled
by e act (Corollary 1 item 3). Hence t′ can not be a
successor of s′ (see Figure 3) (Contradiction).

Hence, K(Wi+1) includes K(Wi) and K(Wi) can be
detected in K(Wi+1) since it is the maximal connected
sub-graph tagged with e qt, reachable from the initial
state. This is captured by the enrichment relation. The
enrichment relation with e qt is included in a simulation.
We now use this particularity to establish links between
CTL formulae verified on K(Wi) and some others veri-
fied on K(Wi+1).

4 CTL-formulae transformations

[14] and [9] have stated some CTL formulae-preservation
results between two Kripke structures ordered by any
simulation relation. We recall their results in our partic-
ular context.

In [14] the authors state the preservation of ECTL2

formulae from K(Wi) to K(Wi+1), while in [9] the au-

2 ECTL stands for positive CTL formulae restricted to the Ex-
istential modality

thors state the preservation of ACTL3 formulae from
K(Wi+1) to K(Wi). These works only consider frag-
ments of CTL and do not transform formulae. Moreover,
the preservation is unidirectional : an ACTL formula
that is verified in K(Wi+1) will be verified in K(Wi),
but an ACTL formula that is verified in K(Wi) may not
be verified in K(Wi+1).

The results we present are not based on the preser-
vation of a fragment of CTL between a component and
another one that includes it, but rather transform the
whole CTL operators and provide a bi-implication be-
tween the initial formula and the transformed one.

Given a CTL formula Φ , we are going to set out
the rules to transform Φ that is true in sK(Wi),0 (named
in short s0) into Φ’ that is true in s′

K(Wi+1),0
(shortly

named s′0) when s′0 enriches s0 with e qt.

Theorem 1. Let be s ∈ SK(Wi) and s′ ∈ SK(Wi+1) such
that s′ enriches s with e qt.
We claim : for any atomic proposition p ∈ APK(Wi) and
for any CTL formula Φ, χ and Ψ (with all their atomic
propositions in APK(Wi)),

K(Wi), s |= Φ ⇔ K(Wi+1), s
′ |= Φ′

where Φ′ is the formula obtained by recursively applying
the following transformations:

3 ACTL stands for positive CTL formulae restricted to the Uni-
versal modality
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1 Φ = p ⇔ Φ′ = p.
2 Φ = ¬Ψ ⇔ Φ′ = ¬Ψ ′.
3 Φ = EXΨ ⇔ Φ′ = e qt ⇒ EXΨ ′.
4 Φ = EFΨ ⇔ Φ′ = E(e qtUΨ ′).
5 Φ = EGΨ ⇔ Φ′ = EG(e qt ∧ Ψ ′).
6 Φ = EΨUχ ⇔ Φ′ = E((e qt ∧ Ψ ′)Uχ′).
7 Φ = AXΨ ⇔ Φ′ = e qt ⇒ AXΨ ′.
8 Φ = AFΨ ⇔ Φ′ = AF (e act ∨ Ψ ′).
9 Φ = AΨUχ ⇔ Φ′ = A((e qt ∧ Ψ ′)U(e act ∨ χ′)).
10 Φ = AGΨ ⇔ Φ′ = A((e qt ∧ Ψ ′)We act).
11 Φ = AΨWχ ⇔ Φ′ = A(Ψ ′W (χ′ ∨ e act)).

W stands for the ”Weak until” operator.

Proof. (Sketch): The transformations are based on the
reduction of the computational tree explored in K(Wi+1)
to the sub-tree along which the active configuration of
the event are not considered. By Corollary 1 item 2,
this sub-graph represents K(Wi). The transformation
is proven for each CTL operator applied to an atomic
proposition : we include the e qt constraint in its defi-
nition. Then the proof proceeds by structural induction
on the formula Φ.

In appendix A.1, we show three examples of the basic
cases proof for items 1, 3 and 10, the proof then proceeds
by induction upon these cases.

The intuitive meaning of these transformations is the
following : Line 1 states that an atomic proposition la-
beling a state s in K(Wi) also labels the state s′ (that
enriches s) in K(Wi+1). Line 3 states that if s |= EXΨ ,
then there exists a successor s” of s′ (that enriches s
with e qt) such that s” |= Ψ ′, where Ψ ′ is obtained by
recursively applying the transformation rules to Ψ . As
s′ enriches s with e qt, s” has a corresponding state in
K(Wi), and the bi-implication holds. Line 10 says that
when all states along all infinite paths in K(Wi) verify Ψ ,
the corresponding paths in K(Wi+1) are infinite paths
tagged with e qt and the transformation of Ψ , but also
finite paths with a prefix tagged with e qt and Ψ ′, end-
ing in a state where e act holds. The presence of these
infinite paths where Ψ ′ and e qt always hold explains the
weak until operator W.

The transformations listed above do not modify the
structure of the initial formula: the nested temporal op-
erators is preserved, hence the size of the CTL formula
(measured as the number of nested temporal operators)
is unchanged. The transformation of an EF into an EU
or an AG into an AW does not significantly change the
complexity of the verification since they are based on
the same fix-point computation. The transformation is
transfered into the propositional operations that are per-
formed by classical BDD binary operations (and, or, im-
plies, ...).

We implemented a CTL formulae transformation au-
tomation tool that automates the rules described in The-
orem 1. This tool takes a file with a set of CTL formulae
and a file containing the definition of a new event and
returns the set of transformed CTL formulae. The file

defining the new event contains the set of new signals
with their definition domain, and the quiet and active
configuration sets.

5 Experiment

The task of writing pertinent CTL properties for a realis-
tic component is not easy. The specification mixing natu-
ral language, partial chronogram, partial state-machine,
describes very subtle behaviours that lead to complex
CTL formulae. In practical use, the specification is com-
posed of hundreds of formulae. They are written by a
human being, who may make mistakes. The mistakes
are detected, once the whole verification process is ac-
complished. The system does not satisfy the erroneous
formulae and the designer has to state whether the mis-
takes are in the system or in the formulae.

Moreover, in the incremental design process, the CTL
formulae for a component Wi have to be transformed for
a component Wi+1. A manual transformation may also
introduce errors. The transformation rules we presented
in Theorem 1 can be automated and used to produce
a part of the specification of Wi+1, alleviating the bur-
den of handwriting the whole specification. The part of
the specification of Wi+1 automatically derived from Wi

is exactly the set of rules necessary to check the non-
regression between the two components.

We experimented this automatic production of CTL
specifications in the context of a protocol conversion be-
tween PI-bus and VCI standard. We aim at analyzing the
differential of verification complexity (in terms of mem-
ory and speed) of a realistic medium-sized system, obtain
by incremental design process, between two successive
design steps. In this experiment, the increments are man-
ually added (following the design process). Some prop-
erties we want to verify are local to a component, but
others are global to a system composed of several com-
ponents. We are interested in checking that the added
behaviours do not introduce regression.

The conversion between Pi-bus and VCI protocols
is realized by a component named VCI-PI wrappers.
A wrapper is a core wrapping device implementing a
given interface. In our context, the IP-core is supposed
to be VCI compliant [7] and the considered wrapper is an
adapter between the VCI interface and the PI-bus pro-
tocol [12]; hence we are able to connect various IP-cores
through a PI-bus.

The PI protocol distinguishes the component initiat-
ing a bus transfer, named master, and the component
responding to a transfer, named slave. An IP-core may
have both master and slave functionalities. Figure 4 il-
lustrates the major signals interfaces a VCI-PI master
wrapper has to deal with.

A VCI transfer is shown in Figure 5. The VCI initia-
tor sends a request to the VCI-PI-master-wrapper (1),
that asks for the bus to the bus arbiter (2), and when
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VCI interface
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cmd val

cmd eop
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cmd data

rsp val
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rsp data

VCI-PI

pi req
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pi ad

pi opc

pi lock

pi data

pi ack

PI bus interface

Master Wrapper

Fig. 4. VCI and PI interfaces of our set of master wrappers
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Fig. 5. The Platform performing the VCI-PI-VCI translation and
illustration of a VCI transfer

the VCI-PI-master-wrapper owns the bus (3), it trans-
fers each VCI request cell through the PI-bus to the
VCI-PI-slave-wrapper (4,5). The VCI-PI-slave-wrapper
translates the PI-cell into a VCI-cell to be given to the
VCI target (6). The VCI-target transmits
the VCI-response to the VCI-PI-slave-wrapper (7), which
responds to the VCI-PI-master-wrapper through the PI
bus (8,9). This latter translates the PI-response into a
VCI-response and sends it to the VCI initiator (10). In
some cases, the VCI-PI-slave-wrapper may implement a
look-ahead mechanism in order to send the responses to
the VCI-PI-master-wrapper in one cycle.

Using the incremental design process approach, we
developed a set of the six master VCI-PI wrappers, from
a very simple one supposing that the VCI initiator and
the PI target will always acknowledge in one cycle, up
to the most complex one supporting delays and retract
events sent by the VCI initiator or the PI target. The
hierarchy of the six master wrappers is shown in Figure
6.

The behavior of the simplest wrapper (model A) is a
3-stages pipeline, performing at the same time:

– accepting a VCI request k to be sent to PI from its
VCI interface,

– sending the PI request corresponding to the k − 1th

VCI request on its PI interface,
– accepting the PI response to the k− 2th VCI request

on its PI interface.

Further models (B to C’) deal with external events
disturbing the pipeline flow: either the kth VCI request
can not be given to the wrapper, or the k−1th response is
delayed by the PI targets, or it says that a major problem
occurred and the transaction has to be restarted later,
or the k − 2th response can not be returned to the VCI
initiator; all these cases stall or break the pipeline.

The incremental architecture of the six master wrap-
pers is presented on Figure 7, showing the behaviours
successively added by increments ranking from A to C’.
For each increment, the FSM part contains the FSM
realization of the corresponding wrapper, and the data-
path is augmented accordingly. Successive additions to
the data-path are shown in different colors. PI retract
area is a piece of circuit induced by the increments to
produce wrapper B into wrapper C. The same increment
also transforms wrapper B’ into C’. PI wait area corre-
sponds to the increment between wrappers A and B and
between wrappers A’ and B’ also. Initiator wait area
represents the increments from A to A’, from B to B’
and from C to C’. FSM’s corresponding to wrapper B
and to wrapper B’ are shown in Appendix A.2.

We implemented a platform as described in Figure 5
in synchronous Verilog. We verified this system with the
VIS verification tool [8]. We checked about 80 CTL prop-
erties for the master wrapper B, the slave wrapper B and
the complete system (when the VCI initiator and target
may generate delay events).

Here are examples of CTL (untransformed) proper-
ties checked on the B platform:

#-----------------------#

# -> : implies operator #

# * : and operator #

# + : or operator #

#-----------------------#

# Check the interface between

# the PI bus arbiter and

# the master wrapper.

# property 1: #

AG( (wrap0.state = R_REQ) ->

(A( (pi_req = 1) U (pi_gnt = 1))));

# Check the behavior of the slave wrapper

# (its two automatas are well synchronized).

# property 2: #

!EF((wrap_cible.cmd_cible.state = CMD_IDLE) *

!(wrap_cible.rsp_cible.state = RSP_IDLE));

# Check the behavior of the complete system:

# check that the number of acknowledgment

# cells received by the VCI initiator

# is equal to the number of request cells

# it previously sent.

# Here, the initiator sends 2 requests.

# property 3: #

AG( (cmd = READ_2_WORDS) ->

A ( (A (

(A((cmd = READ_2_WORDS * cmd_eop = 0 *

cmd_val = 1)

U (cmd_ack = 1)))

U ( A( (cmd_eop = 1 * cmd_val= 1)

U (cmd_ack = 1)))))

U (cmd_val = 0) ));
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Target is always ready
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Type of event considered
Initiator is alway ready
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Fig. 6. Hierarchy of VCI-PI wrappers ranking from A to C’. Each arrow corresponds to an increment whose associated event is an
extension of the definition domain of one or more signals.
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Fig. 7. Architecture of master wrapper C’.

Appendix A.2 shows the wrapper B Moore machine.
The wrapper B supports delay from the PI bus, but
it assumes the initiator is always ready to perform a
writing or reading request and to acknowledge the re-
sponse from the target. The wrapper B has been incre-
mented to obtain the wrapper B’. The new event is an
extended definition domain of the signals cmd val and
rsp ack. Initially, in the wrapper B, these two signals
always remain to the value 1. Now both signals have
their definition domain extended with the value 0, mean-
ing that the initiator is not ready to perform a request,
respectively not ready to acknowledge a response. We
name the new event representing this extension e =
〈(incb′ , {0, 1}), {0}, {1}〉. The set of quiet configurations
of the new event is CQT (incb′) = {0}. This configuration
occurs when (cmd val = 1) ∧ (rsp ack = 1). The set of

active configurations is CACT (incb′) = {1}, that occurs
when (cmd val = 0) ∨ (rsp ack = 0).

By applying Theorem 1 the first property shown above
is transformed into the following one:

A( (incb’ = 0 * (wrap0.state = R_REQ) ->

A( incb’ = 0 *(pi_req = 1) U

(incb’ = 1 + pi_gnt = 1))) W (incb’ = 1))

This can be rewritten with the existing signals:

A( ((cmd_val = 1 * rsp_ack = 1) *

(wrap0.state = R_REQ) ->

A( (cmd_val = 1 * rsp_ack = 1) *

(pi_req = 1) U (cmd_val = 0 + rsp_ack = 0)

+ (pi_gnt = 1))) W

(cmd_val = 0 + rsp_ack = 0))

We applied the transformations described in Theo-
rem 1 on the 80 CTL properties of the model B with the
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increment transforming B into B’, and verified them on a
system containing now the B’ VCI-PI master and slave.
The verification results were successful, meaning that the
modifications from B to B’ do not introduce regression.
Of course, extra CTL formulae had to be added to the
B’-platform in order to check the behaviours added by
the increment.

We now present some quantitative information re-
lated to the verification. The verification is performed
with VIS. A first step computes the set of reachable
states of the system, and then a second step check each
property.

Table 1 presents the time and memory required for
the verification of the three properties given above (and
the corresponding transformed ones) on a platform com-
posed of :

1. One master and one slave of type B with a VCI ini-
tiator, a VCI target and a PI bus (with a unique
master)(1M1SB).

2. One master and one slave of type B’ with a VCI
initiator, a VCI target and a PI bus (with a unique
master)(1M1SB’).

3. Two masters and one slave of type B with two VCI
initiators, a VCI target and a PI bus(2M1SB).

4. Two masters and one slave of type B’ with two VCI
initiators, a VCI target and a PI bus(2M1SB’).

For a small-size system (platforms 1 and 2), the over-
all verification time is increased for the complex model
but most of this time is consumed during the reachable
state-space construction (11s vs 68s). The extra cost of
property verification is of the same order of magnitude
for both platforms (2s vs 9s). These results are confirmed
for the medium size systems (3 and 4) where the gap be-
tween the B and B’ verification time is mostly due to
the increasing complexity of the system, rather than the
complexity of the formula, since most of the verifica-
tion time is spent during the reachable state-space con-
struction (34s vs 3h30). Once the reachable state-space
is built, the verification of each property is performed in
2s for the B platform vs 5s up to 25s for the B’ platform.
This is not surprising since, for the property verification,
the same piece of state-space is analyzed, but the BDD’s
representing the transition relation and the state-space
of platform B’ are much bigger than those of platform
B.

This approach is also interesting in case of simplifica-
tion. If one knows that the platform to built will contain
slaves that always respond ”ready”, then it worth using
master B instead of B’: the models are simpler, the prop-
erties are given, or can be derived from the B’ ones, and
the verification cost will be reduced.

6 Concluding Remarks

The transformation rules of CTL formulae we propose
are the basis to an approach to automatically derive part

of the specification of a component, from the specifica-
tion of the simpler component it comes from. Moreover,
this approach facilitates the handwriting of CTL spec-
ification and is a step toward the automatic reuse of
existing specifications of a simpler component.

We have shown this approach can be used during the
design of a concrete component, assuming the increment
respects the rules we formalized, as we take advantage
of the existence of a particular value tagging the ini-
tial part of a model included in an extended model. The
transformed CTL formulae have the same complexity (in
terms of nested CTL operators) as the initial CTL for-
mulae. This is confirmed by experimental results show-
ing that the increasing time of the verification of the
complex system is mainly due to the reachability analy-
sis instead of the CTL formula verification.

It is our intention to pursue this study towards the
following directions:

– Up to now, we did not take into account all the
particularities of the increment; we considered only
the existence of a particular event splitting the set
of states with the ones that appeared in the initial
model and the new ones (this event may be due to
the extension of existing signal domains and/or to the
addition of new signals). We did not take advantage
of the graph structure of the increment; most of the
time, this increment consists of the adding of a new
state (or set of states) characterizing the freezing of
the data-path waiting for some continue signal to be
set, allowing the data-path to pursue. In these cases,
a new set of CTL transformations may be defined,
capturing the added behaviours.

– The opposite analysis can also be of interest: given
a formula to be verified on a complex model, can we
find an increment (in the sense we defined in this pa-
per) such that the complex model has been built from
the application of this increment to a simpler model.
If yes, can we transform the formula of the complex
model to a simpler one to be verified on the sim-
pler model? The verification would be partial since
it would not apply to the whole set of behaviours of
the complex system, but could give some information
if the complex system is too big to be verified with
classical model-checking tools.

– Another perspective is the increment composition.
The example of wrappers presents seven increments,
different compositions of some of them converge to
the same ”most complex” component. We are inter-
ested in finding some rules to compose various in-
crements, and to define increments satisfying some
”minimality” properties that are the basis of com-
plex increment.

– We are also interested in studying the way this ap-
proach could be mixed with an Assume-Guarantee
verification process generally applied in the refine-
ment design process [10].
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Table 1. Verification time and memory required for computation. The experiments were performed under a Pentium III 1.4GHz with
1GB of memory with a sift dynamic reordering.

Platform Number of Reachable BDD size Reachable State Space Property Checking
(name) variables states (# of nodes) analysis time (#) time

1 Master
1 Slave B
(1M1SB)

1 2.64s

305 115405 3227 11.25s 2 2.68s

3 2.97s

1 Master
1 Slave B’
(1M1SB’)

1’ 8.73s

333 1,4e+07 18391 68.52s 2’ 8.88s

3’ 8.95s

2 Masters
1 Slave B
(2M1SB)

1 1.94s

476 2.87e+06 9141 34.62s 2 1.91s

3 2.16s

2 Masters
1 Slave B’
(2M1SB’)

1’ 5.7s

528 9.32e+11 107571 3h30 2’ 5.12s

3’ 24.5s
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A Appendix

A.1 Theorem 1 partial proof

We present the proofs of each basic case of the CTL
transformation in this preliminary version of the paper
but we do not plan to present it in the final version of
the paper.

s′ enriches s, K(Wi), s |= p ⇔ K(Wi+1), s
′ |= p,

p is an atomic proposition that is not concerned
with the increment.

Proof. (⇒) By definition, if s′ enriches s, s′ contains a
greater set of atomic propositions than s. As s |= p, p

being an atomic proposition of s, then p is an atomic
proposition of s′, hence s′ |= p.

(⇐) If p is not a property concerned with the incre-
ment and s′ ∈ SK(Wi+1) enriches s ∈ SK(Wi), then
K(Wi+1), s

′ |= p ⇒ K(Wi) |= p.

s′ enriches s, K(Wi), s |= EXp ⇔ K(Wi+1), s
′ |=

(e qt ⇒ EXp) and p in APK(Wi).

Proof. (⇒) If s |= EXp, there exists a state t = (u, c) ∈
SK(Wi) such that s → t and t |= p. Let be a state s′

enriching s with e qt; by Corollary 1 item 2 there
exists t′ = (u′, c′) ∈ SK(Wi+1) such that s′ → t′,
u = u′, and proj(c′, Ii) = c. Hence K(Wi+1), t′ |= p

and K(Wi+1), s′ |= e qt ⇒ EXp.
(⇐) Let be K(Wi+1),s

′ |= e qt ⇒ EXp and s′ enriches
s with e qt; let be t′ = (u′, c′) such that s′ → t′ and
t′ |= p. By Corollary 1 item 4, there exists t = (u, c) ∈
SK(Wi), such that u = u′, and proj(c′, Ii) = c, then
as p ∈ APK(Wi), t |= p. Moreover, s′ simulates s,
hence K(Wi), s |= EXp.

s′ enriches s, K(Wi), s |= AGp ⇔ K(Wi+1), s
′ |=

A((e qt ∧ p)We act).

Proof. (⇒) 1. (In K(Wi+1), a state that do not ver-
ify p belongs to an added behaviour). Let be t′ ∈
SK(Wi+1), t′ |= p ∧ e qt and σ′ = s′ . . . t′. t′ =
(u′, c′) doesn’t simulate a state in K(Wi) (∀s ∈ Si

s |= p). u′ corresponds to an added state into
Wi+1(∈ Σ+). Hence, t′ is only reachable from a
sequence having a state where e act holds (Corol-
lary 1 item 3).

2. In K(Wi+1), along paths reached from the ini-
tial state, all states verify e qt and p until a state
where e act holds is reached. Let be s′ such that s′

enriches s and a sequence σ′ = s′ . . . r′ . . . t′ with
s′ < r′ ≤ t′, if 6 ∃m′ labeled with e act such that
m′ < r′ then r′ |= p ∧ e qt or r′ |= e act.

3. Infinite paths in K(Wi) correspond to infinite paths
labeled with e qt in K(Wi+1). By Corollary 1 item 1,

if there exists some infinite path in K(Wi), there
exists some infinite path in K(Wi+1) labeled with
e qt. Then there exists some infinite path in K(Wi+1)
which verify p ∧ e qt.
We have thus s′ |= ((p ∧ e qt)We act)

(⇐) By Corollary 1 item 2, the maximal computation
tree in K(Wi+1) from s′, when s′ enriches s with e qt

and where all states are labeled with e qt is K(Wi)
(whose state’s configuration is extended to an e qt
sub-configuration). As K(Wi+1), s′ |= A((p∧ e qt)W
e act), in the sub-tree representing K(Wi), e qt holds,
hence all the states of the sub-tree verify p ∧ e qt,
hence K(Wi), s |= AGp.

A.2 Wrapper B and B’ Moore Machine
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Fig. 8. The Master Wrapper B Moore Machine

Fig. 9. The Master Wrapper B’ Moore Machine. (!p means p)


