
Efficient Mesh of Tree Interconnect for FPGA Architecture

Zied Marrakchi, Hayder Mrabet, Christian Masson and Habib Mehrez
LIP6, Universite Pierre et Marie Curie
4, Place Jussieu, 75005 Paris, France

zied .marrakchi@lip6.fr

ABSTRACT
In this paper we present a new Mesh of Tree FPGA archi-
tecture, where clusters are surrounded by a Mesh style in-
terconnect and each cluster local interconnect is equivalent
to a depopulated Tree-based topology. The particularity
of the architecture allows to retain the distinction between
Mesh and Tree levels in the mapping phase. This has an im-
portant impact on run time saving and tool simplification.
Nevertheless an efficient interconnect distribution must be
found between both levels, to reach a tradeoff between inter-
connect reduction and routability. With the proposed Mesh
of Tree architecture, we divided the required run time by 3
and reduced the routing interconnect by 24%, compared to
the clustered VPR-style Mesh architecture.

1. INTRODUCTION
Up to 90% of a Field Programmable Gate Array (FPGA)
chip is occupied by the programmable interconnect, includ-
ing wires, switches and configuration bits. Modern Mesh
FPGAs use clustering to improve the area and delay effi-
ciency of the routing architecture. There exist different ways
to connect signals to the Logic Block (LB) inputs. Betz and
Rose [1] proposed a fully populated cluster internal intercon-
nect (VPR-style). The fully populated intra-cluster cross-
bar is simple and ensures a complete local routability. It
provides a logical equivalence between clusters in/out pins,
with a positive effect on external routability. In addition
it allows "distinction" between external and internal nets
routing. This has an important effect on routing run time
reduction and ensures a strict compliance with the netlist
partitioning result. Nevertheless this kind of interconnect
does not take advantage of the logical equivalence of LB
inputs and has significant area overhead. This penality is
increasing especially for architectures with high clusters size.
In this paper we show that the intra-cluster full crossbar can
be depopulated to achieve significant area reduction with-
out performance degradation. This allowed us to increase
the clusters size and to reduce external communication. We
propose an improved and less constrained Tree-based inter-
connect compared to [5] in order to enhance intra-cluster
routability. This improvement allows us to experiment a
top-down mapping approach: first, we run external (Mesh
level) routing and then we run internal (intra-cluster) rout-
ing. With such an approach we aim at reducing the external
interconnect (Mesh level) while keeping a depopulated intra-
cluster interconnect.
In this paper we first present the Tree-based interconnect in
a stand-alone mode. All details concerning architeture im-

provement and configuration flow are described. The Tree
architecture is evaluated based on a comparison with VPR-
Mesh architecture. Second, we present the architecture uni-
fying Mesh and Tree interconnect and its configuration flow.
Finally, an evaluation based on a comparison with VPR-
Mesh architecture and a previous studied Mesh of tree [8]
architecture is presented.

2. TREE-BASED INTERCONNECT
In a previous work [5] a first hierarchical Multilevel FPGA
architecture (MFPGA) was designed and experimentally eval-
uated. This architecture used a "Butterfly Fat Tree" for the
downward network (to connect Switch blocks to LBs inputs)
and a limited connectivity Tree for the upward network (to
connect LBs outputs to Switch Blocks), following a circular
permutation scheme. While providing good flexibility and
some interesting features like an almost predictible routing
once the placement is defined, this approach revealed some
shortcomings hindering highly congested netlists routing:
* The very depopulated upward network, which only allows
each LB output to reach any destination by no more dif-
ferent paths than the number of levels in the hierarchy, is
detrimental for highly congested netlists.
* The placement of clusters (or LBs for leaf type clusters) in-
side their owner cluster critically controls routing resources,
thus limiting the freedom to re-arrange them and making
impossible to construct carry chains in this type of architec-
ture.

2.1 Interconnect improvement
To deal with those weaknesses we propose to add routing
flexibility by modifying specifically the upward network. We
propose, as shown in figure 1, to add Upward Mini Switch
Boxes (UMSB). These UMSBs allow LBs outputs to reach a
larger number of Downward MSBs (DMSBs). The UMSBs
are organized in a way that allows logic blocks (LBs) be-
longing to the same "owner cluster" (at level 0 or above) to
reach exactly the same set of DMSBs at each level. There-
fore, we can ensure the following:
- Pads, clusters or logic blocks positions inside the direct
owner cluster become equivalent and we need no more to
re-arrange them.
- The interconnect offers more routing paths to connect a
net source to a given sink. In this case we are more likely to
achieve highly congested netlists routing. In fact, while in
the previous architecture each LB output had only a fixed
number of DMSBs reachable per level, with the new upward
network, LBs can negotiate with their neighbours (of the

1-4244-1472-5/07/$25.00 C 2007 IEEE FrPT 2007

Figure 1: Tree-based interconnect: Upward and Downward Networks

same cluster) the use of a larger number of DMSBs. This is
more efficient for mapping netlists since instances can have
different fanout sizes. For example in figure 1, an LB ouput
can reach all 4 DMSBs of its owner cluster at level 0 and all
the 16 DMSBs of its owner cluster at level 1.

2.2 Interconnect depopulation
When we add UMSBs in the upward network, the number
of architecture switches increases. This can be compensated
by the reduction of in/out signals bandwidth of clusters in
each level. In fact Rent's rule [6] is easily adapted to Tree-
based structure (10 = c.k1P where I is a Tree level, k is the
cluster arity, c is the number of in/out pins of an LB and
10 the number of in/out pins of a cluster situated at level
1). Intuitively, p represents the locality in interconnect re-

quirements. If most connections are purely local and only
few of them come in from the exterior of a local region, p

will be small. In Tree-based architecture, both the upward
and downward interconnects populations depend on this pa-

rameter. By reducing the architecture Rent's parameter the
interconnect switches number and routability are reduced.
Thus we have to find the best tradeoff between interconnect
population and logic blocks occupancy. The occupancy fac-
tor is controled by N, the LBs leaves number in the Tree.
N is directly related to the number of levels and the clusters
arity k.

2.3 Connection with outside
As shown in figure 1, output and input pads are grouped
into specific clusters. The cluster size and the level where
they are located can be modified to obtain the best design
fit. Each input pad is connected to all UMSBs of the upper

level. In this way each input pad can reach all LBs of the
architecture with different paths. Nevertheless there is no

logical equivalence between input pads located in different
clusters. In fact, pads can reach neighbouring LBs through
a greater paths number than the number of paths available
to reach LBs located in other clusters. Latitude to permute
them remains but with different timing delays.
Similarly, output pads are connected to all DMSBs of the
upper level; in this way they can be reached from all LBs
through different paths. As one can notice, in/out pads
have higher interconnection flexibility than LBs. The per-

mutability significantly reduces the effect of pad assignment
on Tree-based interconnect routing.

2.4 Configuration Flow
To explore the modified architecture we have to adapt MF-
PGA configuration flow. Since logic blocks positions in-
side the owner cluster are equivalent, the detailed placement
phase [8] (Arrangement inside clusters) is eliminated. First
we apply a top-down multilevel partitioning. In each level
hMetis tool [4] is used to create parts with reduced external
communication. Routing consists in assigning nets that con-
nect placed instances to routing resources in the intercon-
nect structure. Routing resources are modeled as a directed
graph G(V, E). The set of vertices V represents the in/out
pins of logic blocks and the routing wires in the intercon-
nect structure. An edge between two vertices represents a
potential connection between the two vertices. The routing
algorithm we implemented is "PathFinder" [7],

2.5 Experimental evaluation
To evaluate the different architectures and tool performances,
we place and route the largest MCNC benchmark circuits,
and consider as a reference the optimized clustered Mesh
(VPR-style) architecture. This reference architecture uses
an uniform routing with single-length segments and a dis-
joint switch block. Each cluster logic block contains four
4-LUTs, 10 inputs and 4 outputs which are distributed over
the cluster sides. LUTs pins are connected to cluster pins
using a full local crossbar. For connection blocks, FC = 0.5
and Fcout = 0.25 are chosen. We use VPR 4.3 [2] to route
the Mesh. VPR chooses the optimal size as well as the
optimal channel width W to place and route each bench-
mark circuits. First we evaluate the efficiency of the new
Tree-based architecture to implement, in stand-alone mode,
MCNC benchmark circuits. With the previous MFPGA ar-
chitecture [5] [8], several of the largest MCNC circuits were
unroutable. As shown in table 1, we achieved all the 20
MCNC largest benchmarks routing. This illustrates the im-
provement in routing flexibility provided by the new up-
ward network. The cost of adding UMSB is compensated by
the architecture Rent's parameter reduction (clusters in/out
pins number).
We compared also the area requirement between Tree ar-
chitecture and the clustered VPR-style Mesh architecture
to implement these benchmarks. In the case of Mesh we
adjust the channel width W and in the case of Tree-based
interconnect we adjust levels Rent's parameters and logic
occupancy in order to obtain the architecture which best
fits each benchmark.
In table 1, we observe that the Tree architecture has a bet-

Table 1: Tree vs clustered VPR-style Mesh

ter density and can implement circuits with lower switches
number. An average of 38% reduction of the switches num-

ber is achieved. We achieve a 32% switches reduction in the
case of the "alu4" smallest circuit and 42% in the case of Block

the "clma" largest circuit. This confirms that Tree-based
interconnect is very attractive for both small and large cir-
cuits and that the best way to improve circuit density, is
to balance Logic blocks occupancy and interconnect popu-

lation [3].
We compare the areas of both architectures using a refined
estimation model of effective circuit area. The Mesh area is
the sum of its basic cells areas like SRAMs, Tri-states and
Multiplexers. The same evaluation is made for the Tree,
composed of SRAMs and Multiplexers. Both architectures
use the same cell symbolic library. As presented in table 2,

Figure 2: Node

with the Tree we save 34% in the total area compared to
Mesh architecture.

3. MESH OF TREE ARCHITECTURE
As shown previously, the Tree-based architecture is more

optimized in term of switches requirement than the VPR
Mesh architecture. Nevertheless the Butterfly Fat Tree, in
stand alone mode, is very penalyzing in term of physical lay-
out generation and wire length especially for large circuits.
The idea is to use Tree topology as an intra-cluster inter-
connect and to use Mesh topology to achieve inter-clusters
interconnection. Thus, the architecture we propose has a

Mesh of Tree interconnect topology and is built as a ma-

trix of abutted nodes represented in figure 2. Each node
has a Tree-based intra-cluster interconnect. The resulting
network corresponds to a Mesh of clusters (each one encap-

sulating the intra-cluster interconnect and the LBs). The
mapping of a netlist on this architecture can be executed in
two stages:
* The Mesh stage, where clusters are considered as black
boxes with i inputs and j outputs. The initial netlist is
partitioned into N independent sub-netlists where N corre-

sponds to the number of clusters of the Mesh architecture.
Then the inter-clusters netlist (external netlist) is placed
and routed using the Mesh interconnect.
* The Tree stage, where each one of the N sub-netlists (inter-
nal netlist) is mapped separately in a cluster. In this stage
we use the flow described in section 2.4 to place and route
sub-netlists
The logical boundary between inter and intra-clusters levels
is defined by the Mesh clusters in/out pins which correspond

of Mesh of Tree architecture

to the Tree in/out pads. In the sequel, the architecture Mesh
level and its configuration tools will be described.

3.1 Mesh routing interconnect
As presented in figure 2, clustered Mesh architecture is com-
posed of logic blocks clusters, switch blocks, connection blocks,
and in/out pads. Interconnection between clusters is formed
by routes through switch blocks, along horizontal and ver-

tical routing channels. The connection block is the region
where the cluster input and output pins connect to the rout-
ing channels. Connection block population is defined by
F,in and FCout parameters, where F,in is routing channel
to cluster input switch density and Fcout is cluster output
to the routing channel density. In figure 2 F,in = 0. 5 and

Fcout = 0.25. The switch block is the place where connec-

tions are made between the horizontal and vertical routing
channels, allowing nets to turn around corners or to extend
farther along the channel.

3.2 Top-down configuration flow
The complete configuration top-down flow is desribed on fig-
ure 3. First, the netlist instances are partitioned between
Mesh clusters. Second, the obtained external netlist (inter-
clusters) is placed and routed on the Mesh using VPR [2].
After the inter-clusters netlist routing, clusters in/out pins
are assigned to specific signals. Those signals are consid-
ered as in/out pads in the generated intra-cluster netlists.
Thus, as presented in figure 3, external netlist routing as-

MCNC Clustered Mesh Tree architecture Gain
Cluster size 4 Clusters Arity 4

Circuits Occup Channel SW SRAM Area (72 Occup Rent's SW SRAM Area (A2) SW SRAM Area (72
% Width x 103 X 103 X 106 pp X 103 X 103 X106 % % %

alu4 86 32 100 74 319 57 0.82 68 55 238 32 26 25
apex4 87 42 359 267 1092 36 0.91 211 151 667 41 56 39
clma 94 51 2541 1879 7672 51 0.86 1484 1058 4781 42 44 38
diffeq 93 29 307 226 954 73 0.81 193 140 619 37 38 35
elliptic 94 41 944 701 2883 43 0.77 552 424 1888 45 40 35
ex5p 92 44 305 224 915 51 0.91 193 143 623 37 36 32
frisc 98 45 952 811 3287 43 0.86 662 478 2164 30 41 34
pdc 93 61 1636 1207 4889 55 0.89 891 620 2785 45 48 43

s38584 96 36 1501 1113 4590 39 0.74 1023 809 3578 32 27 22
spla 96 53 1144 847 3448 45 0.86 721 517 2329 37 39 32

Average 93 43 978 735 3005 50 0.84 600 439 1967 38 39 34

Main Netlist

I ~~~~~~Internal Netlists
Mlesh PAftitioning

,|, External Netlist

|VPR PAIaCe & RO6iq
,1,

Teea TeedTref.
Partitioning Partitioning Partitioning

Tree Tree Tree
Routing Routing Routing

Figure 3: Top-down Mesh of Tree configuration flow

Switches
x1000

2000 -_

-r

Switches

2000 -

External
Interconnect

Internal
IInterconnect

soolCircuits | ||CircuitsCircuits

E E

a) Mesh of Tree b) Mesh of Tree
Bottom Up Top Down

Cluster: 256 LUTs Cluster: 256 LUTs

Figure 4: Internal and external interconnect distri-
bution in Mesh of Tree architecture

(top-down approach). We notice that with the Mesh of Tree
architecture we obtain a better density and about a 24%
reduction on the number of switches. Thanks to the Mesh
large clusters size (256), the required mapping run time is
divided by 3.

4. CONCLUSION
The improved Tree-based architecture alleviates significantly
placement constraints and allows in/out pins permutability.
We took advantage of this fact and proposed an improved
architecture combining Mesh and Tree merits. The architec-
ture configuration approach retains distinction between both
levels. As we showed, routing independently inter-clusters
netlists (Mesh level) and intra-clusters netlists (Tree level)
is no longer penalizing and allows a top down approach. In-
deed, both run time and switches are reduced without rout-
ing degradation.
We notice from table 1 and figure 4 that the Tree-based
architecture is the most optimized architecture in term of
switches requirement (better than the Mesh of Tree). Nev-
ertheless this Tree-based architecture, in stand-alone mode,
is very penalizing in term of physical layout generation, it
does not support scalability and does not fit with a pla-
nar chip structure, especially for large circuits. Conversely,
the Mesh of Tree has a good physical scalability: once the
cluster layout is generated we can abut it to generate Mesh
layouts with the desired size and form factor. In addition
in this case we consider small Tree-based interconnect (256
BLEs) with reduced wires lengths.

5.
[1]

REFERENCES
V. Betz, A. Marquardt, and J. Rose. Architecture and
CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, January 1999.

signs the specific position of each internal netlist pad (pin
assignment). Those positions are strictly respected when we
place and route an internal netlist on the Tree-based archi-
tecture.

3.3 Experimental results
3.3. 1 Mesh ofTree: top-down vs bottom-up
Here we compare the Mesh of Tree architecture based on
the improved Tree architecture, where the mapping uses the
top-down approach, to the previous bottom-up mapping ap-
proach presented in [8] (using the old Tree architecture [5]).
In both cases, we use clusters containing 256 LBs and we
compare the required architecture characteristics to imple-
ment the same circuits.
With the top-down approach we reduce the required Mesh
channel width. The external interconnect switches reduction
can be seen in figure 4. The external switches are reduced
by 58%. Nevertheless, the intra-clusters interconnect (Tree
level) were increased to get more flexibility to satisfy the pins
assignment constraints. Consequently, the internal switches
number is increased by 43%. Using the top-down approach,
we have achieved on average a total switches reduction equal
to 14%.

3.3.2 New Mesh ofTree vs VPR-style Mesh
We compared switches requirement in the case of clustered
VPR-style Mesh and the proposed Mesh of Tree architecture

[2] V. Betz and J. Rose. VPR: A New Packing Placement
and Routing Tool for FPGA research. International
Workshop on FPGA, pages 213-22, 1997.

[3] A. DeHon. Balancing Interconnect and Computation in
a Reconfigurable Computing Array (or, why you don't
really want 100% LUT utilization). Proc. FPGA,
Montery, CA, February 1999.

[4] G.Karypis and V.Kumar. Multilevel k-way hypergraph
partitioning. Design automation conference, 1999.

[5] H.Mrabet, Z.Marrakchi, P.Souillot, and H.Mehrez.
Performances improvement of FPGA using novel
multilevel hierarchical interconnection structure.
ICCAD, San Jose, 2006.

[6] B. Landman and R. Russo. On Pin Versus Block
Relationship for Partition of Logic Circuits. IEEE
Transactions on Computers, 20(1469-1479), 1971.

[7] L. McMurchie and C. Ebeling. Pathfinder: A
Negotiation-Based Performance-Driven Router for
FPGAs. Proc.FPGA '95, 1995.

[8] Z.Marrakchi, H.Mrabet, C.Masson, and H.Mehrez.
Mesh of Tree: Unifying Mesh and MFPGA for better
Device Performances. International Symposium on
Network-on-Chips, Princeton, New Jersey, May 2007.

