
Silicon Compaction/Defragmentation for Partial Runtime Reconfiguration

Kolin Paul
Department of Computer Science

IIT Delhi
Hauz Khas

New Delhi 110016, India
email: kolin@cse.iitd.ac.in

Joel Porquet
Universit Pierre et Marie Curie

4, Place Jussieu
75252 Paris Cedex 05

France
email: joel.porquet@laposte.net

Abstract

The effective use of Run Time Reconfiguration (RTR) in mod-
ern FPGAs opens up new avenues to design area and power
efficient high performance architectures. However the current
design flow for exploiting RTR in designs, leads to the prob-
lem of silicon Defragmentation. We propose a silicon com-
paction/defragmentation technique which works on already placed
and routed modules to generate partial bitstreams (programming
files) for the device. We have outlined a method which generates
these partial bitstreams very fast taking into account the size and
position of the “free” silicon when the device is in operation. The
other advantage of this method is that the changes in the basic
FPGA fabric needed to implement this defragmentation strategy
are (almost) trivial.

1 Introduction and Motivation

Since the mid and late 90’s FPGAs have really come into their
own mainly because of increased gate densities in the chip them-
selves and also the speed at which circuits can operate. Concurrent
with this development has been the realization of the concept of
dynamic reconfiguration enunciated very lucidly by Lysaght[16].
The run time reconfiguration(RTR) characteristic of the new breed
of FPGAs presents us with unique challenges and opportunities
that will (in the near future) have wide ramifications in both the
way we design processors as well as in the development of CAD
tools to support the design process. With chips containing billions
of transistors becoming the norm in the future, effective ways of
utilizing this silicon space is an active research area. One way is to
build bigger processors — but that means we invest a lot of effort
to develop ways to make the chip not turn into a furnace. Rather
than doing this, if we build a small core processor and leave most
of the silicon “free”, then we can build custom circuits on this
“free” area. Conceptually, this is feasible if we can effectively
harness the “free” silicon by building different circuits which are
separated temporally. The other perspective is to use very small
silicon area (solves the power issues) and use that area to dynami-
cally change “behavior” when the application is executing. We al-

ready see that today — in processors where different applications
can run on the same processor. We endeavor to take this concept
to encompass functional partitioning within an application. We
feel that future processors will have a portion of their silicon area
“free” to be (re)configured at runtime and this is going to be the
predominant design space of processors. The challenges that we
faced when we incorporated Virtual Memory(VM) and MMU in
the design space of processors was a watershed. The incorpora-
tion of “free” silicon to be used for RTR in the design of proces-
sors is the second watershed that we face today and the challenges
and opportunities are similar to the previous watershed. Just as
VM offers the user (the system programmer) an unlimited (virtu-
ally) amount of (virtual) memory (implemented in a finite amount
of “real” memory), the processor designer will have an “infinite”
amount of “virtual” silicon to design and build high performance
applications on a limited amount of “real” silicon.

The advantages of RTR are often offset by the problems of lim-
ited runtime reconfigurability in current devices supporting RTR.
As we will see in detail in a later section, the principal limitation is
that the “reconfigurable” regions have to be placed and routed well
in advance of their being used. The reason for this is that place-
ment and routing algorithms (P&R) are very time consuming and
hence it is not feasible to do P&R files at runtime. In fact, the floor
planning has to be done for all the dynamically swappable mod-
ules during the time of designing and generating the “bit” file(s)
necessary for the programming the device. This in essence, means
that we have constrained the RTR paradigm to be available only
at “compile” time. This indicates that there are cases where we
cannot effectively use the available silicon because of the same is-
sues that operating systems designers faced in solving the memory
compaction problem [18]. Researchers in the general area of re-
configurable computing have also reported the analogous problem
which we term as “silicon compaction’[9, 19, 4]. This paper re-
ports a method which would allow the “fast” generation of partial
bit files while working with an already placed and routed design.
The primary motivation of this paper is to provide a solution to
mitigate the problem of silicon compaction (or equivalently de-
fragmentation) to enable development of applications using RTR
in the design space of embedded high performance processors.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00  © 2007



2 Review and Background

Dynamic reconfiguration of hardware or adaptive computing
systems have been the topic of study in academic circles for some
time now. Lysaght et. al.[16] were probably the first to recog-
nize the potential of these important feature with respect to FP-
GAs and provide a taxonomy for different forms of runtime re-
configuration. Recently, things have started moving in industry
where people have realized that this design paradigm can be gain-
fully employed to build high performance applications. A lot of
network applications have been built using FPGAs[11]. Follow-
ing Horta et al[10], systems can either be Compile time Reconfig-
urable(CTR) or Run Time Reconfigurable(RTR)[2]. CTR systems
are statically compiled and donot change behavior during the life
time of the application — typical examples are SPLASH[7] and
PAM[15]. RTR systems change the structure of the hardware cir-
cuit at runtime either by full reconfiguration[13, 6] or by partial
reconfiguration[12, 17, 5]. The ability to partially reconfigure the
silicon while a portion of the silicon is “running” enables us to
really exploit the maximum in terms of “reuse” and is more in-
teresting. Partial runtime reconfiguration allows an FPGA to im-
plement multiple functions which are separated temporally on the
same silicon area — and the configuration can be changed while
the application is running. There are two basic flows to implement
partial RTR using Xilinx based devices.

• Difference Based

• Module Based

Using tools like the FPGA Editor sections of the placed and routed
design can be modified. Bitstream producing tools like BitGen
with appropriate switches then can produce custom bitstreams that
only modify small sections of the device. Switching the configura-
tion of a module from one implementation to another is very quick,
as the bitstream differences are smaller than the changes to an en-
tire device bitstream. These bitstreams can be loaded quickly and
easily due to their size and software support. The experimental re-
sults presented by researchers [8] show that if the differences are
small, the gain is significant. The reconfiguration overheads are
very low. This method is, of course, suitable only if the changes
are small and very local. If we have to make changes which are
large, then it is more practical to follow the modular based ap-
proach to implement the partial runtime reconfiguration. One cru-
cial observation that we noticed in this approach is that if the
changes are made on the placed and routed design, the gener-
ation of bitstream as well as the reconfiguration overheads are
low.

The design flow in the case of Module Based Partial Recon-
figuration is slightly different. We will walk through the design
of the synthetic pedagogical example. Let us assume that the ap-
plication can be functionally (and temporally) partitioned into 5
distinct regions (A,B,C,D and FL). The four regions A,B,C and D
are candidates which are be swapped in dynamically. FL refers to
logic which does not change during runtime.A general floor-plan
is constructed which is referred to as the Initial budgeting phase
where we set up the area constraints (Figure 1). The regions A, B,
C and D are mapped with reference to the region FL. Any commu-
nication between the modules is done using Bus Macros[1].

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

A
Fixed 
Logic

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

B

Fixed 
Logic

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Fixed 
Logic

C

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Fixed 
Logic

D

Figure 1. Floor-plan of Application

In the next phase, the individual runtime swappable modules
are implemented. This is known as the active implementation
phase. Here, these modules (A,B,C and D) are placed and routed
according to the area constraints defined by the floor-plan in the
earlier phase. In the next phase, the final bitstreams are generated.
This phase is termed as the final assembly. Clearly the position
of the individual runtime modules are fixed in the second phase of
this design flow. The partial bit streams that are generated corre-
spond to the floor-plan defined in the first phase. This design flow
constrains the partial bit streams to be loaded in exactly the same
place defined in the initial budgeting phase. This “static nature”
of the “dynamically loadable modules” leads to silicon fragmen-
tation. We illustrate with the following use case scenario of the
application.

The application starts with the regions FL and A in place —
this implies that A is being used. During this time the partial
bit streams are prefetched and loaded into the regions anticipating
(temporal scheduling) that they would be required subsequently.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

B

Fixed 
Logic

Figure 2. Floor-
plan of Applica-
tion (at Runtime)

This reduces the reconfig-
uration overheads and the
time required for the context
switch. After some time,
module A and C have fin-
ished their jobs and are ready
to be swapped out — in ef-
fect the silicon area occupied
them is ready for reconfigura-
tion (Figure 2). At this point
in the execution of the appli-
cation, we notice two crucial
things:

• There is free silicon (re-
gions previously occu-
pied by A and C).

• The free silicon is
fragmented (module B
is still operational) and
thus regions A and C
are not available as a
contiguous region.

This is the classic memory fragmentation/compaction problem.
Clearly we cannot schedule the module D until module B has fin-
ished operation. In our example, module D requires an area which

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00  © 2007



is greater that either of A or C but less than the combined area of
A and C. We cannot however create a new partial bit stream with
D being split into regions A and C. This is because of two reasons:

• It is well known that place and route techniques are very
time consuming and also expensive in terms of space require-
ments. Hence we do not have the luxury to do a execute a
Place & Route algorithm at runtime.

• Routing signals between the regions A and C through a mod-
ule in operation (B) is not feasible. Current partial recon-
figuration fabrics require that we use entire columns while
floor-planning for different modules.

The second point is actually an engineering limitation in current
devices and is essentially related to the manner in which we pro-
gram the device. This can be easily overcome if we allow the
reconfiguration regions to be rectangular without requiring that
the height of the module be fixed to the number of rows of ac-
tive components (CLBs) in the device. In fact, the latest version of
the PlanAhead tool offered by Xilinx allows rectangular runtime
programmable regions to be defined( [14]). However the first is-
sue is a more complex one and is crucial for effective utilization
of silicon as well as ensuring that high performance applications
using RTR can be built. The rest of the paper provides a detailed
algorithm to do a fast generation of partial bit streams with area
constraints being determined dynamically at runtime.

3 Silicon Compaction Strategy for RTR

The difficulty in reusing fragmented silicon for loading mod-
ules at runtime is because of the “non-relocatable” nature of hard-
ware circuits when compared to software modules. This is espe-
cially true when we do design keeping in mind that we need to
use our available real estate in the most efficient manner possible.
This implies that we impose very hard timing as well as area con-
straints and the resulting optimization problem (in P&R) is very
expensive. Most of the algorithms used in P&R for FPGA like
fabrics also use the same concepts of using very “good” but ex-
pensive algorithms to optimally utilize the resources. The use of
the modern FPGA fabrics allows us to reuse real estate area at run
time which in turn, opens up new vistas in the design of high per-
formance area (power) efficient architectures. Unfortunately the
static component in the design flow which compels us to do an of-
fline place and route does not allow us to fully utilize the potential
promised by these fabrics. In this paper, we propose to use a well
known feature of the FPGAs to generate the programming files
(bit streams) taking into consideration the area constraints which
are available to us during runtime. We will discuss the proposed
method informally in the following paragraph to build up the case
for the formal algorithm.

With reference to the running example, we have seen that al-
though we do have adequate silicon resources available (area freed
by module A + area freed by module C is greater than the area
required by module D), we cannot load module D because of frag-
mentation. We propose that we work with the placed and routed
graph corresponding to the module D. (The generation of the bit
stream from the P&R graph is of polynomial order (time) com-
plexity). In general, D is a (strongly) connected graph as shown

Figure 3. Placed & Routed Graph

below. In this, the nodes in the graph represent the basic logic ele-
ments (LUTs / CLBs / Flip Flops etc) and the edges represent the
connectivity (routing). The size of the graph (number of nodes)
is directly proportional to the area occupied by the module in the
device. We propose a bipartite partitioning of the graph into two
regions X and Y subject to certain constraints. The first constraint
is that that the number of nodes in X and Y are such that they fit in
the regions A and C respectively. This is principally because we
want to physically displace the portions of the module from the
initially intended place to positions which are determined during a
later time. Clearly this is possible in the case of FPGAs because
all the regions have uniform resources as well as predictable de-
lays though both the logic elements as well the routing elements.
This important property of FPGAs is the basis for our algorithm
for runtime silicon defragmentation. The second issue is to be
able to route signals from regions X and Y. Clearly this is only
possible if we reserve some silicon for performing this routing.
This is illustrated in the left half of Figure 4.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
��������������������������������������������������������������

���������������������������������������������������������

B

Fixed 
Logic

Free Silicon available for routing

Figure 4. Routing Area for Modules and P &
R partitioned graph

We would like to run a Min-Cut (K) algorithm here to deter-
mine where we should have the partition so that the signals going
from region X to region Y are less than or equal to K. This is
illustrated in the right half of Figure 4. This becomes our sec-
ond constraint. The third and most crucial aspect that we need
to keep in mind is the timing issue. Clearly we do not want to
suffer from a degradation of performance because of relocating

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00  © 2007



portions of the circuit in different locations. However we do know
the upper bound of the delay (D) that will be incurred when we are
placing the partitioned circuit in regions X and Y. In our example,
this value is equal to the delay in the routing elements placed in a
region whose width is the same as B. We also know that all nets in
our module will not have the same critical path delay. Therefore

Figure 5. Floor-plan of D following the parti-
tioning

our third constraint is to select a suitable cut where we have a
slack in the combinational delay between the wires crossing the
cut which is greater than upper bound D mentioned above. The
floor-plan of the circuit under these three constraints would appear
similar to Figure 5.

We also use a heuristic which doesnot look at the entire
P&R graph but only considers a region around the center of
the graph. (We assume that topologically the graph can be
laid out in the same manner as the actual device. In such a
case the graph will have a length as well as width commensu-
rate with the device properties). This is indicated in Figure 6

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

X

X

Figure 6. Floor-
plan of D
following the
Partitioning

and is motivated by the considera-
tion that in essence, we are trying
to break up the module (D) repre-
sented by the P&R graph into two
regions which satisfy certain area
constraints (to fit in regions X &
Y). We do not want to tamper with
the P&R in these regions — we
simply want to be able to find a
partition satisfying the three con-
straints which enables us to trans-
late horizontally a portion of the
module (say to the right of the cut)
to be placed in a different region.

4 Experimental Setup

Versatile Place and Route [3] is an opensource FPGA place-
ment and routing tool. It produces two files which respectively

contain the placement of all the blocks and the routing of all the
nets. We use these files to build our P&R Graph at runtime. We
modified VPR in order to add the slack time of each net in the
routing file. The slack times are calculated as follows :

• VPR finds the delays of all possible paths by computing the
delays through each CLB and net which are part of each path.

• The path with the highest delay becomes the critical path and
its delay becomes the cycle time.

• Finally, by scanning all the paths from end to start, VPR can
compute the slack times of each net by comparison with the
cycle time.

Our algorithm tries to break up a module into two regions R1
and R2. If S is the width of the module (in terms of CLBs) then
clearly, the addition of the widths of R1 and R2 must be equal or
greater than S. Therefore the window of the module in which the
mincut can be performed is the union between the widths of R1
and R2. Obviously, if the addition of the widths of R1 and R2 is
equal to S, running the bipartitioning algorithm would be useless
since no cell would be able to be moved. Figure 7 displays an
example of a 6 CLBs width module, with a region R1 of 5 CLBs
width and a region R2 of 4 CLBs width.

non−available
area

X

Y

Width of R1

Cutline

MinCut window

Width of R2

free area

remaining in R2

Figure 7. MinCut window

Furthermore, all the nodes in the window cannot be moved. In this
example, only the nodes which are along the vertical segments
of the cutline can be moved. Figure 8 shows two bipartitioning
situations : the first one is not allowed but the second one is.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00  © 2007



Authorized cutlineNot authorized cutline

WindowWindow

Figure 8. Two bipartitioning situations

Therefore a node can be in 3 states : fixed if it is not in the window
; locked if it is in the window but unmoveable ; mobile if it is in
the window and moveable.

Furthermore, as we have mentioned earlier, the routing re-
sources between regions R1 and R2 are not infinite. Let us assume
that K tracks are available for the nets which are crossing the cut.
That would means that only K distinct nets would be able to cross
the cut. However, in an FPGA, a source CLB can reach multi-
ple CLB targets with distinct nets sharing the same equipotential.
Therefore two or more nets with the same equipotential and which
are crossing the cut, require only one track. These nets should be
rerouted in R1 to merge in one net, then cross the cut, and finally
be rerouted in R2 to reach their targets. Consequently, the size of
the cut only indicates the number of different equipotentials of the
cut.

Also when bipartitioning the module into parts X and Y,
we use two upper bounds which we call x upper bound and
y upper bound. x upper bound points out the greatest x co-
ord of the CLB(s) belonging to X which are at the left extremum.
In the same way, y upper bound points out the lowest co-
ord of the CLB(s) belonging to Y which are at the right extremum.
Then they give the real size of the two regions, after splitting. Thus
one of our aims is to minimize the difference between both these
bounds in order to reduce the size of the regions. These upper
bounds can move during the execution of the bipartitioning algo-
rithm, since CLBs are moved between X and Y to find the mincut.

Since the routing of the nets doesn’t generate shortest paths
only, sometimes we can observe fake crossing nets. A fake cross-
ing net is a net with both source and target belonging to the same
part, but which crosses the upper bound of this part. In this case,
the net should be rerouted to stay in its own part. Figure 9 shows
an example in which the net belonging to X is not a fake net (the
routing resources are still available after splitting) but the net be-
longing to Y is a fake crossing one and thus needs to be rerouted.

5 Bipartitioning Algorithm and Results

Now that we have an intuitive feel of the method to perform a
defragmentation of the available silicon area during runtime, we
are in a position to state the compaction/defragmentation algo-
rithm formally.

non−available
area

Width of R1

Width of R2

free area remainig

Cutline

x_upper_bound

y_upper_bound

Y

X
?

Figure 9. Fake crossing net

Algorithm: BiPartitionCut

Step 1 Determine new area constraints

Step 2 Determine the number of available routing resources (K)

Step 3 Determine the delay that will be incurred due to routing
the signals of the “relocatable” module across an executing
module(width of the region B).

Step 4 Determine the region to explore for the min-cut(K).

Step 5 Solve min-cut(K) subject to the following constraints:

• array constraints determined in Step One.

• available slack in all lines which are in the min-
cut(K) is greater than the delay determined in Step
3.

This entire algorithm is easily encoded in a small embedded
processor (like Microblaze) in the fixed logic (FL) region. In or-
der to split a module in two parts, we decide to use a clone of
Feduccia and Mattheyses mincut algorithm. Let us see
how we have transformed it for our needs.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00  © 2007



5.1 Usual FM algorithm

In the general case, FM algorithm is run on a undirected graph.
Each node is tagged with a weight value : a good balance means
that we have more or less the same weight in both sides.

Algorithm: FM Original Initialization

• Generate an initial bipartition with a good balance

• Compute the gain for each cell (ie, if the opposite node is in
the other side, gain is incremented; else, it is decremented)

• Initialize the buckets structure (ie, node are sorted by their
gain value in order to find the cell with highest gain easily)

Main loop

• Unlock all the cells

• i = 0

• Local loop

– Select the cell with the maximum gain which respects
all the constraints (ie, which maintains a good bal-
ance if it is moved)

– Move the cell and lock it

– Update gains of connected cells

– Save the new cutsize in history Hi

– i = i + 1

• While some cells are unlocked

• Find k such that Hk =
P

k

t=1
Ht is maximized

• All moves after k are replaced in their initial part

While the cutsize is improved

In our case, we do not have any weight associated to the cells,
so there is no balance to respect. The gain value of a cell is com-

y_upper_bound
x_upper_bound

Window Window

UNFIXED cell

FIXED cell

LOCKED cell

y_upper_bound
x_upper_bound

(1) (2) (3)

(4)

(1) (2) (3)

(4)

Figure 10. Move cell (2) from Y part to X part and lock it -
State of (1) is now locked while state of (3) is now unfixed - The
x upper bound has changed so the gains of the cells which be-
long to the corresponding column are updated (ie, gain value of (4)
is updated because now its potential movement would not change
the number of fake crossing nets of X part)

puted as follows : for each of its nets, if the opposite cell is in
the same part, gain is decremented. On the contrary, gain is incre-
mented if the opposite cell is in the other part. We also include
the fake crossing nets in this computation : the gain is better if the
movement of the cell reduces the number of fake crossing nets.

Algorithm: FM Modified Initialization

• Set the fixed state for cells not in the window

• Generate an initial bipartition : we shift a vertical cutline
in the window to find the best position (ie, the one which
gives the best cutsize)

Main loop

• Set the unfixed state for moveable cells in the window and
set the locked state for other cells in the window

• Compute the fake crossing nets for both parts

• Compute the current cutsize

• Compute the gain value for all unfixed cells and store them
in the buckets structure

• i = 0

• Local loop

– Select the cell with the maximum gain : if several
cells have the same gain, take the one which move-
ment gives the best upper bounds difference (ie, the
size of both parts are minimized)

– Move the cell, lock it and update the cutsize

– Update the upper bounds and compute the fake cross-
ing nets for both parts

– Update gains of connected cells

– Change the state of cells situated aside (ie, if the cell
is moved from Y to X - right part to left part - then the
cell on the right is set as unfixed, but only if it is not
already in the fixed state. Its gain is computed, and
the cell on the left side is set as locked) - See figure
10

– If the upper bounds have changed, compute the new
gain of the cells which belong to the corresponding
columns

– Save the new cutsize in history Hi

– i = i + 1

• While some cells are unfixed

• Find k such that Hk =
P

k

t=1
Ht is maximized

• All moves after k are replaced in their initial part

While the cutsize is improved

The results of running this algorithm on MCNC benchmarks is
shown in Tables 1-2. The first table lists the number of equipoten-
tials present in each of the circuits chosen in the benchmark. This
in turn reflects on the routing complexity that we encountered in
the circuits while performing the bipartitioning. The second table
shows that it is possible to “partition” successfull all the circuits at

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00  © 2007



the designated positions using our algorithm. The second and third
columns of this table denote the sizes of the partitions R1 and R2
and the areas (X&Y)where we want to relocate the second portion
of the chosen circuit. For each of the circuits in the benchmarks, it
is observed that the number of equipotentials cut is approximately
10% of the total number. This implies that it has been possible
to reroute successfully when moving the portion of the circuit to
a new region. The table also indicates the actual number of nets
cut to create this bi partition. The next column indicates that the
“dynamic partitions” have been created within available slack.

6 Conclusion and Future Research

The effective use of Run Time Reconfiguration in modern FP-
GAs opens up new avenues to design area and power efficient high
performance architectures. However the current design flow for
exploiting RTR in designs, leads to the problem of silicon de-
fragmentation. We propose a silicon compaction / defragmenta-
tion technique which works on already placed and routed modules
to generate partial bitstreams (programming files) for the device.
We have outlined a method for which generates these partial bit-
streams very fast taking into account the size and position of the
”free” silicon when the device is in operation. The other advantage
of this method is that the changes in the basic FPGA fabric needed
to implement this defragmentation strategy are almost trivial. The
limitation of the proposed method is that the floorplan of the “dy-
namic” module must respect the interface with the fixed logic (FL)
as also other dynamic modules that are defined in the initial floor-
plan. We are also in the process of integrating the changes in the
algorithm which are necessary when we have the module to be
“relocated” communicating with both the FL region as well as an-
other executing module. We are looking at the problem of relaxing
this constraint. The other major assumption in this work that the
fabric is regular is being looked into as modern FPGAs have em-
bedded multipliers and memory structures which require special
handling.

References

[1] Dynamic and Partial Reconfiguration.
http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf.

[2] B L Hutchings and M J Wirthlin. Implementation Ap-
proaches for Reconfigurable Logic Applications. In Field
Programmable Logic and Applications (FPL’1995), August
1995.

[3] V. Betz and J. Rose. VPR: A new packing, placement and
routing tool for FPGA research. In W. Luk, P. Y. Cheung,
and M. Glesner, editors, Field-Programmable Logic and Ap-
plications, pages 213–222. Springer-Verlag, Berlin, 1997.

[4] K. Compton, Z. Li, J. Cooley, S. Knol, and S. Hauck. Config-
uration relocation and defragmentation for run-time reconfig-
urable computing. IEEE Trans. Very Large Scale Integr. Syst.,
10(3):209–220, 2002.

[5] D E Taylor, J S Turner, and J W Lockwood. Dynamic Hard-
ware Plugins (DHP): Exploiting Reconfigurable Hardware
forHigh performance reconfigurable Routers. In IEEE OPE-
NARCH 2001: 4th IEEE Conference on Open Architectures
and Network Programming, 2001.

Table 1. MCNC Circuits

Circuit CLBs #CLBs #Nets #Equipot-
width entials

count 7 47 142 82
adder 7 49 130 82
5xp1 8 57 208 64
C499 10 74 312 115

C1355 10 74 312 115
b9 11 117 257 158

C432 12 124 420 160
9sym 12 144 490 153

C1908 13 145 534 178
C880 14 174 656 234

C3540 21 431 1597 481
C6288 23 527 2055 559
C5315 38 620 2268 798
C7552 40 735 2559 945
dalu 34 1131 3051 1206
alu4 40 1544 5408 1536

[6] D Ross, O Vellacott, and M Turner. An FPGA Based Hard-
ware Accelerator for Image Processing. In More FPGAs:
Proceedings of the 1993 International Workshop on Field
programmable Logic and Applications, 1993.

[7] D T Hoang. Searching Genetic Databases on Splash 2. In
IEEE Workshop on FPGAs for Custom Computing Machines,
IEEE Computer Society Press, 1993.

[8] H. Dhand, N.Goel, M.Agarwal, and K.Paul. Partial and
Dynamic Reconfiguration in Xilinx FPGAs : A Quantitative
Study . In Proc. 9rd VLSI Design & Test Symposium. Banga-
lore, India, August 2005.

[9] O. Diessel and H. A. ElGindy. Run-time compaction of fpga
designs. In FPL ’97: Proceedings of the 7th International
Workshop on Field-Programmable Logic and Applications,
pages 131–140, London, UK, 1997. Springer-Verlag.

[10] E L Horta, J W Lockwood, and D Parlour . Dynamic Hard-
ware Plugins in an FPGA with Partial Runtime Reconfigura-
tion. In Design Automation Conference, 2002.

[11] S. Hauck. The Roles of FPGAs in reprogrammable Systems.
In Proceedings of the IEEE, volume 86, pages 615–638, April
1998.

[12] J D Hadley and B L Hutchings. Designing a Partially Re-
configured System. In Field programmable Gate Arrays (FP-
GAs) for Fast Board Development and Reconfigurable Com-
puting, Proc Spie 2607, pages 210–220, 1995.

[13] J M Ditmar. A Dynamically Reconfigurable FPGA-Based
Content Addressible Memory for IP Characterization. In
Masters Thesis, KTII Royal Institute of Technology, Stckholm,
Sweden, 2000.

[14] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridge-
ford. Enhanced Architectures, Design Methodologies and
CAD Tools for Dynamic Reconfiguration on XILINX FP-
GAS . 16th International Conference on Field Programmable
Logic and Applications , Madrid, Spain, 2006.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00  © 2007



Table 2. MCNC Circuits Results-I

CircuitR1,R2 X,Y Extra#Equipot-Nets Slack X,Y
width width Area entials Cut FC

cut Nets

count
(3,6) (3,6) 28.57 7 23 4.44E-16 (0,0)
(5,5) (4,3) 0.00 5 20 0 (0,3)
(6,3) (4,3) 0.00 5 20 0 (0,3)

adder
(3,6) (3,6) 28.57 4 7 4.44E-16 (0,0)
(5,5) (4,3) 0.00 5 7 4.44E-16 (0,3)
(6,3) (4,3) 0.00 6 8 4.44E-16 (0,3)

5xp1
(3,6) (3,6) 28.57 12 84 0 (0,0)
(5,5) (4,3) 28.57 9 39 2.01E-09 (0,3)
(6,3) (4,3) 28.57 11 21 2.01E-09 (0,3)

C499
(3,6) (3,6) 0.0 21 56 0 (0,0)
(5,5) (4,3) 25.00 18 20 0 (0,3)
(6,3) (4,3) 0.00 19 20 0 (0,3)

C1355
(3,6) (3,6) 0.0 26 59 0 (0,0)
(5,5) (4,3) 10.00 28 38 1.77E-09 (0,3)
(6,3) (4,3) 10.00 16 18 1.77E-09 (0,3)

b9
(3,6) (3,6) 20.00 12 46 0 (0,0)
(5,5) (4,3) 0.00 14 20 5.25E-09 (0,3)
(6,3) (4,3) 20.00 10 20 5.25E-09 (0,3)

C432
(3,6) (3,6) 9.09 28 46 0 (0,0)
(5,5) (4,3) 9.09 21 20 0 (0,3)
(6,3) (4,3) 9.09 26 20 0 (0,3)

9sym
(3,6) (3,6) 0.0 20 73 0 (0,0)
(5,5) (4,3) 16.67 20 165 0 (0,3)
(6,3) (4,3) 0.00 21 153 0 (0,3)

C1908
(3,6) (3,6) 0.00 43 106 0 (0,0)
(5,5) (4,3) 8.33 37 20 0 (0,3)
(6,3) (4,3) 16.67 26 20 4.77E-09 (0,3)

C880
(3,6) (3,6) 0.00 26 85 0 (0,0)
(5,5) (4,3) 7.69 42 20 1.19E-09 (0,3)
(6,3) (4,3) 30.77 21 20 1.77E-09 (0,3)

C3540
(3,6) (3,6) 4.76 45 112 1.78E-15 (0,0)
(5,5) (4,3) 0.00 71 172 5.32E-15 (0,3)
(6,3) (4,3) 9.52 66 333 5.32E-15 (0,3)

C6288
(3,6) (3,6) 8.70 34 248 4.44E-16 (0,0)
(5,5) (4,3) 8.70 34 262 0 (0,3)
(6,3) (4,3) 4.35 35 216 0 (0,3)

C5315
(3,6) (3,6) 10.53 47 121 3.16E-09 (0,0)
(5,5) (4,3) 5.26 52 140 3.16E-09 (0,3)
(6,3) (4,3) 2.63 56 155 5.33E-15 (0,3)

C7552
(3,6) (3,6) 0.00 22 140 0 (0,0)
(5,5) (4,3) 0.00 22 140 0 (0,3)
(6,3) (4,3) 0.00 56 190 0 (0,3)

dalu
(3,6) (3,6) 2.94 53 229 4.44E-16 (0,0)
(5,5) (4,3) 8.82 61 403 7.08E-09 (0,3)
(6,3) (4,3) 8.82 62 338 9.04E-09 (0,3)

alu4
(3,6) (3,6) 2.50 84 647 6.18E-09 (0,0)
(5,5) (4,3) 7.50 114 13952.38E-09 (0,3)
(6,3) (4,3) 0.00 108 550 1.12E-08 (0,3)

[15] P Bertin, H Touati, and E Lagnese. PAM Programming En-
vironments. In IEEE Workshop on FPGAs for Custom Com-
puting Machines, IEEE Computer Society Press, 1994.

[16] Patrick Lysaght, Hugh Dick, Gordon McGregor, David Mc-
Connel, and Jon Stockwood . Prototyping Environment for
Dynamically Reconfigurable Logic. In Field Progammable
Logic , 1995.

[17] S McMillan and S Guiccione. Partial Runtime Reconfigura-
tion using JRTR. In Field programmable Logic (FPL 2000),
pages 352–360, 2000.

[18] A. Silberschatz and P. B. Galvin. Operating System Con-
cepts. John Wiley & Sons, Inc., New York, NY, USA, 1999.

[19] C. Steiger, H. Walder, and M. Platzner. Operating systems
for reconfigurable embedded platforms: Online schedul-
ing of real-time tasks. IEEE Transactions on Computers,
53(11):1393–1407, 2004.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00  © 2007


