

Hybrid-Timing FIFOs to use on
Networks-on-Chip in GALS Architectures

A. SHEIBANYRAD
The University of Pierre et Marie Curie (LIP6)

abbas.sheibanyrad@lip6.fr

A. GREINER
The University of Pierre et Marie Curie (LIP6)

alain.greiner@lip6.fr

Abstract. This paper presents three high-throughput low-latency
FIFOs that can be used as efficient and reliable interfaces
between different domains in hybrid-timing systems.
These three hardware components have been designed to
be used in a Globally Asynchronous Locally Synchronous
clusterized Multi-Processor System-on-Chip communicating by a
Multi-Synchronous or by a fully Asynchronous Network-on-Chip.
The proposed architectures are rather generic and allow the
system designer to make various trade-off between latency and
robustness, depending on selected synchronizer. These FIFOs
have been physically implemented with portable ALLIANCE
CMOS standard cell library and the architectures have been
evaluated by SPICE simulation for a 90nm CMOS fabrication
process.

1. Introduction
NoCs (Networks-on-Chip) is a new design paradigm for

scalable, high-throughput communication infrastructure, in
Multi-Processor Systems-on-Chip (MP-SoCs) with billions of
transistors. The idea of NoC is dividing a chip into several
independent subsystems (clusters) connected together by a global
communication architecture.

Because of physical issues in nanometer fabrication processes,
it is not anymore possible to distribute a synchronous clock signal
on the entire wide chip area. NoCs using Globally Asynchronous
Locally Synchronous (GALS) techniques address this difficulty.

Several solutions have been proposed to resolve the problems
of clock boundaries and the risk of synchronization failures
(metastability). Related solutions [1, 2, 3, 4, 5, 6, 7, 8, and 9] vary
according to the constraints that the clock signal must respect in
different clusters: mesochronous, plesiochronous, pseudochronous
(quasi-synchronous), and heterochronous approaches correspond
to various hypothesis regarding the phases and frequencies of
clocks signals. Table 1 summarizes these conditions.

Table 1. Timing Dependency Methods

Type Δ Frequency Δ Phase
Synchronous 0 0

Pseudochronous 0 Constant
Mesochronous 0 Undefined
Plesiochronous ε ε
Heterochronous Rational Undefined

Multi-synchronous Undefined Undefined
Asynchronous - -

In MP-SoC design, a fundamental challenge is the capability
of operating under totally independent timing assumptions. Such a
multi-synchronous system contains several synchronous
subsystems clocked with completely independent clocks. The
NoC architecture defines global asynchronous communication
infrastructure.

In section 2 we talk about two different NoC approaches to
comply with multi-synchronous constraint and we explain how in
such architectures we can instantiate some special FIFOs to
robustly interface hybrid-timing domains. The main purpose of

this article is to present architectures of three needed components:
synchronous-to-asynchronous, asynchronous-to-synchronous, and
bi-synchronous FIFOs.

We present Synchronous Asynchronous FIFOs in section 3.
The design of Bi-Synchronous FIFO is described in section 4.
And finally we explain hardware implementations in section 5.

2. NoCs and GALS Architectures
To simplify physical implementation, most of NoCs have a

two-dimensional mesh topology. Routers (switching modules) are
distributed in each subsystem, and are connected to north, south,
east, and west neighbors by means of bidirectional point-to-point
links. A generic subsystem is connected to NoC through a
Network Interface Controller (NIC) which translates local
interconnect communication protocol to network protocol.

Fig. 1. Multi-Synchronous System in 2D Mesh Topology

In a multi-synchronous system arranged into 2D mesh (Fig. 1a)
each router is a synchronous circuit. Router clock signal can be
local subsystem clock, or can be a dedicated (possibly faster)
mesochronous clock signal. The use of a fast dedicated clock
for routers reduces the network latency, but complicates
the design, as it creates another clock boundary between routers
and subsystems. The possibility of synchronization failure
(metastability) between two adjacent routers (or between routers
and subsystems if routers use a dedicated clock signal) is the main
problem of GALS architectures using multi-synchronous NoCs.

Fig. 2. Bi-synchronous FIFOs between two adjacent clusters

DSPIN [28] is an example of clusterized multi-synchronous
NoCs. DSPIN uses bi-synchronous FIFO as robust interfaces
between adjacent subsystems. The producer side and consumer

Multi-Synchronous
 NoC

N
IC

SS_FIFO

Local Interconnect

Local Interconnect

SS_FIFO IP0
IP1

IP2

IP0
IP1

IP2

CK´ CK´

R
outer

R
outer

N
IC

CK0

CK1

CK4
CK5 CK3

CK6 CK7 CK8

CK2 CK0
CK1

CK6

CK5
CK3

CK8 CK7

Asynchronous Circuit

CK4

CK2

(a) (b)

side of a bi-synchronous FIFO (SS_FIFOs in Fig. 2) use different
clock signals. In [4, 5, 10, and 11] several authors have proposed
different types of bi-synchronous FIFOs. This paper presents the
architecture of a new fast one.

Fig. 3. AtoS and StoA FIFOs as interface between NoC and clusters

We illustrate in Fig. 1b an alternative solution: The global
interconnect has a fully asynchronous architecture. This type of
NoCs realizes the GALS approach by providing synchronous
interfaces to each local subsystem. As an example we can denote
MANGO architecture presented in [26] which is one of the first
asynchronous NoC. MANGO’s designers have proposed in [27] an
OCP Compliant Network Adapter (NA) interfacing local
subsystems to NoC. The synchronization in NA has a minimized
overhead.

 To robustly interface an asynchronous network to
synchronous subsystems on a chip, as presented in Fig. 3, we can
use two special types of FIFO: Synchronous-to-Asynchronous
FIFO (SA_FIFO) and Asynchronous-to-Synchronous FIFO
(AS_FIFO). Using FIFOs to interface hybrid-timing domains
couples two fundamental issues which need to be considered in
designing such interface: flow control (high level issue) and clock
domain resynchronization (low level issue). This coupling reduces
the need of hardware synchronizer to the handshake signals that
are used for flow control.

The designs of some AS and SA FIFOs are presented in [10,
14, 15, 16, and 17]. We present here the architecture of new
Synchronous Asynchronous FIFOs which are currently used
by ASPIN micro-network presented in [29].

Some of published solutions for interfacing hybrid-timing
domains are strongly dependent on synchronizer choice. In [15
and 16] designs of various types of synchronizers using pausible

clocking methods ([12]) are proposed and in [17] the authors have
suggested to generate a stoppable clock for local systems.

In [14] a pipelined synchronizing FIFO is proposed. This FIFO
requires that the producer produces data at a constant rate. The
latency of this design is proportional to the number of FIFO stages
and requires using of a specific synchronizer.

In [10] various FIFOs are used to interface four possible
combinations of independent mixed-timing environments. These
four FIFOs have the same basic architecture with small
differences of simple adaptation to the consumer and the producer
interface type. There is at least two weak points in this proposal:
the architecture depends on a specific synchronizer (the cascaded
Flip-Flops), and use of a more conservative synchronizer (with
latency larger than one clock cycle), can decrease the throughput
to a value less than one data transfer per cycle. Furthermore, the
authors of [10] don’t talk about silicon area, but we believe that
architectures proposed in the present paper have a smaller
foot-print.

3. Synchronous Asynchronous FIFOs

The design of Synchronous Asynchronous FIFO must
satisfy two main requirements: minimizing the probability of
metastability, and maximizing the data transfer rate. In this
section we illustrate how these two aims are achieved.

3.1. Synchronizer: the Latency/Robustness Trade-Off
Transferring data between different timing domains requires

safe synchronization which is the main issue of GALS paradigm.
The aim of synchronization is to prevent metastability.

Some authors recommend stretching the clock signal
(modifying the cycle time). In these methods, instead of
synchronizing asynchronous inputs with the clock, the clock is
synchronized with asynchronous inputs. The synchronizer must be
able to detect that it will be in the metastable situation and it
stretches the clock cycle of the local system until the probability
of metastability is zero. For more than one asynchronous input,
the clock must be stretched until all synchronizers insure that the
metastable states won’t occur. Consequently, as it is said in [7 and
18], these solutions are not well suited for high speed designs with
IP cores having large clock buffer delays.

Some others suggested modifying the Flip-Flop design to
avoid propagation of metastable state values ([19]). Although the
output of such circuit has well defined values (VDD or VSS) and
undesirable values are prevented to propagate, this does not solve
the problem: the precise duration of the metastable state remains
unpredictable. The transition of Flip-Flop outputs is asynchronous
compared with the clock signal of next Flip-Flop....

Fig. 4. Synchronous Asynchronous FIFOs

NIC

A
S_

FI
FO

Local Interconnect

IP0 IP1 IP2

NIC

SA
_F

IF
O

Local Interconnect
IP0 IP1 IP2 CK´ CK´

Asynchronous
NoC

Router

SA
_F

IF
O

A
S_

FI
FO

Router

K Clock Cycles needed for Each

A
synchronous

S S Storage
Stage0

S Storage
StageN-1

Synchronous

N > K
REQ
ACK
DATA

ROK

Read

Synchronous

Storage
Stage0

Storage
StageN-1

A
synchronous

N > K

S
DATA

WOK

Write

DATA Read = 1

WOK ROK

Write = 1

CK CK′ SA_FIFO AS_FIFO

The metastability in multi-synchronous systems can not be
totally suppressed, but as it is explained in [21], the
synchronization failure probability (typically expressed in terms
of Mean Time Between Failures or MTBF) can be bounded to an
acceptable value by a carefully designed synchronizer ([22 and
23]). The simplest and safest solution is to use several cascaded
Flip-Flops. According to [21], with two cascaded Flip-Flops with
200 MHz clock frequency and 20 MHz input data rate, for the
0.18 μm technology MTBF can be estimated to about 10204 years.
For three consecutive Flip-Flops in the same condition, MTBF
will be 10420 years!

 Increasing synchronization delay is a penalty for obtaining
extra safety: When synchronization latency is not an issue, MTBF
can be improved by using conservative synchronizers. We believe
that the synchronizer choice must be a design decision depending
on the application requirements. The general architecture of our
FIFOs will support trade-off between latency and robustness.

3.2. General Architecture
Fig. 4 shows the general architecture of the two FIFOs

converting asynchronous Four-Phase Bundled-Data protocol to
synchronous FIFO protocol and vice versa. The Four-Phase
Bundled-Data asynchronous protocol is a sequence of REQ+,
ACK+, REQ-, and ACK- events, where REQ and ACK are the
asynchronous flow control signals. Data is valid when REQ is
positive. The high level of ACK indicates that the request of data
communication is accepted.

In synchronous FIFO protocol, the producer and the
consumer share the same clock signal. The protocol uses two
handshake signals: ROK (correspondingly WOK) and READ
(correspondingly WRITE). ROK signal (not empty) is set by the
producer at each cycle where there is a valid data to be
transferred. READ signal is set by the consumer at each cycle
where the consumer wants to consume a data on next clock edge.
Both ROK and READ signals are state signals generated by
Moore FSMs.

We call AS_FIFO, the asynchronous-to-synchronous FIFO,
and SA_FIFO, the synchronous-to-asynchronous FIFO. The task
of protocol converting is performed by storage stages of
FIFOs. Signals which have a risk of metastability (and must
use a synchronizer) are handshake signals transmitted from
asynchronous side to synchronous side.

As it is said in previous section, the synchronizer design is a
trade-off between robustness (i.e. low probability of metastability)
and latency (measured as a number of cycles of synchronous
domain). If synchronization cost is K clock cycles, for a
throughput of one data transfer per cycle, FIFO must have at least
K+1 stages. In such a pipelined design, the effect of
synchronization latency is different in the two FIFO types.

In asynchronous-to-synchronous FIFO (AS_FIFO), the
synchronizer latency is visible only when FIFO is empty. In
synchronous-to-asynchronous FIFO (SA_FIFO), it is visible when
FIFO is full. The latency between the arrival of data to an empty
AS_FIFO and its availability on output (typically named FIFO
Latency) is about K clock cycles. For a full SA_FIFO, the latency
between data consumption and informing the availability of an
empty stage on the other side is about K clock cycles. For a data
burst these latencies are just the initial latencies.

3.3. Detailed Architecture
Fig. 5a and 5c show the internal architecture of SA_FIFO and

AS_FIFO, with a depth of 2 storage stages. Clearly, these two
architectures can be generalized to an n-stage FIFO.

We present in Fig. 5b and 5d the FSMs of synchronous side
controllers. These controllers are Mealy Finite State Machines.
State Wi means that the next WRITE event will be done to stage i.
Similarly, state Ri indicates that data will be read in stage i at the
next READ event. Consequently, WOK and ROK signals depend

on both FSM state and asynchronous stage content (signals WOKi
or ROKi). A synchronous hazard free command is generated
(WRITEi or READi) when there is a synchronous request
(WRITE or READ signals) and the current asynchronous stage is
ready to accept. ROKi means that stage i is not empty and WOKi
means that stage i is not full. Positive edge of Writei indicates to
ith asynchronous stage of SA_FIFO that the synchronous data
must be written. Positive edge of Readi informs the ith
asynchronous stage of AS_FIFO that the stage must be freed, and
finally positive edge of wasReadi means that the synchronous
consumer has read data and the stage can change its value.

SA_Stage1

Fig. 5. SA_FIFO and AS_FIFO

As seen in Fig. 5b, Writei depends on Write, WOKi and Wi.
All these signals are synchronous and will be asserted on the
rising edge of the clock. But the Stage considers Writei as an
asynchronous signal and immediately on its rising edge input data
will be written. There may be a constraint: The value of data
should not stay unstable much after the activation of Write.
Although in a general synchronous circuit this constraint is not
illogic, to satisfy the conservator designers Writei can be equal to
Wi+1 (like wasReadi in Fig. 5d). With this modification the Stage
will be ordered to write on the rising edge of the clock; when data
is certainly stable. In this case for having a maximum throughput
of one data transfer per cycle, the minimum number of stages
should be K+2 where K is the synchronizer latency.

ROK = ROK0 . R0 + ROK1 . R1

Read0 = ROK0 . R0 . Read
Read1 = ROK1 . R1 . Read

wasRead0 = R1

wasRead1 = R0

WOK = WOK0 . W0 + WOK1 . W1

Write0 = WOK0 . W0 . Write
Write1 = WOK1 . W1 . Write

W0
Write . WOK0

Write . WOK1
 W1R0

Read . ROK0

Read . ROK1

 R1

(d) (b)

SA_Stage0

Data
Data

Clock

Write
WOK SA_FSM

Req
Ack

W
rite

0

W
rite

1

W
O

K
1

W
O

K
0

Domino
Controller

Synchronizer

Synchronizer

(a)

AS_Stage1

AS_Stage0

Data
Data

Clock

Read
ROK AS_FSM

R
ead

0

R
ead

1

R
O

K
1

R
O

K
0

Req
Ack

Domino
Controller

Synchronizer

Synchronizer w
asR

ead
0

w
asR

ead
1 (c)

Fig. 6. Asynchronous MUX, DEMUX, and Domino Controller

Asynchronous side of the design includes an asynchronous
multiplexer and an asynchronous controller in SA_FIFO. It
includes an asynchronous demultiplexer and an asynchronous
controller in AS_FIFO. The design of asynchronous multiplexer
and demultiplexer using four-phase bundled-data protocol ([13])
are respectively shown in Fig. 6a and Fig. 6b. These circuits need
to handshake with their controller module generating the Select
signals (Si). This handshaking brings out with the sequence of Si+,
Acki+, Si-, and Acki-. After Acki- indicating the end of current
four-phase sequence, controller can select another set to
multiplexing or demultiplexing.

The asynchronous controller used in AS_FIFO and SA_FIFO
is named Domino Controller. It is an asynchronous One-Hot
counter providing required handshake protocol for asynchronous
multiplexer and demultiplexer. For instance, the block diagram of
a 3-bit Domino Controller is illustrated in Fig. 6c. Each cell of i
has 2 outputs Si and Ai (ith bit of the counter) and 4 inputs Acki-1,
Acki, Acki+1, and Ai-1. The one bit is moved from cell to cell in a
ring topology. At the initial state, A2 and S0 are 1 and the other
outputs are 0. High value of S0 means that the first asynchronous
event will be performed in stage0.

The functionality of Domino Controller is explained by the
cell STG (Signal Transition Graph) demonstrated in Fig. 6d. The
circuit implementation of the STG is presented in Fig. 6e. Acki+
means Si+ is seen. So, the one bit that is in the previous cell (i-1)
can be transferred to current cell (i). The handshake protocol
continues by Si- when the one transferring is ended.

Fig. 7. Synchronous-to-Asynchronous Stage (SA_Stage)

As we said before, the pipelined stages in AS_FIFO and
SA_FIFO have two main functionalities: storing data and
converting communication protocol. As it is demonstrated in
Fig. 7b and Fig. 8b (the schematics of SA_FIFO and AS_FIFO
stage circuits) data storage is done by the latches sampling on
high value of WOKi and of L. The transition to 0 of WOKi means
that this stage contains valid data and no more writing is
permitted. So data sampling must be ended at this time. When the
value of L on the rising edge of wasReadi (showing that the
content of stage has been read) is changed to 1, a new data can be
written.

The operation of SA_FIFO and AS_FIFO storage stages are
analyzed as two STG in Fig. 7a and Fig. 8a. Dotted lines are the
asynchronous side transitions and dashed lines are that of the
synchronous side. According to the synchronous protocol base,
the synchronous side transitions should be considered on the
edges. Regarding to these two STG, on the rising edge of Writei,
Readi, and of wasReadi respectively, A, ROKi, and C must go to
the low position. In the circuits implementation three D Flip-Flops
which have a constant value of 0 as input data, generate A, ROKi,
and C. These Flip-Flops will asynchronously be set when their S
input (Set) signal is 1.

Fig. 8. Asynchronous-to-Synchronous Stage (AS_Stage)

The circuit implementation of AS_FIFO stage shown in
Fig. 8b has a time constraint: before the rising edge of Readi
where ROKi- must be done, the value of A should return to 0.
While A (as a set signal of Flip-Flop) has high value, ROKi (as an
output signal of Flip-Flop) is hold at 1. The transition of ROKi+
causes Readi to rise. Regarding to AS_FIFO architecture (Fig. 5)
the time between ROKi+ and the rising edge of Readi (T2) is more
than K clock cycles where K is the synchronizer latency. In the
other side, A- happens after Acki+ occurring simultaneous with
ROKi+, by propagation delay of two gates (T1). Evidently a
two-gate propagation delay is less than the latency of a robust
synchronizer. The latency of a two cascaded Flip-Flops is one

Writei ↑

A -
WOKi -

Reqi +

Acki +

WOKi +

Reqi -

Acki -

A +

(a) CC

--

--
CC
++

SS 00
Writei

Reqi
Acki

WOKiA

LL
Asynchronous

Data Synchronous
Data

(b)

CC
CC

Si

Data

Req

Ack

(a)

CC
Datai Data

ReqReqi

AckAcki

Si (b)

(c)
A

S0 ck1 Ack2Ack0
S1 S2

A1 A2A0 Acki +
Ai +

Si -
Acki -

Ai-1 -

Si +

(d)
(e)

SiCC

++

--
RR
SS Ai

Ai-1
Acki-1

Acki Acki+1

A + x

CC

SS 00

LL

Readi

Reqi

Acki

ROKi

A

Synchronous
Data

B --
CC

++ --

CC
++

00 SS

wasReadi

L C
--

CC
++

Asynchronous
Data

(b)

ROKi + x

B +

A - X

Readi ↑ ROKi - x

Reqi -

Acki -

Acki + x

B - X

T1
T2

T2 > T1

Reqi +

L +
C -

C + x wasReadi ↑

L -

(a)

clock cycle. But really it is true that if a designer uses a
miraculous synchronizer (!) which has very low latency (less than
two-gate propagation delays), this time constraint might express a
bother of functionality for the design.

3.4. Improved Architecture of AS_FIFO
As said, the architecture of AS_FIFO presented in the previous

subsection has a time constraints. To resolve this restriction, we
propose a new STG of AS_Stage shown in Fig. 9a. The circuit
implementation, demonstrated in Fig. 9b, is simpler than the
previous design.

In this design, the stage will be informed to be freed at the
moment it is authorized to accept a new content. Readi is removed
and on the rising edge of wasReadi the ith stage will be freed
(ROKi goes to Low) and a new data is permitted to be written (L
goes to High) to the latches of the stage.

Fig. 9. Improved AS_Stage

Since the stage will be freed after the rising edge of the clock,
and not like the previous proposed architecture before the rising
edge where data will be read by synchronous side, we need one
more clock cycle to perform a read event to the stage.
Consequently in order to have maximum throughput of one data
transferring per cycle, this new AS_FIFO must have at least K+2
stages; One stage more than the previous architecture.

4. Bi-Synchronous FIFO
In the case of two hybrid clocked domains a bi-synchronous

FIFO could be used as interface between these two regions. In
Fig. 10 the architecture of a Bi-Synchronous FIFO is presented.
The FIFO is called SS_FIFO.

The design is based on the architecture principles of SA_FIFO
and AS_FIFO. It can be imagined that SS_FIFO is a SA_FIFO
and an AS_FIFO which are merged together: The asynchronous
sides of SA_FIFO and AS_FIFO (asynchronous multiplexer,
demultiplexer, and Domino controllers) are removed and these
two FIFOs are connected together stage by stage.

In fact each storage stage of SS_FIFO is composed of one
SA_Stage and one AS_Stage. So each SS_FIFO storage stage is
able to store two data words. This feature reduces the need of
synchronizer. In reality for each two storage place (each stage) we
need one synchronizer on the producer side and one synchronizer
on the consumer side. The synchronizer need is divided by two.

Fig. 10. Bi-Synchronous FIFO (SS_FIFO)

In addition, the complexity of the two FSMs and the output
multiplexer is reduced. For an n-place FIFO instead of n states we
need n/2 states, for each of two FSMs of SA_FSM and AS_FSM.
And in place of an n-to-1 multiplexer we need an n/2-to-1. As a
result, the silicon area of an n-place SS_FIFO is much smaller
than an n-place AS_FIFO or SA_FIFO. The cost is a little
increase in the FIFO latency, as data must pass through two stages
to be appeared on the output port.

5. Implementation
We developed a generic FIFO generator, using Stratus

hardware description language of Coriolis platform ([25]). This
generator creates both a netlist of standard cells and a physical
layout. The two parameters are depth of FIFO (FIFO’s places) and
number of data bits.

In this implementation the synchronizer uses two cascaded
Flip-Flops and its latency is one clock cycle. In order to reach the
maximum throughput of one data transfer per cycle, 2-Stage
AS_FIFO and 2-Stage SA_FIFO use the constrained architectures.

Table 2. Simulation Results

FIFO Surface Min Latency Max Latency Max Throughput
2-Place SA_FIFO 1422 μm2 177 pS 2.39 GEvents/S
3-Place SA_FIFO 2054 μm2 207 pS 2.36 GEvents/S
8-Place SA_FIFO 5215 μm2 219 pS 2.22 GEvents/S
2-Place AS_FIFO 1452 μm2 271 pS + T 271 pS + 2T 1.50 GEvents/S
3-Place AS_FIFO 2011 μm2 247 pS + T 247 pS + 2T 2.61 GEvents/S
8-Place AS_FIFO 5107 μm2 263 pS + T 263 pS + 2T 2.89 GEvents/S
6-Place SS_FIFO 2940 μm2 362 pS + T 362 pS + 2T 2.61 GEvents/S
8-Place SS_FIFO 3869 μm2 366 pS + T 366 pS + 2T 4.60 GEvents/S

CC
LL

wasReadi

Reqi Acki

ROKi A

Asynchronous Data Synchronous Data

L

CC
++

00 SS

--
CC
++

(b)

ROKi + x

A + x

L + A - X

wasReadi ↑

ROKi - x

Reqi -
Acki -

Acki + x
L - X

Reqi +

(a)

Clock

Data

Clock

SA_Stage1

SA_Stage0

SA_FSM

W
rite

0

W
rite

1

W
O

K
1

W
O

K
0

Synchronizer

Synchronizer

SA_Stage2

W
O

K
2

Synchronizer W
rite

2

AS_Stage2

AS_Stage1

AS_Stage0

w
asR

ead
0

w
asR

ead
1

R
O

K
1

R
O

K
0

Synchronizer

Synchronizer

R
O

K
2

Synchronizer

Data

w
asR

ead
2

Read
WOK
Write AS_FSM

ROK

2-
Pl

ac
e

A
S_

FI
FO

3-
Pl

ac
e

A
S_

FI
FO

8-
Pl

ac
e

A
S_

FI
FO

2-
Pl

ac
e

SA
_F

IF
O

3-
Pl

ac
e

SA
_F

IF
O

8-
Pl

ac
e

SA
_F

IF
O

6-
Pl

ac
e

SS
_F

IF
O

8-
Pl

ac
e

SS
_F

IF
O

Fig. 11. Physical Layouts

As a standard cell library, we used portable ALLIANCE CMOS
standard cell library ([24]). The physical layouts of some 32-bit
FIFOs are presented in Fig. 11. The silicon areas of these
examples are represented in Table 2. These values are normalized
to GPLVT ST-Microelectronic library surfaces in 90 nm
fabrication process.

From the physical layout, we extracted SPICE models of the
FIFOs, using ALLIANCE CAD Tools ([20]). The target
fabrication process is the ST-Microelectronics 90 nm GPLVT
transistors in typical conditions. Electrical simulation under Eldo
proved that the aim of getting to the maximum throughput of one
event (data transfer) per cycle is attained, and these low-area
high-throughput FIFOs have low initial latencies.

 6
Due to relation between the asynchronous event entrance time

and the consumer clock phase, AS_FIFO has various latencies
with a difference of about one clock cycle. Caused by skew
relation between the consumer and the producer clocks, SS_FIFO
has different latencies too. The simulation results are presented in
Table 2. In this Table, T is the consumer clock cycle time.

The SA_FIFO throughput value is related to asynchronous
handshake protocol. The throughput of AS_FIFOs with more than
3 stages is limited on asynchronous side components too. But in
the case of 2-Place (2-Stage) and 3-Place AS_FIFO there are the
other constraints: regarding to Fig. 8 in 2-Place AS_FIFO, Acki+
and Reqi+1+ must be happened in the same clock cycle if
maximum throughput of one data word transferring per cycle is
required. Fig. 9 shows that the throughput of one event per cycle
for 3-Place AS_FIFO is attained if ROKi- and ROKi+ are
occurred in the same clock. This constraint should also be
respected in 6-Place (3-Stage) SS_FIFO.

Due to the inability of 2-Place AS_FIFO to reach the
maximum throughput (comparing 1.5 GEvents/Sec with 2.61 of
3-Place AS_FIFO), in order to sustain the throughput, one could
opt for 3-Place AS_FIFO. Its area (2011 μm2) is not negligible,
but it should not be forgotten that these components in addition of
robustly interfacing have another advantage: providing a storage
place with a FIFO behavior. As we know, in order to obtain
minimum overhead of data communication between two different
timing domains, having a FIFO in the interface is not eliminable.

So, we suppose that using a FIFO with the storage place of more
than three may also be reasonable!

Finally, as a quick comparison, the minimum latency of a
Mixed-Clock FIFO presented in [10] is 0.5 TP + 2.5 TC and its
maximum value is 0.5 TP + 3 TC where TP is the producer clock
cycle time and TC is that of the consumer. The max throughput of
an 8-bit 4-place Mixed-Clock FIFO is 549 MHz. This evaluation
has been given for 0.6 µm HP CMOS technology. The same
evaluations for Async-Async, Async-Sync, and Sync-Async
FIFOs are respectively 423, 421, and 454.

. Conclusion
Three new FIFO architectures for interfacing asynchronous

NoCs and synchronous subsystems or two adjacent
multi-synchronous routers, in MP-SoCs have been presented. The
synchronizer used in the architectures can be arbitrarily chosen by
the system designer, supporting various trade-off between latency
and robustness. The FIFOs can achieve the maximal throughput of
one word per cycle, even if the selected synchronizer has a large
latency. The designs have been physically implemented with
portable ALLIANCE CMOS standard cell library. The throughputs
and latencies have been proved by SPICE simulation from the
extracted layout.

References
[1] Nilsson E., Öberg J., “Reducing power and latency in 2-D

mesh NoCs using globally pseudochronous locally
synchronous clocking,” 2nd IEEE/ACM/IFIP international
Conference on Hardware/Software Codesign and System
Synthesis (Stockholm, Sweden, September 08 - 10, 2004)

[2] L.R. Dennison, W.J. Dally, D. Xanthopoulos, “Low-latency
plesiochronous data retiming,” arvlsi, p. 304, 16th
Conference on Advanced Research in VLSI
(ARVLSI'95), 1995

[3] W.K. Stewart, S.A. Ward, “A Solution to a Special Case of
the Synchronization Problem,” IEEE Transactions on
Computers, vol. 37, no. 1, pp. 123-125, Jan., 1988

[4] Ajanta Chakraborty, Mark R. Greenstreet, “Efficient Self-
Timed Interfaces for Crossing Clock Domains,” async, p.
78, 9th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC'03), 2003

[5] Yaron Semiat, Ran Ginosar, “Timing Measurements of
Synchronization Circuits” async, p. 68, 9th IEEE
International Symposium on Asynchronous Circuits and
Systems (ASYNC'03), 2003

[6] Ran Ginosar, Rakefet Kol, “adaptive Synchronization,”
iccd, p. 188, IEEE International Conference on Computer
Design (ICCD'98), 1998

[7] Joycee Mekie, Supratik Chakraborty, D.K. Sharma, Girish
Venkataramani, P. S. Thiagarajan, “Interface Design for
Rationally Clocked GALS Systems,” async, pp. 160-171,
12th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC'06), 2006

[8] U. Frank, R. Ginosar, “A Predictive Synchronizer for
Periodic Clock Domains,” PATMOS 2004

[9] L.F.G. Sarmenta, G.A. Pratt, S.A. Ward, “Rational clocking
[digital systems design],” iccd, p. 271, IEEE International
Conference on Computer Design (ICCD'95), 1995

[10] T. Chelcea, S. M. Nowick, “Robust Interfaces for Mixed-
Timing Systems,” IEEE Trans. on Very Large Scale Integr.
Syst. vol. 12, issue 8, pp. 857-873, Aug, 2004

[11] J. Jex, C. Dike, K. Self, “Fully asynchronous interface with
programmable metastability settling time synchronizer,” US
Patent 5 598 113, 1997

[12] Kenneth Y. Yun, Ryan P. Donohue, “Pausible Clocking: A
First Step Toward Heterogeneous Systems,” iccd, p. 118,
IEEE International Conference on Computer Design
(ICCD'96), 1996

[13] Jens Sparsoe, Steve Furber, “Principles of Asynchronous
Circuit Design – A Systems Perspective,” Kluwer Academic
Publishers, 2001

[14] Jakov N. Seizovic., “Pipeline synchronization,”
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 87--96,
November 1994

[15] Simon Moore, George Taylor, Peter Robinson, Robert
Mullins, “Point to Point GALS Interconnect,” async,
p.69, 8th International Symposium on Asynchronous
Circuits and Systems (ASYNC'02), 2002

[16] David S. Bormann, Peter Y. K. Cheung, “Asynchronous
Wrapper for Heterogeneous Systems,” iccd, p. 307, IEEE

International Conference on Computer Design (ICCD'97),
1997

[17] E. Sjogren, C. J. Myers, “Interfacing Synchronous and
Asynchronous Modules Within a High-Speed Pipeline,”
arvlsi, p.47, 17th Conference on Advanced Research in
VLSI (ARVLSI '97), 1997

[18] Rostislav (Reuven) Dobkin, Ran Ginosar, Christos P.
Sotiriou, “Data Synchronization Issues in GALS SoCs,”
async, pp. 170-180, 10th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC'04), 2004

[19] S. Ghahremani, “Metastable Protected Latch,” US Patent 6
072346, 2000

[20] Greiner A., F. Pêcheux, ”ALLIANCE. A Complete Set of
CAD Tools for Teaching VLSI Design,” 3rd Eurochip
Workshop on VLSI Design Training, pp. 230-37, Grenoble,
France, 1992

[21] Ran Ginosar, “Fourteen Ways to Fool Your Synchronizer,”
async, p. 89, 9th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC'03), 2003

[22] C. Dike, e. Burton, “Miller and Noise Effects in A
synchronizing flip-flop,” IEEE J. Solid-state circuits, 34(6),
pp. 849-855, 1999

[23] D.J. Kinniment, A. Bystrov, A.V. Yakovlev,
“Synchronization Circuit Performance,“ IEEE Journal of
Solid-State Circuits, 37(2), p. 202-209, 2002

[24] http://www-asim.lip6.fr/recherche/alliance/
[25] http://www-asim.lip6.fr/recherche/coriolis/
[26] Tobias Bjerregaard, Jens Sparsø, “A Router Architecture for

Connection-Oriented Service Guarantees in the MANGO
Clockless Network-on-Chip,” Proceedings of the Design,
Automation and Test in Europe Conference, IEEE, March
2005

[27] Tobias Bjerregaard, Shankar Mahadevan, Rasmus Olsen,
Jens Sparsø, “An OCP Compliant Network Adapter for
GALS-based SoC Design Using the MANGO Network-on-
Chip,” Proceedings of the International Symposium on
System-on-Chip, IEEE, November 2005

[28] I. Miro Panades, A. Greiner, A. Sheibanyrad, “A Low Cost
Network-on-Chip with Guaranteed Service Well Suited to
the GALS Approach”, Nano-Net 2006

[29] A. Sheibanyrad, I. Moro Panades, A. Greiner, “Systematic
Comparison between the Asynchronous and the Multi-
Synchronous Implementations of a Network on Chip
Architecture”, DATE 2007

