
A Fully Static Scheduling Approach for Fast Cycle
Accurate SystemC Simulation of MPSoCs

Richard Buchmann
Université Pierre et Marie Curie, LIP6/UPMC

4 place Jussieu, 75005 Paris
France

Email: richard.buchmann@lip6.fr

Alain Greiner
Université Pierre et Marie Curie, LIP6/UPMC

4 place Jussieu, 75005 Paris
France

Email: alain.greiner@lip6.fr

Abstract—This paper presents principles and tools to facilitate
Multi-Processor System on Chips (MPSoCs) design and modeling,
and to speed up cycle accurate SystemC simulation. We describe
an effective way to build an hardware architecture virtual
prototype, using a library of SystemC simulation models based on
communicating synchronous finite state machines. This modeling
approach supports a fully static scheduling strategy, based on
the analysis of the combinational dependency graph. Our static
scheduling algorithm has been implemented in the SystemCASS
simulator, and provides speed-up of one order of magnitude
versus the standard event-driven SystemC simulation engine. The
modeling approach proposed in this paper has been adopted by
the SoCLIB french national project, that is an open modeling
and simulation platform for multi-processors system on chips.

I. INTRODUCTION

Virtual prototyping of MPSoCs relies on efficient simulation
tools, and requires more and more performance from the
simulator, as system designers have to simulate embedded
softwares execution onto the virtual hardware platform. The
main goals of virtual prototyping are :
• Accurate performances evaluation, for both the timing

and the power consumption;
• Embedded software debug, especially for efficient analy-

sis of synchronization errors.
Therefore, most hardware/software co-design methodolo-

gies suppose to simulate complex software applications rep-
resenting millions of cycles on complex multi-processors
hardware platforms containing several tens of processors.

Important classes of bugs are impossible to detect without
cycle accuracy. To get a precise performance analysis, we
focus on Cycle Accurate and Bit Accurate (CABA) simulation
models. So, the simulation speed is a major issue.

SystemC provides a modeling environment which enables
the development and exchange of system-level C++ simulation
models for re-usable hardware components. As most hardware
description languages (including VHDL and Verilog), the
SystemC core language relies on the event driven model
of computation. This model is very general and supports a
large class of simulation models, but the dynamic scheduling
approach is known to slow down the simulation[1] speed.

This work has been supported in part by the french competitiveness cluster
System@tic, in the framework of the Modrival sub-project.

In this paper, we propose a SystemC modeling approach
supporting a fully static scheduling strategy that brings a
simulation speed-up of one order of magnitude versus the
standard SystemC simulator. This modeling approach is now
used in the SoCLIB french national project : Eleven aca-
demic laboratories, and six industrial companies (including ST
Micro-electronics, Thales, and Thomson joined to develop an
open virtual prototyping environment for MPSoCs. The core
of this platform is a library of fast SystemC simulation models
for IP cores, using the modeling principles described in this
paper.

In section II, we review some previous works. Section III
describes the proposed modeling approach based on Commu-
nicating Synchronous Finite State Machine (CSFSM) model.
Section IV presents the algorithm to build a fully static
scheduling. Section V describes the experimental results.

II. RELATED WORK

An MPSoC architecture is built by instantiation of re-usable,
existing hardware components, such as processor cores, em-
bedded memory banks, dedicated co-processors or peripheral
controllers, and a communication micro network.

Each hardware component behavior is described as a set of
parallel processes, communicating by signals. Those processes
define how to compute output signals and the new internal
component state, given input signals and the current internal
component state. SystemC is the language commonly adopted
to write those simulation models.

The standard SystemC simulator[2], distributed by the OSCI
consortium, uses an event-driven simulation kernel, which
schedules events at run time. The SystemC scheduler builds
dynamically the processes evaluation order : Whenever a
process writes into a signal, the scheduler produces an event
and propagates it. Processes are triggered based on their
sensitivity list. But it is well known that dynamic scheduling
causes too many process wake-ups, hindering the simulation
performance.

FastSysC[3] proposes a method to reduce the number
of useless process wake-ups. At elaboration time, FastSysC
builds an incomplete static scheduling, but without giving any
guaranties to reach a stable state. The scheduler works in two
steps :



1) Performs the incomplete static scheduling, at the first
delta-cycles of each cycle;

2) Performs a dynamic scheduling, until the system is
stable.

For each process, the designer can add the dependency
informations between input ports and output ports. FastSysC
exploits this information to build a combinational dependency
graph, where the nodes are the signals, and the directed edges
are the dependencies specified by the designer. If this graph
contains cycles, FastSysC arbitrarily breaks them, and derives
an initial ordering for process evaluation. No matter how
wrong is this static scheduling, because FastSysC relies on the
dynamic scheduling final step. With this method, the number
of process wake-ups decreases significantly and the simulation
speedup versus the standard SystemC simulator is about a
factor 3.5.

CASS[4] is a Cycle Accurate System Simulator using a
quasi-static scheduler. The hardware component are described
in C language as a set of CSFSM. The behavior of each
component is split into two separates functions :
• The sequential function computes the next internal state

and the outputs signals that depends only on the current
internal state.

• The combinational function computes the outputs signals
that depends on inputs signals and the current internal
state.

To define a quasi-static scheduling, CASS builds a graph,
where the nodes are the processes (combinational functions),
and the directed edges are the combinational dependencies
between processes. As this process dependency graph can
contain cycles, CASS introduces a relaxation mechanism,
executing repeatedly all processes in a cycle until the system
stabilizes. We implemented this strategy in our SystemC
simulation environment. In many cases, CASS outperforms the
standard SystemC simulator by a factor 7, but the simulation
speedup drops dramatically when the number of cycles in the
process dependency graph increases, because of the relaxation
loops.

Some research works[5] focus on optimizing signal writ-
ings and register updating but the performance loss due to
relaxation loops still remains.

In this paper, we tried to merge the best ideas of both
the FastSysC approach (namely the combinational dependency
graph analysis), and the CASS approach (namely the Commu-
nicating Synchronous Finite State Machines model) to propose
a fully static scheduling approach for cycle accurate SystemC
simulation.

III. HARDWARE MODELING WITH COMMUNICATING
SYNCHRONOUS FINITE STATE MACHINES

All hardware modules in the system (or sub-system) are
supposed to be clocked by the same system clock. Each
hardware module is modeled by one or several CSFSMs. Each
Finite State Machine (FSM) is defined by a set of states, a set
of input ports, and a set of output ports. A state is defined

by the values stored in the internal registers. The transition
function defines the next state, and depends on both the inputs
and the current state. The generation functions define the
output values. An output port depending on at least one input
is called a Mealy output. An output port that doesn’t depend
on any input is called a Moore output. As shown figure 1,
the behavior is described by three types of functions, that are
implemented as SystemC methods :

• Transition function : 1 per module;
• Moore generation : 1 per module;
• Mealy generation : 1 per Mealy output.

. . .

INPUTS INPUTS

OUTPUTS OUTPUTS

MEALY
GENERATION

FUNCTION FUNCTION
GENERATION

MOORE
GENERATION
FUNCTION

MEALY MOORE
GENERATION

FUNCTION

FUNCTION
TRANSITION

FUNCTION

STATES STATES

TRANSITION

Fig. 1. Communicating Finite State Machine Modeling

Therefore, the complete hardware architecture is described
as a set of CSFSM connected by signals. A Mealy signal is
a signal connected to a Mealy output port. To simulate this
architecture, it is necessary to compute at each cycle the new
values of all signals, and the new state of all . The - cycle
based - simulation loop can be split in three steps :

• Compute the new state of all CSFSMs, by evaluating all
Transition functions. The signal values being stable, the
evaluation order is not significant.

• Compute the new value of all Moore signals, by evalu-
ating all Moore functions. The Moore signals depending
only on the current FSM state, the evaluation order is not
significant.

• Compute the new value of all Mealy signals, by eval-
uating all Mealy functions. For this step, the scheduling
must handle the combinational dependencies between the
Mealy signals.

We can force the event-driven SystemC simulation engine
to respect this scheduling. The sensitivity lists for the three
types of methods must be defined as follows :

Function kind Sensitivity list
Transition Function Positive clock edge only
Moore Generation Negative clock edge only
Mealy Generation Negative clock edge and all input ports

involved in the combinational dependencies

TABLE I
SENSITIVITY LISTS FOR EACH TYPE OF METHOD

For each hardware module, the designer must declare ex-
plicitly the combinational dependencies between input ports



and output ports. The easiest way is to define one Mealy
function for each output port, and to define the combinational
dependencies in the associated sensitivity lists.

Such simulation models can be efficiently simulated by
the standard OSCI simulation engine, as most methods (all
Transition functions, and all Moore generation functions) will
be evaluated only once per cycle.

IV. COMPUTING A STATIC SCHEDULING FOR FAST
SIMULATION

As explained in the previous section, the only step requiring
dynamic scheduling in the simulation loop is the computation
of the Mealy signals. To obtain a fully static scheduling, we
exploit the specific characteristics of the targeted MPSoCs
architectures : Such architectures are built by direct instantia-
tion of existing IP cores, and such hardware components have
very few Mealy signals. For example, most available IP cores
available in the SoCLIB library have zero Mealy outputs, to
avoid long combinational paths and give the system designer
some guaranties on the clock frequency. Therefore, the Mealy
signals are only a small percentage of all the system signals.

We define the Combinational Dependency Graph (CDG),
where the nodes are the signals, and the directed edges are the
combinational dependencies between two signals. Each edge
leading from a signal X to a signal Y is marked by a label
identifying the Mealy function that drives Y.

Figure 2 shows a combinational dependency graph. A, B,
C, and D are Mealy functions. S1 to S7 are signals. All
signals that have no input edges are called sources : In this
example, 1 and 4 are source signals.

S6

S2S1 S3

S5S4

S7

A B

D

C

C
B

Fig. 2. Example : combinational dependency graph

As the hardware architecture should not contain combi-
national loops, the CDG must be acyclic. If it is not the
case, the simulator stops and prints out an error message. The
static scheduling algorithm analyzes the CDG, and builds a
fixed evaluation order for the Mealy functions. This is not
trivial, because, depending on the sensitivity lists, a given
Mealy function can be attached to several edges. The algorithm
proceeds as follow :

1) If there is a Mealy function F that only depends on
source signals, we select it. Else, we select any Mealy
function F that drives at least one signal depending
exclusively on source signals;

2) We add the selected Mealy function F into the ordered
list of functions to execute;

3) Delete all the edges, labeled F and exiting from a source
node. Then delete all the nodes that have a degree of 0;

4) Repeat step 1 to 3 until the combinational dependency
graph is empty.

This static scheduling has been implemented in the
SystemCASS simulation engine.

V. EXPERIMENTAL RESULTS

As the hardware components modeled with the CSFSM
approach can be simulated by both the standard OSCI Sys-
temC and the SystemCASS simulators, we want to compare
the simulation speeds obtained with the two simulators. We
used the standard SystemC 2.1.v1 simulation engine.

In this section, we present simulation results for two differ-
ent hardware architectures :
• A clustered MPSoC architecture :

A multi-threaded software application performing auto-
motive obstacle detection by stereo-vision techniques is
mapped on a clustered multiprocessor architecture;

• A Java processor micro-architecture :
The detailed micro-architecture of a Java processor is
modeled with the CSFSM approach, and executes a
sequential ray tracer software application.

The workstation used for our simulations is a Pentium 4 at
2.80GHz.

A. Clustered multiprocessor architecture

The application is a pre-crash obstacles detection using
stereo-vision[6] for automotive area, that requires intensive
computation. This C software application is multi-threaded and
runs on the massively parallel architecture. modeled with the
SoCLIB IP cores library. It contains 8 clusters, as shown in
figure 3, 30 general-purpose 32-bit processors and 750 K-bytes
embedded memory.

MIPS
R3000

MIPS
R3000

Lock
RAMRAM

Local
RAM

x4

Generic

VCI

Micro

Network

MIPS
R3000

MIPS
R3000

CacheCache Timer

Shared TTY

VCI CrossBar

CacheCache

Fig. 3. Stereovision : cluster architecture

There are few combinational dependencies between signals
in this architecture, and the longest path in the CDG has only 1
edge. Figure 4 shows the combinational dependency subgraph
for one of the eight clusters. Therefore, the scheduling is very
simple, as the Mealy functions can be executed in any order.

ICACHE_FRZ

ICACHE_REQ

genMealy

ICACHE_ADR

genMealy

ICACHE_INS

genMealy genMealy

DCACHE_FRZ

DCACHE_TYPE

genMealy

DCACHE_ADR

genMealy

DCACHE_REQ

genMealy

DCACHE_UNC

genMealy

DCACHE_RDATA

genMealy

Fig. 4. Stereovision : combinational dependency subgraph



The table II shows the simulation speed for SystemCASS
and SystemC simulators. SystemCASS is more than 10 times
faster, and this speed-up is entirely related to the static
scheduling approach.

SystemC 2.1.v1 OSCI SystemCASS
Dynamic scheduler Static scheduler
1 594 cycles/second 17 094 cycles/second

TABLE II
STEREO VISION : SIMULATION SPEEDS

B. Java Processor micro architecture

A ray tracer application implements a rendering algorithm
in 3D computer graphics. The simulated architecture contains
a Java processor[7], an instruction cache, a data cache, and an
embedded RAM.

The JAVA processor micro architecture modeled as a set
of interconnected hardware components, such as instruction
decoder, execution unit, instruction folding unit, branch pre-
dictor and so on. The processor internal micro-architecture
being precisely described, most of the instantiated components
have a combinational behavior. The CDG contains about 100
signals (nodes), and 400 combinational dependencies (edges).
The simulation engine has to schedule 33 processes, and the
simulation speed strongly depends on the scheduler efficiency.

The table III shows the simulation speeds for SystemCASS
and SystemC simulators. SystemCASS is 12 times faster than
SystemC.

The processes dependency graph, shown in figure 5, con-
tains several cycles. One cycle involves almost all the pro-
cesses. Any dynamic scheduler will execute repeatedly those
processes until the system stabilizes. Unlike those simulators,
SystemCASS relies on the CDG, to compute an optimal static
scheduling.

SystemC 2.1.v1 OSCI SystemCASS
Dynamic scheduler Entirely static scheduler

3 289.49 c/s 39 682 c/s

TABLE III
JAVA MICRO ARCHITECTURE : SIMULATION SPEEDS

VI. CONCLUSIONS

Our work focus on fast simulation of SystemC simulation
models. It is well known that simulation speed drops dra-
matically when the number of combinational dependencies
between signals increases. This paper presents both a new
modeling approach, based on the CSFSM, and a new static
scheduling algorithm, based on the Combinational Depen-
dency Graph (CDG) analysis.

In the CSFSM modeling approach, the system designer
describes each hardware component as a set of SystemC
methods (Transition, Moore Generation, Mealy Generation),
with the guaranty that most of the Transition and Moore
Generation functions will be evaluated only once per cycle. For

1

2

3

fetch

branchPredictor

decoder

execution

holdLogic

preparation

resetdataCache

load

muxexecutionFile

Fig. 5. Java processor : Processes dependency graph

this reason, the CSFSM modeling is efficient with classical,
event driven simulators, as it helps to reduce the number of
processes wake-ups.

The CSFSM modeling helps to identify the combinational
dependencies between signals, which makes possible to define
an optimal static scheduling by analyzing the CDG. The corre-
sponding algorithm has been implemented in the SystemCASS
simulator that outperforms the standard SystemC simulator
(which uses a dynamic scheduling) by one order of magnitude.

REFERENCES

[1] A. Ki, “Internal report,” in Empirical Study of SystemC.
R&D Center,Dynalith Systems, Korea, 2003. [Online]. Available:
http://www.dynalith.com

[2] OSCI, http://www.systemc.org.
[3] D. G. Perez, G. Mouchard, and O. Temam, “A new optimized imple-

mention of the systemc engine using acyclic scheduling,” in Design,
Automation and Test in Europe Conference and Exhibition Volume I
(DATE’04), ALCHEMY INRIA Futurs & LRI, Paris South University.
Paris, France: IEEE, 2004, p. 10552.

[4] F. Petrot, D. Hommais, and A. Greiner, “Cycle precise core based
hardware/software system simulation with predictable event propagation,”
in Proceeding of the 23rd Euromicro Conference, ASIM/LIP6/UPMC.
Budapest, Hungary: IEEE, Sept. 1997, pp. 182–187.

[5] R. Buchmann, F. Petrot, and A. Greiner, “Fast cycle accurate simulator
to simulate event-driven behavior,” in Proceeding of The 2004 Interna-
tional Conference on Electrical, Electronic and Computer Engineering
(ICEEC’04), ASIM/LIP6/UPMC. Cairo, Egypt: IEEE, 2004, pp. 35–39.

[6] A. Greiner, F. Petrot, M. Carrier, M. Benabdenbi, R. Chotin-avot, and
R. Labayrade, “Mapping an obstacles detection, stereo vision-based, soft-
ware application on a multi-processor system-on-chip,” in Proceedings of
Intelligent Vehicles Symposium 2006. IEEE, 2006, pp. 370–376.

[7] J. M. O’Connor and M. Tremblay, “picojava-i: The java virtual machine
in hardware,” IEEE Micro, vol. 17, no. 2, pp. 45–53, March 1997.


