
Using CTL formulae as component abstraction in a design and verification flow

Cécile Braunstein
Université Paris 6 - LIP6/SOC

CNRS UMR 7606
12 rue cuvier 75005 Paris France

Phone: +33 (0)1 44 27 70 16
Fax: +33 (0)1 44 27 72 80
cecile.braunstein@lip6.fr

Emmanuelle Encrenaz
Laboratoire Spécification et Vérification

CNRS UMR 8643
61, avenue du Pdt Wilson 94235 Cachan France

Phone: +33 (0)1 47 40 75 63
Fax : +33 (0)1 47 40 75 21

emmanuelle.encrenaz@lsv.ens-cachan.fr

Abstract

The verification of global properties (involving several
components) is difficult to achieve, due to combinatorial ex-
plosion problem, while the verification of each component is
easier to perform. Following the idea of [23], we propose to
build an abstraction of a component already verified, start-
ing from a subset of its specification described as CTL for-
mulae. This abstraction replaces the concrete component in
the context of global properties verification.

1. Introduction

This work takes place in the context of hardware mod-
ular verification by model checking ([3, 11]). Although
this latest is not adequate to verify very complex systems,
it has been successfully used for medium-sized systems.
More precisely, model-checking techniques are well-suited
for protocols verification. For instance, successful experi-
ments are described in [9, 20, 14] where the specification is
expressed in temporal logic. More recently, the idea of ab-
stracting a component by a subset of its specification prop-
erties appears as a new method to alleviate the state space
explosion problem. Xie and Browne in [23] proposed a
compositional model checking process integrating this idea
in the context of software engineering. Temporal properties
(LTL) of a component are specified, verified and packed
with the component. The whole system is then checked
by using abstractions of all its components, each of which
being built from already verified temporal properties and
some environment assumption (also defined with temporal
logic). Afterward, the abstraction refinement is performed
with a classical counterexample guided abstraction refine-
ment loop (CEGAR) [7]. But in [23], the details of the
algorithm computing the abstraction is not given. Büttner

[4] adopts a similar abstraction based on CTL properties in
the context of synchronized module composition. Its ab-
stract model of module is well suited to provide a cycle
accurate abstraction to be used in micro-architecture veri-
fication. The abstraction is then synthesized into hardware
and embedded in a simulation environment.

In the present paper, we define a component abstraction
based on the specification of the component. Components
are represented as Kripke structures, specification and en-
vironment assumption are expressed as CTL formulas. We
propose an algorithm to build a component abstraction rel-
atively to a subset of its specification. The abstraction is
thus a direct translation from CTL formulas to an abstract
Kripke structure. Our verification process is the following :

• Each component is already specified and its CTL for-
mulae are verified.

• We choose a global property to be checked on the
whole system (encompassing several components).

• For each component, we select a subset of its specifi-
cation, useful for checking the global property.

• For each component, we compute a preliminary ab-
straction directly from CTL formulas included in its
specification.

• We compose all component abstractions and obtain an
abstraction of the whole system, that is the seed of
a counter-example guided abstraction refinement pro-
cess (CEGAR).

• After having performed the model checking, if the ab-
straction needs to be refined, we simply select a new
formula from the specification of one (or several) com-
ponents, add the corresponding abstraction, and re-run
the verification.

The main contribution of this work is the definition of
an algorithm building automatically abstraction from a sub-
set of the component specification. Peng and Tahar [19]
propose to synthesize tableau of ACTL formula ([11]) into
Verilog description. Our work goes in the same way but our
construction is based on the syntactic analysis of the for-
mula (instead of the fixpoint definition of each subformula,
as in Tableau construction). Furthermore, we do not restrict
to the universal fragment of CTL, our algorithm synthesizes
a structure for all CTL without the next operators.

Several works study the translation of temporal logic into
automaton. Kupferman and al. [15] state a linear transla-
tion from branching temporal logic into alternating tree au-
tomatas. This induces an automata-based model checking
algorithm of linear running time for CTL. More recently,
Dams and Namjoshi [8] propose to use tree automatas as
abstraction for all unwinding of a Kripke structure. Our
goal is different : we want to obtain an abstraction that can
be plugged into the platform under verification. The model
of Abstract Kripke Structure (close to the L-valued Kripke
structure in [12]) is well-suited for such a purpose: we can
combine concrete and abstract components in a unified way.

The abstract structure we obtain is obviously less precise
than the concrete one. We need to represent less informa-
tion. The idea is to use multi-valued logic as in [1] or [5, 12]
to represent the lack of information due to the abstraction.
In [1], Bruns and Godefroid assigned a third value for the
signal that does not have a truth value true or false in the
abstraction. They interpret it with the value ”unknown” (or
⊥). In our case, during abstraction of a component rela-
tive to some properties it verifies, the value of abstracted
signals is interpreted as “don’t care”. During the verifica-
tion of a global property (encompassing several abstracted
components), the value of abstracted signal is interpreted as
“unknown”. Furthermore, in our approach we do not need
a fourth value to represent possible inconsistencies as de-
scribed in [5]. Instead of inserting the third value of inter-
pretation of atomic proposition in the abstract Kripke struc-
ture, we extend the set of atomic propositions and the asso-
ciated labeling function.

The paper is organized as follows. First, we recall some
preliminary definitions on Kripke structure and introduce
the abstract Kripke structure model in Section 2. Then we
describe, in Section 3, the algorithm which translates a CTL
formula into an abstract Kripke structure and the composi-
tion of such structures. Section 4 states the link between
CTL formulas, abstract and concrete structures. Finally,
Section 5 studies the impact of the abstraction in the ver-
ification process of a system encompassing: Virtual Com-
ponent Interface IP’s (VCI[17]), a PI-bus ([18]) and VCI-PI
protocol converter.

2. Modeling Abstraction of Component

2.1 Modeling a component

Generally, a specification holds for a component when
some assumption about the behaviour of the environment
holds. Thus we model a component as a combination of
a description of its behaviour, its specification and its as-
sumptions about the environment.

Definition 1 A component is a tuple C = 〈K,P,A〉 where K
is a fair Kripke structure, P and A are disjoint sets of CTL
formulas, the set of specifications and the set of assumptions
respectively.

We model the behaviour of one component, or of a com-
position of components as a fair Kripke structure [6].

Definition 2 A fair Kripke structure is 6-tuple K =
〈AP,S,S0,L ,R,F〉 where : AP is a finite set of atomic propo-
sitions; S0 ⊆ S is the set of initial states; L : S → 2AP is the
labeling function that associates each state with the set of
atomic propositions that are true in that state; R ⊆ S×S is
the transition relation : ∀s ∈ S ∃s′ ∈ s s. t. R(s,s′); F ⊆ 2S is
a set of fairness constraints (generalized Büchi acceptance
condition).

In this paper the set of fairness constraints are generalized
Büchi acceptance condition. This is due to our final goal :
to integrate our abstraction in VIS [10]. The model checker
VIS only accepts Büchi fairness constraints.

Let s and s′ be in S, we write s → s′ as an equivalent
notation of (s,s′) ∈ R. A path in K from s is an infinite
sequence of states, π = s0,s1, . . . such that s0 = s and ∀i si →
si+1.

In this paper we restrict to the positive normal form of
CTL\X formulas. Negations only apply to atomic proposi-
tions. We define the CTL fragment we consider as follows :
p is an atomic proposition, ϕ,ϕ1, ϕ2 are state formulas and
ψ is a path formula.

State formula : ϕ ::= true | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨
ϕ2 | Aψ | Eψ with p ∈ AP

Path formula : ψ ::= Xϕ | Fϕ | Gϕ | ϕ1 U ϕ2 | ϕ1 W ϕ2

The semantic of CTL formulas is defined on the infinite
execution tree obtained by unrolling the Kripke structure
[6]. We have K |= ϕ iff for all s0 in S0 〈K,s0 |= ϕ〉.

2.2 Abstract Kripke Structure

To model a component abstraction we need to repre-
sent two additional information about the truth value of the
atomic proposition. The first one is absence of knowledge

about the atomic proposition we do not care about the ver-
ification. The second one is inconsistency generated by the
abstraction itself. Unlike [2] for 3-valued model checking
, or [5] with 4-valued model-checking, we do not represent
these values with new symbols. Instead, we extend the set
of atomic proposition AP of a Kripke structure. We denote
Lit the set of atomic propositions and their negations. In our
abstract Kripke structure (AKS), for all p in Lit, we have p
also in Lit. The labeling function is not over AP anymore
but over Lit. Actually, we represent the knowledge of all
atomic propositions in each state. This approach is similar
to the dual-rail encoding used in asynchronous circuit de-
sign ([22]). The difference is that in our case the four values
are used to represent a state information. Table 1 summa-
rizes the information contained in each of the four values.

p 6∈ L(s)∧ p 6∈ L(s) p is unknown in s
p 6∈ L(s)∧ p ∈ L(s) p is false in s
p ∈ L(s)∧ p 6∈ L(s) p is true in s
p ∈ L(s)∧ p ∈ L(s) p is inconsistent in s

Table 1. Knowledge representation for an
atomic proposition p in a state s

Definition 3 An Abstract Kripke Structure (AKS) is a tuple
A = 〈AP,S,S0,L ,R,F〉. S,S0,R,F are defined as above and
L : S → 2Lit , Lit is the union of the set of positive atomic
propositions and the set of negative atomic propositions.

We define an inconsistent state as a state where at least
one atomic proposition p is true and p is also true.

Definition 4 An inconsistent state s is a state where there
exists p ∈ AP such that p ∈ L(s) and p ∈ L(s).
An inconsistent path π contains at least one inconsistent
state.

3. From CTL to an Abstract Kripke Structure

In this section, we present the construction of an AKS
Kϕ from a CTL formula ϕ (with the description described
above). Then we prove that Kϕ is a model of ϕ. Moreover,
this abstracted Kripke structure is less constrained than any
concrete component verifying ϕ.

3.1 Preliminary definitions

We need to characterize a function that extends the la-
beling function for a structure. During the construction of
an AKS K’ from an AKS K, this case may occur when we
extend the set of atomic propositions, or when we extend
the set of states. The two following definitions describe the
extension of the labeling function L when increasing the
set of atomic propositions, and when increasing the set of
states.

Definition 5 Atomic proposition extension
Let L be a labeling function L : S → 2Lit , let Lit ′ be a set
of atomic propositions (Lit ′∩Lit = /0). A labeling function
L+Lit′ : S → Lit ′∪Lit is defined such that :
∀p ∈ Lit,∀s ∈ S L+Lit′(s) = L(s).

The new atomic proprositions have an unkwown value, they
do not belong to the labeling funcion of the state s.

Definition 6 State extension
Let L : S → 2Lit and L ′ : S′ → 2Lit be two labeling functions
related to the same set of atomic propositions. L ′′ = L ·L ′

is a labeling function related to Lit for each state s ∈ S∪S′

such that :
L ′′(s) = L(s) iff s ∈ S and s 6∈ S′;

L ′′(s) = L ′(s) iff s ∈ S′ and s 6∈ S;

L ′′(s) = L(s)∪L ′(s) iff s ∈ S∩S′.

We need two more operations for building the fairness con-
straints.

Definition 7 Let F = {F0, . . . ,Fn} be a set of fairness con-
straints and let S be a set of states :

• F ⊕S = {Fi∪S,∀Fi ∈ F}

• F 	S = {Fi \S,∀Fi ∈ F}

Synchronous composition is close to the parallel com-
position of [11] and is defined below. States of the com-
position are pair of component states. Paths leading to
inconsistent states in the AKS have no equivalent path in
the concrete Kripke structure, hence inconsistent states are
excluded. The fairness constraints ensure that a path in
K1 ‖K2 is fair if and only if its projection to each component
results in a fair path.

Definition 8 Let K1 = 〈AP1,S1,S01 ,L1,R1,F1〉 and K2 =
〈AP2,S2,S02 ,L2,R2,F2〉 be two AKS. The parallel composi-
tion of K1 and K2 denoted K1 ‖ K2 is the structure K defined
as follows :

AP = AP1 ∪AP2

S ⊆ (S1 × S2) \ {(s1,s2) | p ∈ L((s1,s2)) and p ∈
L((s1,s2))}

S0 = (S01 ×S02)

L((s1,s2) = L1(s1)∪L2(s2)

R ⊆ (S1 × S2) × (S1 × S2), with R((s1,s2),(t1, t2)) iff
R1(s1, t1) and R2(s2, t2)

F ⊆ {(P1 ×S2)∩S | P1 ∈ F1}∪{(S1×P2)∩S | P2 ∈ F2}

3.2. Building AKS from CTL formulae

We define a function that directly builds an abstract
Kripke structure from a CTL\X formula ϕ that is the less
constrained structure where ϕ holds. We decompose our
algorithm in three parts. The first one defines the transla-
tion from CTL\X formulas or sub-formulas with a univer-
sal quantifier as first quantifier. The second one concerns
the formulas or sub-formulas with the existential quantifier
as first quantifier. The third part sets some additional rules
to combine universal and existential quantifier.

3.2.1 Universal quantifier

CTL formulas are rewritten as follows :

• AG(f ∧g) in AG(f)∧AG(g);

• A[(f ∧g)Uh] in A[fUh]∧A[gUh];

The first step of our algorithm builds the abstract struc-
ture of the formula true. This structure contains only one
state where all formulas may be true. We define such spe-
cial state named sT RUE ; it has got a unique outgoing self-
loop transition. The execution tree obtained by unrolling
transitions from sT is an abstraction of any execution tree
that has no impact on the validity of the formula.

Definition 9 Let ST be the set of special states sT such that :
∀sT ∈ ST , L(sT) = /0 and there exists an unique outgoing
transition from sT to itself.

Lemma 1 An abstract Kripke structure reduced to a state
sT ∈ ST simulates every non empty Kripke structure (with
infinite behaviours).

PROOF: Let K be any Kripke Structure with infinite
behaviours. We define the relation H = SK ×ST . Obviously,
H is a simulation relation since :

• L(s)∩AP′ = L ′(s′) (AP′ = /0) and

• for all s,s′ such that H(s,s′) and for all t s.t s → t
implies that there exists t ′ s.t s′ → t ′ and t ′ = sT and
H(t, t ′).

A composed state (s,s′) belongs to ST if and only if s and s′

belongs to ST .
In an abstract Kripke structure obtained by our algo-

rithm, a state sT is reachable from a state s validating the
formula in the initial state, whatever the future of s is. In
states sT the truth value of atomic propositions (and their
negation) is undefined. These values can be interpreted as
”don’t care” values since they do not influence the satisfac-
tion of the formula.

s0 p ¬p
s1

sT

KAF p

Figure 1. The AKS obtained for the CTL for-
mula AF p. Initial states are s0 and 1. The la-
beling function is : L(s0) = /0; L(s1) = {p}. The
fairness constraint is {sT}.

Definition 10 Let SpredT the set of predecessor state of a
state in ST : ∀s ∈ SpredT , ∃sT ∈ ST , such that s → sT .

As an example, Fig. 1 presents the AKS obtained from
the CTL formula AF p. It contains two initial states s0 and
s1 and the state sT . In state s1 p is true then AF p is true, the
subsequent execution tree are not relevant for the evaluation
of the formula. This is represented by the transition from
s1 to sT . In this case the formula contains a promise, we
need to add some fairness constraints in order to fulfill this
promise. In the structure of Fig. 1, the fairness constraints
impose to reach p and sT . At each depth of the execution
tree obtained from s0, state s0 can reach state s1, hence it
satisfies AF p.

The following algorithm builds an AKS with respect to
a property ϕ. The basic cases are depicted on Fig.3 and 5.
For a state s, all atomic propositions that do not appear in
the state label are such that L(s) = /0.

Definition 11 Let AKS(ϕ) the function mapping a formula
ϕ into an abstract Kripke structure, AKS(ϕ) is inductively
defined as follows. AP is a initial set of atomic propositions,
p and q are atomic propositions, ϕ1, ϕ2 are CTL formulae
and Kϕi = 〈APi,Si,S0i ,Li,Ri,Fi〉 are abstract Kripke struc-
tures related to ϕi for i = 1,2.

• ϕ = true,
Kϕ = 〈 /0,{sT},{sT}, /0,{sT ,sT}, {sT}〉

• ϕ = p,

– KT = AKS(true) = 〈 /0,ST ,sT , /0,RT ,FT 〉

– Let s a new state such that p ∈ L(s)

Kϕ = 〈{p},{s} ∪ ST ,{s},L ,{(s,s′) | s′ ∈ S0T } ∪
RT ,FT 〉

• ϕ = ϕ1 ∨ϕ2,

– Kϕ1 = AKS(ϕ1) ; Kϕ2 = AKS(ϕ2)

Kϕ = 〈APϕ1 ∪ APϕ2 ,Sϕ1 ∪ Sϕ2 ,S0ϕ1
∪ S0ϕ2

,Lϕ1
+APϕ2 ·

L
+APϕ1
ϕ2 ,Rϕ1 ∪Rϕ2 ,Fϕ1 ∪Fϕ2〉.

p ¬p sT sTq

sTp
p ¬p

q ¬q
p ¬p
q ¬q sT

Kp Kp∨q Kp∧q

Figure 2. The AKS for p, p∨q and p∧q

• ϕ = ϕ1 ∧ϕ2,

– Kϕ1 = AKS(ϕ1) ; Kϕ2 = AKS(ϕ2)

Kϕ = Kϕ1 ‖ Kϕ2

• ϕ = AFϕ1,

– Kϕ1 = AKS(ϕ1)

– Let s be state s.t ∀p ∈ APϕ1 , p and p 6∈ L(s).

Kϕ = 〈APϕ1 ,{s} ∪ Sϕ1 ,{s} ∪ S0ϕ1
,L · Lϕ1 ,Rϕ1 ∪

{(s,s)}∪{(s,si) | ∀si ∈ S0ϕ1
},Fϕ1〉

• ϕ = AGϕ1,

– Kϕ1 = AKS(ϕ1)

– R = [Sϕ1 ∩SpredT]×S0ϕ1
: for all states s ∈ Sϕ1 ∩

SpredT and for all s0 ∈ S0ϕ1
, (s,s0) ∈ R.

Kϕ = 〈APϕ1 ,Sϕ1 \ST ,S0ϕ1
,Lϕ1 ,R∪ (Rϕ1 \{(s,sT) | s ∈

SpredT ∧ sT ∈ ST}),(Fϕ1 	ST)∪SpredTϕ1
〉

• ϕ = A[ϕ1Uϕ2],

– Kϕ1 = AKS(ϕ1); Kϕ2 = AKS(ϕ2); Kϕ1∧ϕ2 =
AKS(ϕ1 ∧ϕ2)

– R = [Sϕ1 ∩SpredT]× [S0ϕ1
∪S0ϕ2

]

– Let R′ be the transition relation defined such
that, for all states s ∈ S0ϕ1

\ SpredT and for all
(s01 ,s02) ∈ S0ϕ1∧ϕ2

, (s,s0) ∈ R′ iff (s,s01) ∈ R0ϕ1
.

Kϕ = 〈APϕ1 ∪ APϕ2 ,(Sϕ1 \ ST) ∪ Sϕ2 ∪ Sϕ1∧ϕ2 ,S0ϕ1
∪

S0ϕ2
∪ S0ϕ1∧ϕ2

,L+AP2
ϕ1 · L+AP1

ϕ2 ,R ∪ R′ ∪ (Rϕ1 \ {(s,sT) |
s ∈ SpredT ∧ sT ∈ ST}∪Rϕ2 ∪Rϕ1∧ϕ2 ,Fϕ2 ∪Fϕ1∧ϕ2〉

• ϕ = A[ϕ1Wϕ2] proceeds as A[ϕ1Uϕ2] except that the
fairness is Fϕ = Fϕ1 ∪Fϕ2 ∪Fϕ1∧ϕ2 .

p ¬p sT

sTq

sTp∧q

p ¬p q ¬q

p ¬p
q ¬qsTp

KAGp KApUq

Figure 3. The AKS AGp, ApUq

3.2.2 Existential operator

We consider the formula of the following form EG f ,
E[fUg] where f and g are not conjunction of sub-formula

The algorithm for CTL formulae with an existential
quantifier as first quantifier is very similar to the one applied
on ACTL formulas. The main difference is the representa-
tion of all the paths not being model of the path-formula. In
the abstract structure, from the initial states we need to rep-
resent the path along which the formula holds and the one
which diverges. In order to perform this we represent all the
diverging parts of the Kripke structure by a state in which
no atomic propositions is defined.
Definition 12 Let SD be the set of diverging states sd such
that : ∀sd ∈ Sd, L(sd) = /0 and there exists an unique out-
going transition from sd to itself.

Let SpredD the set of predecessor of a state in SD : ∀s ∈
SpredD, ∃sD ∈ SD, such that s → sD.

Lemma 2 An abstract Kripke structure reduced to a state
sD ∈ SD simulates every non empty Kripke structure (with
infinite behaviours).

A composed state (s,s′) belongs to SD if and only if one
of the three conditions holds: s ∈ SD and s′ ∈ SD; s ∈ SD and
s′ ∈ ST ; s ∈ ST and s′ ∈ SD

The following definition has to be added to the defini-
tion 11 for the CTL formulas with the universal quantifier
as the first quantifier.
Definition 13 Let AKS(ϕ) the function mapping a formula
ϕ into an abstract Kripke structure, AKS(ϕ) is inductively
defined as follows. AP is a set of atomic propositions ini-
tially empty, p and q are atomic propositions, ϕ1, ϕ2 are
CTL formulae and Kϕi = 〈APi,Si,S0i ,Li,Ri,Fi〉 are abstract
Kripke structures related to ϕi.

• ϕ = EFϕ1,

– Kϕ1 = AKS(ϕ1)

– Let s be state s.t L(s) = /0.

Kϕ = 〈APϕ1 ,{s}∪Sϕ1 ∪{sd},{s}∪S0ϕ1
,L ·Lϕ1 ,Rϕ1 ∪

{(s,s)}∪{(s,si) | ∀si ∈ S0ϕ1
}∪{(s,sd)},Fϕ1 ⊕{sD}〉

p ¬p
s1s0

sD

sT p ¬p sT

sD

KEF p KEGp

Figure 4. The AKS for EF p, EGp

• ϕ = EGϕ1,

– Kϕ1 = AKS(ϕ1)

– R = [Sϕ1 ∩SpredT]×S0ϕ1

– R′ = [Sϕ1 ∩SpredT]×{sD | sD ∈ SD}

Kϕ = 〈APϕ1 ,(Sϕ1 \ ST) ∪ Sd,S0ϕ1
,Lϕ1 ,R ∪ R′ ∪ (Rϕ1 \

{(s,sT) | s ∈ SpredT ∧ sT ∈ ST},(Fϕ1 	ST)⊕{sD}〉

• ϕ = E[ϕ1Uϕ2],

– Kϕ1 = AKS(ϕ1); Kϕ2 = AKS(ϕ2); Kϕ1∧ϕ2 =
AKS(ϕ1 ∧ϕ2)

– R = [Sϕ1 ∩SpredT]× [S0ϕ1
∪SD] (s,sD) ∈ R.

– Let R′ be the transition relation define such
that, for all states s ∈ S0ϕ1

\ SpredT and for all
(s01 ,s02) ∈ S0ϕ1∧ϕ2

, (s,s0) ∈ R′ iff (s,s01) ∈ R0ϕ1
.

Kϕ = 〈APϕ1 ∪ APϕ2 ,(Sϕ1 \ ST) ∪ Sϕ2 ∪ Sϕ1∧ϕ2 ∪

SD,S0ϕ1
∪ S0ϕ2

∪ S0ϕ1∧ϕ2
,L+AP2

ϕ1 · L+AP1
ϕ2 ,R∪R′ ∪ (Rϕ1 \

{(s,sT) | s ∈ SpredT ∧ sT ∈ ST}∪Rϕ2 ∪Rϕ1∧ϕ2 ,(Fϕ2 ∪
Fϕ1∧ϕ2)⊕{sD}〉

• ϕ = E[ϕ1Wϕ2] proceeds as E[ϕ1Uϕ2] except that the
fairness is Fϕ = (Fϕ1 ∪Fϕ2 ∪Fϕ1∧ϕ2)⊕{sD}.

In order to obtain a construction for the full CTL with our
restriction, we need to add some new rules to the algorithm
ACTL especially to manage divergent states.

Definition 14 Additional rules apply to the AKS build from
an ACTL formulae.

• ϕ = AGϕ1,

– Sϕ = Sϕ1 \ (ST ∪SD)

– Let R the transition relation obtained by def-
inition 11 (item AG), Rϕ = (R \ {(s,sD) | s ∈
SpredD∧sD ∈ SD)∪{(s,s0) | s∈ SpredD∧s0 ∈ S0ϕ1

– Fϕ = (Fϕ1 	 (ST ∪SD))∪SpredD ∪SpredD

• ϕ = A[ϕ1Uϕ2],

– Sϕ = Sϕ1 \ (ST ∪SD)

q ¬q
p ¬p

p ¬p q ¬q

sT sD

sT

KE[pUq]

Figure 5. The AKS for E[pUq]

– Let R the transition relation obtained by def-
inition 11 (item AU), Rϕ = (R \ {(s,sD) | s ∈
SpredD∧sD ∈ SD)∪{(s,s0) | s∈ SpredD∧s0 ∈ S0ϕ1

Example 1 Figure 6 shows an AKS built from the CTL for-
mula EG(AF(p∨ q)). The different steps of our algorithm
are presented below :

1. Build AKS(sTp): a state sT is created;

2. Build AKS(p): a state sp is created such that p ∈ L(s)
and p 6∈ L(sp), a transition from sp to sTp is added;

3. Build AKS(sTq): a state sT is created;

4. Build AKS(q): a state sq is created such that q ∈ L(s)
and q 6∈ L(sq), a transition from sq to sTq is added;

5. BuildAKS(p∨q): union of AKS(p) and AKS(q);

6. Build AKS(AF(p∨ q)): a state s is created such that
L(s) = /0, a transition to sp and a transition to sq are
added ;

7. Build AKS(EG(AF(p ∨ q))) : all states sT and all
transitions ongoing to these states are removed, a state
sD is created, transitions from sp and from sq to the set
of initial states and to sD are added.

4. AKS’s properties

4.1. Properties of the abstract component

The previous section define the construction of an AKS
from a CTL formula. In the present section we will state the
properties of the abstract component.

Definition 15 Let C = 〈K,P,A〉 be a concrete component,
the component abstraction of C with respect to ϕ ⊆ P is a
tuple Cϕ = 〈Kϕ,ϕ,KA〉 where Kϕ and KA are built following
the algorithm of Def. 11,13 and 14.

1. 2.

3. 4.

5.

6.

SD

sTq

sTq

sTp

sTp

q ¬q

p ¬p

sq

sp

sq
q ¬q

sp
p ¬p

sq
q ¬q

sp
p ¬psTp

sTq

s

s

Figure 6. Construction of the AKS represent-
ing the formula EG(AF(p∨q))

This section deals with the relation between a formula ϕ
expressed in a positive normal form of CTL\X, a concrete
component C with ϕ ⊆ P and an abstract component Cϕ.
First, we state that for each formula ϕ defined as in Section
2, we can construct an AKS Kϕ such that Kϕ |= ϕ. Then, we
prove that there exists a simulation relation between K the
Kripke structure of concrete component satisfying ϕ, and
Kϕ the abstract Kripke structure. In order to alleviate the
reading, long proofs are given in appendix.

Property 1 The AKS Kϕ built by definitions 11,13 and 14
is such that ∀s0 ∈ S0ϕ , Kϕ,s0 |= ϕ.

To ensure concision the proof is not given here. The proof
proceeds by induction over the length of the formula.

As in [1, 21], the labeling function L induces a partial
ordering (v) of states according to the information level of
each atomic proposition in each state : s v s′ if there exists
p ∈ AP such that p is less constrained in s′ than in s (p ∈
L(s) and p 6∈L(s′)∧ p 6∈L(s′)) and for all q∈AP and q 6= p,
q has the same truth value in s and in s′. As in their work
we deduce that there exists a simulation relation between K
and Kϕ, denoted by K � Kϕ, and � is a preorder.

Property 2 For all Kripke structure K such that K |= ϕ
there exists Kϕ = AKS(ϕ) and there exists a simulation re-
lation � such that K � Kϕ.

The proof is not given here. It proceeds by induction over
the length of the formula, basic cases are formula with no
nested operators.

4.2. Composition of abstractions

After having abstracted all components with a subset of
their specification, we want to compose all these abstrac-
tions in order to obtain an abstraction of the complete sys-
tem. First of all, we need to ensure that the components
to be combined are compatible: their output signals sets
are disjoint. The systems we consider are hardware com-
ponents, that can not write simultaneously to same output
signal. An arbitration policy guarantees the exclusive driv-
ing of shared output signals (as bus). This corresponds to a
multiplexer based architecture.

The whole system abstraction is thus obtained by com-
posing all the abstracted components with the parallel com-
position (Def. 8). By consequence of compatible compo-
nent the composition of all abstractions can not introduce
new inconsistent states. Now, we want to prove that the
composition of our abstraction simulates the whole concrete
system. Each component is abstracted by some CTL prop-
erties, the proof proceeds by applying an assume-guarantee
reasoning [13].

Assumption : We can compose a component Ci with
other components Ck . . .Cm if and only if the set of speci-
fication of components Ck . . .Cm implies the assumption of
Ci:

S

j=k...m Pj =⇒ Ai [16].

Property 3 Let C1, . . ., Cn be concrete components
〈Ki,Pi,Ai〉, and Cϕ1 , . . ., Cϕn be abstract components
〈Kϕi ,ϕi,KAi〉 with ∀i, ϕi ⊆ Pi. Let Σ = C1|| . . .Cn be a con-
crete system and ΣA = Cϕ1 || . . .Cϕn be the abstract model,
then ΣA simulates Σ.

PROOF: Directly obtained by assume-guarantee rea-
soning. Example for two components C1 and C2:

1 K1 ‖ KA1 � K1
2 K1 � Kϕ1
3 K2 ‖ KA2 � K2
4 K2 � Kϕ2
5 KA1 � Kϕ2
6 KA2 � Kϕ1

K1 ‖ K2 � Kϕ1 ‖ Kϕ2

� is a simulation relation and preorder. Line 1 and Line 3
come from the property of synchronous composition; line 2
and 4 comes from property 2.

We can conclude that all the universal fragment of CTL
is preserved from the composition of abstracted components
into the composition of concrete components.

5. A case study

In this section, we present an experiment illustrating
our verification methodology. Given a global property (in
ACTL) to be verified on a system encompassing several
components, each component is abstracted according to
selected properties (in CTL) of its specification, and the
global property is verified on the abstract complete system.

Up to now, during the abstraction of one component with
respect to some local property ϕ, signals not influencing the
satisfaction of ϕ, were considered as being assigned with
a ”don’t care” value. During the verification of a global
property ψ (encompassing several components), the value
of such signals are now interpreted as ”unknown”.

Our experiments use a classical model checker with two
truth values. All signals with the ”unknown” value are
translated with a non deterministic value. If the model
checker states that the global property does not hold then
we need to determine if the counter-example is :

• a real one (if an corresponding execution over the con-
crete component exists) or

• a spurious one (no possible execution over the concrete
component exist)

P
I

B
U
S

VCI

TARGETINITIATOR

VCI VCI-PI

master

wrapper

VCI-PI

slave

wrapper

Arbitrer

Bus

(5)

(3)

(4)

(2)

(3)

(1)

(10) (9) (8) (7)

(6)

Figure 7. The architecture performing the
VCI-PI-VCI translation and illustration of a
VCI transfer

Our system interconnects VCI compliant components
([17]) through a physical PI-bus ([18]). Our aim is to verify
with model checker VIS ([10]) that the overall architecture
correctly transmits messages with successive translations,
from VCI to PI and from PI to VCI in both directions.

Using such devices, we are able to connect various VCI
compliant-cores through a PI-bus. The simplest architec-
ture is shown in Fig. 7. We have a VCI initiator sending
requests and a VCI target responding to it. The PI protocol
distinguishes the component initiating a bus transfer, named
master, and the component responding to a transfer, named
slave. A communication from (VCI) initiator to the (VCI)
target is shown Fig. 7.

Here we focus on the following three global properties
(extended to n initiators and m targets) :

Property 1: AG(initiator[i] state = TRANS ⇒ AF
(bus arbiter signal gnt[i] = 1))

Property 2: AG(initiator[i] state = TRANS ⇒ AF (mas-
ter wrapper[i] state = WRITE))

Property 3: AG(initiator[i] state = TRANS ⇒ AF (tar-
get[j] signal rsp = 1))

Although the atomic propositions of these CTL properties
relate two components only, components not appearing in
the property may play a role in the action sequence of the
communication protocol :

• Property 1: its atomic propositions relate components
initiator[i] and bus arbiter. Their communication pro-
tocol also involves the master wrapper[i].

• Property 2: its atomic propositions relate components
initiator[i] and master wrapper[i]. Their communica-
tion protocol also involves the bus arbiter.

• Property 3: its atomic propositions relate components
initiator[i] and target[j]. Their communication proto-
col also involves the bus arbiter, master wrapper[i] and
slave wrapper[j].

The verification of property 1 took 3 refinement iterations
of the CEGAR verification process. A total of 6 formulas
of the specification of the three components (in Grey on Fig.
7) were necessary to terminate the process. The verification
of property 2 took 2 iterations and 4 formulas. In the same
way, the verification of property 3 took 4 iterations and 10
formulas were needed. Property 3 exhibited a bug in the
implementation of VCI protocol between the slave wrapper
and the VCI target.

Table 2 summarizes the profits in term of time and state
space for three global properties. We note an obvious profit
in term of time for the reachability analysis and the model
checking of the 3 global properties on the abstracted sys-
tems. This is due to the reduction of the tree explored depth.
The number of BDD variables did not really fall but, be-
cause a lot of signal are free in the abstraction, the BDD
structures are smaller (number of nodes).

6. Conclusion

We defined an algorithm for building directly an abstract
Kripke structure from a set of CTL formulas. We used a 3-
valued logic that nicely models the ”don’t care” information
about the atomic propositions irrelevant for the satisfaction
of a CTL formula. We then stated that the abstract Kripke
structure, modeling a formula ϕ, can be used as an abstrac-
tion of a concrete component, where ϕ is in its specification.
We showed that this abstraction can be employed in a mod-
ular verification process. Furthermore, we determined how
our composition of abstractions can be integrated into Bruns
and Godefroid’s 3-valued model checking framework. We
pointed out that a ”don’t care” value for an atomic proposi-
tion of a ”local” property ϕ becomes a ”don’t know” in-
formation when the complete abstract system is checked
against a ”global” property ψ. We finally exhibited the ben-
efit of our approach in term of time consumption. We ap-
plied our method for the verification process of a real archi-
tecture dealing with several components that contains VCI
compliant components, a PI-bus and VCI-PI wrappers.

We are currently working on an integration of our algo-
rithm into the model checker VIS [10] (automatizing the
CEGAR verification process). Another important direction
concerns the choice of the set of properties to initiate the
abstraction, and to refute a counter-example.

References

[1] G. Bruns and P. Godefroid. Model Checking Par-
tial State Spaces with 3-Valued Temporal Logics. In
N. Halbwachs and D. Peled, editors, CAV’99, volume
1633 of LNCS, pages 274–287. Springer, 1999.

[2] G. Bruns and P. Godefroid. Generalized Model
Checking: Reasoning about Partial State Spaces. In
N. Halbwachs and D. Peled, editors, CONCUR’2000,
volume 1877 of LNCS, pages 168–182. Springer,
2000.

[3] J. Burch, E. Clarke, K. McMillan, D. Dill, and
L. Hwang. Symbolic Model Checking: 1020

States and Beyond. Information and Computation,
98(2):142–170, 1992. Special issue for best papers
from LICS’90.

[4] W. Büttner. Is formal verification bound to remain a
junior partner of simulation? volume 3725 of LNCS,
page 1. Springer, 2005.

[5] M. Chechik, B. Devereux, S. M. Easterbrook,
and A. Gurfinkel. Multi-Valued Symbolic Model-
Checking. ACM Trans. Soft. Eng. Meth., 12(4):371–
408, 2003.

[6] E. Clarke, O. Grumberg, and D. Peled. Model Check-
ing. The MIT Press, Cambridge, Massachusetts, 1999.

[7] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided bstraction refine-
ment for symbolic model checking. J. of the ACM,
50(5):752–794, 2003.

[8] D. Dams and K. S. Namjoshi. Automata as Abstrac-
tions. volume 3385 of LNCS, pages 216–232, Paris,
France, 2005. Springer.

[9] A. Goel and W. R. Lee. Formal Verification of an IBM
CoreConnect Processor Local Bus Arbiter Core. In
ACM, editor, DAC’00, pages 196–200, Los Angeles,
USA, 2000.

[10] T. V. group. VIS : A System for Verification and Syn-
thesis. In Rajeev Alur and Thomas A. Henzinger, edi-
tors, CAV’96, volume 1102 of LNCS, pages 428–432,
New Brunswick, NJ, USA, 1996. Springer-Verlag.

[11] O. Grumberg and D. Long. Model Checking and Mod-
ular Verification. In International Conference on Con-
currency Theory, volume 527 of LNCS, pages 250–
263. Springer Verlag, 1991.

[12] A. Gurfinkel and M. Chechik. Why Waste a Perfectly
Good Abstraction?. volume 3920 of LNCS, pages
212–226, Vienna, Austria, 2006. Springer.

[13] T. Henzinger, S. Qadeer, S. Rajamani, and S. Tasiran.
An Assume-Guarantee Rule for Checking Simulation.
ACM trans. Prog. Lang. Syst., 24(1):51–64, 2002.

Property

475 289 34 578 8,56E+06 50,61s
1 6,75s
2 6,70s
3 6,88s

All abstract
7 261 522 2,73E+16 2,1s 1 0,1s
8 292 796 1.42E+21 5,3s 2 0,2s

10 302 1 002 1,69E+22 8s 3 0,25s
12 360 2 296 8,77E+15 4,26s 1 0,31s
12 320 1 982 5,63E+15 6,22s 2 0,36s

10 302 1 002 1,69E+22 8s 3 (all) 0,25s

604 436 161 846 3,10E+10 43min
1 46min
2 19min
3 48min

All abstract
10 395 1 005 2,83E+20 3,5s 1 0,8s
11 442 1 079 4,93E+24 3,8s 2 0,52s
14 501 1564 2,50E+26 12,1s 3 8,25s
12 532 14 025 6,49E+24 35,21s 1 0,46s
12 544 14 492 7.49E+24 33,77s 2 0,47s
14 501 1 564 2,50E+26 12,1s 3 8,25s

Platform
name

FSM
depth

Number of
BDD variables

BDD size
(\# of nodes)

Number of
Reachable
states

Reachable states
space analysis
time

Checking
time

Concrete
1 master
1 slave

Concerned
component
abstracted

Concrete
2 masters
1 slave

Concerned
component
abstracted

Table 2. Comparative results of the concrete models and 3 global properties. Results are obtained
with VIS model checker with the reordering algorithm sift. The machine was a Pentium IV, 3.20GHz
with 1MB of cache and 1GB of RAM

[14] T. A. Henzinger, X. Liu, S. Qadeer, and S. K. Ra-
jamani. Formal Specification and Verification of a
Dataflow Processor Array. In E. S. Jacob K. White,
editor, ICCAD’99, pages 494–499, San Jose, USA,
1999.

[15] O. Kupferman, M. Vardi, and P. Wolper. An
Automata-Theoretic Approach to Branching-Time
Model Checking. J. of the ACM, 47(2):312–360, 2000.

[16] K. McMillan. A Methodology for Hardware Verifica-
tion Using Compositional Model Checking. Science
of Computer Programming, 37(1–3):279–309, 2000.

[17] On-Chip Bus Development Working Group. Virtual
Component Interface Standard (VCI). VSI Alliance,
2000.

[18] Open Microprocessors System Initiatives. OMI324:
PI-Bus Standard Specification. Siemens, Munich,
Germany, 1994.

[19] H. Peng, Y. Mokhtari, and S. Tahar. Environment
Synthesis for Compositional Model Checking. In
ICCD’92, pages 70–, Freiburg, Germany, 2002. IEEE
Computer Society.

[20] H. Peng, S. Tahar, and F. Khendek. Comparison
of SPIN and VIS for Protocol Verification. STTT,
4(2):234–245, 2003.

[21] S. Shoham and O. Grumberg. Monotonic Abstraction-
Refinement for CTL. In A. P. Kurt Jensen, editor,
TACAS’04, volume 2988 of LNCS, pages 546–560,
Barcelona, Spain, 2004. Springer.

[22] J. Sparsø. Asynchronous Circuit Design - A Tutorial.
In Chapters 1-8 in ”Principles of asynchronous circuit
design - A systems Perspective”, pages 1–152. Kluwer
Academic Publishers, London, dec 2001.

[23] F. Xie and J. Browne. Verified Systems by Composi-
tion from Verified Components. In ESEC/FSE 2003,
pages 277–286, Helsinki, Finland, 2003. ACM Press.

