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Abstract. This paper presents three high-throughput low-latency 
FIFOs that can be used as efficient and reliable interfaces 
between different domains in hybrid-timing systems.      
These three hardware components have been designed to            
be used in a Globally Asynchronous Locally Synchronous      
clusterized Multi-Processor System-on-Chip communicating by a      
Multi-Synchronous or by a fully Asynchronous Network-on-Chip. 
The proposed architectures are rather generic and allow the 
system designer to make various trade-off between latency and 
robustness, depending on selected synchronizer. These FIFOs 
have been physically implemented with portable ALLIANCE 
CMOS standard cell library and the architectures have been 
evaluated by SPICE simulation for a 90nm CMOS fabrication 
process. 

        

    
     

1. Introduction 
NoCs (Networks-on-Chip) is a new design paradigm for 

scalable, high-throughput communication infrastructure, in   
Multi-Processor Systems-on-Chip (MP-SoCs) with billions of 
transistors. The idea of NoC is dividing a chip into several 
independent subsystems (clusters) connected together by a global 
communication architecture.  

Because of physical issues in nanometer fabrication processes, 
it is not anymore possible to distribute a synchronous clock signal 
on the entire wide chip area. NoCs using Globally Asynchronous 
Locally Synchronous (GALS) techniques address this difficulty. 

Several solutions have been proposed to resolve the problems 
of clock boundaries and the risk of synchronization failures 
(metastability). Related solutions [1, 2, 3, 4, 5, 6, 7, 8, and 9] vary 
according to the constraints that the clock signal must respect in 
different clusters: mesochronous, plesiochronous, pseudochronous 
(quasi-synchronous), and heterochronous approaches correspond 
to various hypothesis regarding the phases and frequencies of 
clocks signals. Table 1 summarizes these conditions.  

Table 1. Timing Dependency Methods 

Type Δ Frequency Δ  Phase 
Synchronous 0 0 

Pseudochronous 0 Constant 
Mesochronous 0 Undefined 
Plesiochronous ε ε 
Heterochronous Rational Undefined 

Multi-synchronous Undefined Undefined 
Asynchronous - - 

In MP-SoC design, a fundamental challenge is the capability 
of operating under totally independent timing assumptions. Such a 
multi-synchronous system contains several synchronous 
subsystems clocked with completely independent clocks. The 
NoC architecture defines global asynchronous communication 
infrastructure. 

In section 2 we talk about two different NoC approaches to 
comply with multi-synchronous constraint and we explain how in 
such architectures we can instantiate some special FIFOs to 
robustly interface hybrid-timing domains. The main purpose of 

this article is to present architectures of three needed components: 
synchronous-to-asynchronous, asynchronous-to-synchronous, and 
bi-synchronous FIFOs. 

We present Synchronous  Asynchronous FIFOs in section 3. 
The design of Bi-Synchronous FIFO is described in section 4. 
And finally we explain hardware implementations in section 5. 

2. NoCs and GALS Architectures 
To simplify physical implementation, most of NoCs have a 

two-dimensional mesh topology. Routers (switching modules) are 
distributed in each subsystem, and are connected to north, south, 
east, and west neighbors by means of bidirectional point-to-point 
links. A generic subsystem is connected to NoC through a 
Network Interface Controller (NIC) which translates local 
interconnect communication protocol to network protocol. 

 
Fig. 1. Multi-Synchronous System in 2D Mesh Topology 

In a multi-synchronous system arranged into 2D mesh (Fig. 1a) 
each router is a synchronous circuit. Router clock signal can be 
local subsystem clock, or can be a dedicated (possibly faster) 
mesochronous clock signal. The use of a fast dedicated clock     
for routers reduces the network latency, but complicates                  
the design, as it creates another clock boundary between routers 
and subsystems. The possibility of synchronization failure 
(metastability) between two adjacent routers (or between routers 
and subsystems if routers use a dedicated clock signal) is the main 
problem of GALS architectures using multi-synchronous NoCs. 

 
Fig. 2. Bi-synchronous FIFOs between two adjacent clusters 

DSPIN [28] is an example of clusterized multi-synchronous 
NoCs. DSPIN uses bi-synchronous FIFO as robust interfaces 
between adjacent subsystems. The producer side and consumer 
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side of a bi-synchronous FIFO (SS_FIFOs in Fig. 2) use different 
clock signals. In [4, 5, 10, and 11] several authors have proposed 
different types of bi-synchronous FIFOs. This paper presents the 
architecture of a new fast one. 

 
Fig. 3. AtoS and StoA FIFOs as interface between NoC and clusters 

We illustrate in Fig. 1b an alternative solution: The global 
interconnect has a fully asynchronous architecture. This type of 
NoCs realizes the GALS approach by providing synchronous 
interfaces to each local subsystem. As an example we can denote 
MANGO architecture presented in [26] which is one of the first 
asynchronous NoC. MANGO’s designers have proposed in [27] an 
OCP Compliant Network Adapter (NA) interfacing local 
subsystems to NoC. The synchronization in NA has a minimized 
overhead.  

 To robustly interface an asynchronous network to 
synchronous subsystems on a chip, as presented in Fig. 3, we can 
use two special types of FIFO: Synchronous-to-Asynchronous 
FIFO (SA_FIFO) and Asynchronous-to-Synchronous FIFO 
(AS_FIFO). Using FIFOs to interface hybrid-timing domains 
couples two fundamental issues which need to be considered in 
designing such interface: flow control (high level issue) and clock 
domain resynchronization (low level issue). This coupling reduces 
the need of hardware synchronizer to the handshake signals that 
are used for flow control.  

The designs of some AS and SA FIFOs are presented in [10, 
14, 15, 16, and 17]. We present here the architecture of new 
Synchronous  Asynchronous FIFOs which are currently used 
by ASPIN micro-network presented in [29]. 

Some of published solutions for interfacing hybrid-timing 
domains are strongly dependent on synchronizer choice. In [15 
and 16] designs of various types of synchronizers using pausible 

clocking methods ([12]) are proposed and in [17] the authors have 
suggested to generate a stoppable clock for local systems.  

In [14] a pipelined synchronizing FIFO is proposed. This FIFO 
requires that the producer produces data at a constant rate. The 
latency of this design is proportional to the number of FIFO stages 
and requires using of a specific synchronizer. 

In [10] various FIFOs are used to interface four possible 
combinations of independent mixed-timing environments. These 
four FIFOs have the same basic architecture with small 
differences of simple adaptation to the consumer and the producer 
interface type. There is at least two weak points in this proposal: 
the architecture depends on a specific synchronizer (the cascaded 
Flip-Flops), and use of a more conservative synchronizer (with 
latency larger than one clock cycle), can decrease the throughput 
to a value less than one data transfer per cycle. Furthermore, the 
authors of [10] don’t talk about silicon area, but we believe that 
architectures proposed in the present paper have a smaller         
foot-print. 

3. Synchronous  Asynchronous FIFOs 

The design of Synchronous  Asynchronous FIFO must 
satisfy two main requirements: minimizing the probability of 
metastability, and maximizing the data transfer rate. In this 
section we illustrate how these two aims are achieved. 

3.1. Synchronizer: the Latency/Robustness Trade-Off 
Transferring data between different timing domains requires 

safe synchronization which is the main issue of GALS paradigm. 
The aim of synchronization is to prevent metastability.  

Some authors recommend stretching the clock signal 
(modifying the cycle time). In these methods, instead of 
synchronizing asynchronous inputs with the clock, the clock is 
synchronized with asynchronous inputs. The synchronizer must be 
able to detect that it will be in the metastable situation and it 
stretches the clock cycle of the local system until the probability 
of metastability is zero. For more than one asynchronous input, 
the clock must be stretched until all synchronizers insure that the 
metastable states won’t occur. Consequently, as it is said in [7 and 
18], these solutions are not well suited for high speed designs with 
IP cores having large clock buffer delays. 

Some others suggested modifying the Flip-Flop design to 
avoid propagation of metastable state values ([19]). Although the 
output of such circuit has well defined values (VDD or VSS) and 
undesirable values are prevented to propagate, this does not solve 
the problem: the precise duration of the metastable state remains 
unpredictable. The transition of Flip-Flop outputs is asynchronous 
compared with the clock signal of next Flip-Flop.... 

 

 
Fig. 4. Synchronous  Asynchronous FIFOs 
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The metastability in multi-synchronous systems can not be 
totally suppressed, but as it is explained in [21], the 
synchronization failure probability (typically expressed in terms 
of Mean Time Between Failures or MTBF) can be bounded to an 
acceptable value by a carefully designed synchronizer ([22 and 
23]). The simplest and safest solution is to use several cascaded 
Flip-Flops. According to [21], with two cascaded Flip-Flops with 
200 MHz clock frequency and 20 MHz input data rate, for the 
0.18 μm technology MTBF can be estimated to about 10204 years. 
For three consecutive Flip-Flops in the same condition, MTBF 
will be 10420 years! 

 Increasing synchronization delay is a penalty for obtaining 
extra safety: When synchronization latency is not an issue, MTBF 
can be improved by using conservative synchronizers. We believe 
that the synchronizer choice must be a design decision depending 
on the application requirements. The general architecture of our 
FIFOs will support trade-off between latency and robustness. 

3.2. General Architecture 
Fig. 4 shows the general architecture of the two FIFOs 

converting asynchronous Four-Phase Bundled-Data protocol to 
synchronous FIFO protocol and vice versa. The Four-Phase 
Bundled-Data asynchronous protocol is a sequence of REQ+, 
ACK+, REQ-, and ACK- events, where REQ and ACK are the 
asynchronous flow control signals. Data is valid when REQ is 
positive. The high level of ACK indicates that the request of data 
communication is accepted.  

In synchronous FIFO protocol, the producer and the   
consumer share the same clock signal. The protocol uses two         
handshake signals: ROK (correspondingly WOK) and READ 
(correspondingly WRITE). ROK signal (not empty) is set by the 
producer at each cycle where there is a valid data to be 
transferred. READ signal is set by the consumer at each cycle 
where the consumer wants to consume a data on next clock edge. 
Both ROK and READ signals are state signals generated by 
Moore FSMs. 

We call AS_FIFO, the asynchronous-to-synchronous FIFO, 
and SA_FIFO, the synchronous-to-asynchronous FIFO. The task 
of protocol converting is performed by storage stages of      
FIFOs. Signals which have a risk of metastability (and must                  
use a synchronizer) are handshake signals transmitted from 
asynchronous side to synchronous side.  

As it is said in previous section, the synchronizer design is a 
trade-off between robustness (i.e. low probability of metastability) 
and latency (measured as a number of cycles of synchronous 
domain). If synchronization cost is K clock cycles, for a 
throughput of one data transfer per cycle, FIFO must have at least 
K+1 stages. In such a pipelined design, the effect of 
synchronization latency is different in the two FIFO types.  

In asynchronous-to-synchronous FIFO (AS_FIFO), the 
synchronizer latency is visible only when FIFO is empty. In 
synchronous-to-asynchronous FIFO (SA_FIFO), it is visible when 
FIFO is full. The latency between the arrival of data to an empty 
AS_FIFO and its availability on output (typically named FIFO 
Latency) is about K clock cycles. For a full SA_FIFO, the latency 
between data consumption and informing the availability of an 
empty stage on the other side is about K clock cycles. For a data 
burst these latencies are just the initial latencies. 

3.3. Detailed Architecture 
Fig. 5a and 5c show the internal architecture of SA_FIFO and 

AS_FIFO, with a depth of 2 storage stages. Clearly, these two 
architectures can be generalized to an n-stage FIFO.  

We present in Fig. 5b and 5d the FSMs of synchronous side 
controllers. These controllers are Mealy Finite State Machines. 
State Wi means that the next WRITE event will be done to stage i. 
Similarly, state Ri indicates that data will be read in stage i at the 
next READ event. Consequently, WOK and ROK signals depend 

on both FSM state and asynchronous stage content (signals WOKi 
or ROKi). A synchronous hazard free command is generated 
(WRITEi or READi) when there is a synchronous request 
(WRITE or READ signals) and the current asynchronous stage is 
ready to accept. ROKi means that stage i is not empty and WOKi 
means that stage i is not full. Positive edge of Writei indicates to 
ith asynchronous stage of SA_FIFO that the synchronous data 
must be written. Positive edge of Readi informs the ith 
asynchronous stage of AS_FIFO that the stage must be freed, and 
finally positive edge of wasReadi means that the synchronous 
consumer has read data and the stage can change its value. 

SA_Stage1 

 

 

 

Fig. 5. SA_FIFO and AS_FIFO 

As seen in Fig. 5b, Writei depends on Write, WOKi and Wi. 
All these signals are synchronous and will be asserted on the 
rising edge of the clock. But the Stage considers Writei as an 
asynchronous signal and immediately on its rising edge input data 
will be written. There may be a constraint: The value of data 
should not stay unstable much after the activation of Write. 
Although in a general synchronous circuit this constraint is not 
illogic, to satisfy the conservator designers Writei can be equal to 
Wi+1 (like wasReadi in Fig. 5d). With this modification the Stage 
will be ordered to write on the rising edge of the clock; when data 
is certainly stable. In this case for having a maximum throughput 
of one data transfer per cycle, the minimum number of stages 
should be K+2 where K is the synchronizer latency. 
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Fig. 6. Asynchronous MUX, DEMUX, and Domino Controller 

Asynchronous side of the design includes an asynchronous 
multiplexer and an asynchronous controller in SA_FIFO. It 
includes an asynchronous demultiplexer and an asynchronous 
controller in AS_FIFO. The design of asynchronous multiplexer 
and demultiplexer using four-phase bundled-data protocol ([13]) 
are respectively shown in Fig. 6a and Fig. 6b. These circuits need 
to handshake with their controller module generating the Select 
signals (Si). This handshaking brings out with the sequence of Si+, 
Acki+, Si-, and Acki-. After Acki- indicating the end of current       
four-phase sequence, controller can select another set to 
multiplexing or demultiplexing. 

The asynchronous controller used in AS_FIFO and SA_FIFO 
is named Domino Controller. It is an asynchronous One-Hot 
counter providing required handshake protocol for asynchronous 
multiplexer and demultiplexer. For instance, the block diagram of 
a 3-bit Domino Controller is illustrated in Fig. 6c. Each cell of i 
has 2 outputs Si and Ai (ith bit of the counter) and 4 inputs Acki-1, 
Acki, Acki+1, and Ai-1. The one bit is moved from cell to cell in a 
ring topology. At the initial state, A2 and S0 are 1 and the other 
outputs are 0. High value of S0 means that the first asynchronous 
event will be performed in stage0.  

The functionality of Domino Controller is explained by the 
cell STG (Signal Transition Graph) demonstrated in Fig. 6d. The 
circuit implementation of the STG is presented in Fig. 6e. Acki+ 
means Si+ is seen. So, the one bit that is in the previous cell (i-1) 
can be transferred to current cell (i). The handshake protocol 
continues by Si- when the one transferring is ended. 

 
Fig. 7. Synchronous-to-Asynchronous Stage (SA_Stage) 

 

As we said before, the pipelined stages in AS_FIFO and 
SA_FIFO have two main functionalities: storing data and 
converting communication protocol. As it is demonstrated in     
Fig. 7b and Fig. 8b (the schematics of SA_FIFO and AS_FIFO 
stage circuits) data storage is done by the latches sampling on 
high value of WOKi and of L. The transition to 0 of WOKi means 
that this stage contains valid data and no more writing is 
permitted. So data sampling must be ended at this time. When the 
value of L on the rising edge of wasReadi (showing that the 
content of stage has been read) is changed to 1, a new data can be 
written. 

The operation of SA_FIFO and AS_FIFO storage stages are 
analyzed as two STG in Fig. 7a and Fig. 8a. Dotted lines are the 
asynchronous side transitions and dashed lines are that of the 
synchronous side. According to the synchronous protocol base, 
the synchronous side transitions should be considered on the 
edges. Regarding to these two STG, on the rising edge of Writei, 
Readi, and of wasReadi respectively, A, ROKi, and C must go to 
the low position. In the circuits implementation three D Flip-Flops 
which have a constant value of 0 as input data, generate A, ROKi, 
and C. These Flip-Flops will asynchronously be set when their S 
input (Set) signal is 1. 

 

Fig. 8. Asynchronous-to-Synchronous Stage (AS_Stage) 

The circuit implementation of AS_FIFO stage shown in      
Fig. 8b has a time constraint: before the rising edge of Readi 
where ROKi- must be done, the value of A should return to 0. 
While A (as a set signal of Flip-Flop) has high value, ROKi (as an 
output signal of Flip-Flop) is hold at 1. The transition of ROKi+ 
causes Readi to rise. Regarding to AS_FIFO architecture (Fig. 5) 
the time between ROKi+ and the rising edge of Readi (T2) is more 
than K clock cycles where K is the synchronizer latency. In the 
other side, A- happens after Acki+ occurring simultaneous with 
ROKi+, by propagation delay of two gates (T1). Evidently a     
two-gate propagation delay is less than the latency of a robust 
synchronizer. The latency of a two cascaded Flip-Flops is one 
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clock cycle. But really it is true that if a designer uses a 
miraculous synchronizer (!) which has very low latency (less than 
two-gate propagation delays), this time constraint might express a 
bother of functionality for the design. 

3.4. Improved Architecture of AS_FIFO 
As said, the architecture of AS_FIFO presented in the previous 

subsection has a time constraints. To resolve this restriction, we 
propose a new STG of AS_Stage shown in Fig. 9a. The circuit 
implementation, demonstrated in Fig. 9b, is simpler than the 
previous design.  

In this design, the stage will be informed to be freed at the 
moment it is authorized to accept a new content. Readi is removed 
and on the rising edge of wasReadi the ith stage will be freed 
(ROKi goes to Low) and a new data is permitted to be written (L 
goes to High) to the latches of the stage. 

 

Fig. 9. Improved AS_Stage 

Since the stage will be freed after the rising edge of the clock, 
and not like the previous proposed architecture before the rising 
edge where data will be read by synchronous side, we need one 
more clock cycle to perform a read event to the stage. 
Consequently in order to have maximum throughput of one data 
transferring per cycle, this new AS_FIFO must have at least K+2 
stages; One stage more than the previous architecture. 

4. Bi-Synchronous FIFO 
In the case of two hybrid clocked domains a bi-synchronous 

FIFO could be used as interface between these two regions. In 
Fig. 10 the architecture of a Bi-Synchronous FIFO is presented. 
The FIFO is called SS_FIFO.  

The design is based on the architecture principles of SA_FIFO 
and AS_FIFO. It can be imagined that SS_FIFO is a SA_FIFO 
and an AS_FIFO which are merged together: The asynchronous 
sides of SA_FIFO and AS_FIFO (asynchronous multiplexer, 
demultiplexer, and Domino controllers) are removed and these 
two FIFOs are connected together stage by stage. 

In fact each storage stage of SS_FIFO is composed of one 
SA_Stage and one AS_Stage. So each SS_FIFO storage stage is 
able to store two data words. This feature reduces the need of 
synchronizer. In reality for each two storage place (each stage) we 
need one synchronizer on the producer side and one synchronizer 
on the consumer side. The synchronizer need is divided by two. 

 
Fig. 10. Bi-Synchronous FIFO (SS_FIFO) 

In addition, the complexity of the two FSMs and the output 
multiplexer is reduced. For an n-place FIFO instead of n states we 
need n/2 states, for each of two FSMs of SA_FSM and AS_FSM. 
And in place of an n-to-1 multiplexer we need an n/2-to-1. As a 
result, the silicon area of an n-place SS_FIFO is much smaller 
than an n-place AS_FIFO or SA_FIFO. The cost is a little 
increase in the FIFO latency, as data must pass through two stages 
to be appeared on the output port. 

5. Implementation 
We developed a generic FIFO generator, using Stratus 

hardware description language of Coriolis platform ([25]). This 
generator creates both a netlist of standard cells and a physical 
layout. The two parameters are depth of FIFO (FIFO’s places) and 
number of data bits.  

In this implementation the synchronizer uses two cascaded 
Flip-Flops and its latency is one clock cycle. In order to reach the 
maximum throughput of one data transfer per cycle, 2-Stage 
AS_FIFO and 2-Stage SA_FIFO use the constrained architectures. 

 
Table 2. Simulation Results 

FIFO Surface Min Latency Max Latency  Max Throughput  
2-Place SA_FIFO 1422 μm2 177 pS 2.39 GEvents/S 
3-Place SA_FIFO 2054 μm2 207 pS 2.36 GEvents/S 
8-Place SA_FIFO 5215 μm2 219 pS 2.22 GEvents/S 
2-Place AS_FIFO 1452 μm2 271 pS + T 271 pS + 2T 1.50 GEvents/S 
3-Place AS_FIFO 2011 μm2 247 pS + T 247 pS + 2T 2.61 GEvents/S 
8-Place AS_FIFO 5107 μm2 263 pS + T 263 pS + 2T 2.89 GEvents/S 
6-Place SS_FIFO 2940 μm2 362 pS + T 362 pS + 2T 2.61 GEvents/S 
8-Place SS_FIFO 3869 μm2 366 pS + T 366 pS + 2T 4.60 GEvents/S 
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Fig. 11. Physical Layouts 

As a standard cell library, we used portable ALLIANCE CMOS 
standard cell library ([24]). The physical layouts of some 32-bit 
FIFOs are presented in Fig. 11. The silicon areas of these 
examples are represented in Table 2. These values are normalized 
to GPLVT ST-Microelectronic library surfaces in 90 nm 
fabrication process. 

From the physical layout, we extracted SPICE models of the 
FIFOs, using ALLIANCE CAD Tools ([20]). The target 
fabrication process is the ST-Microelectronics 90 nm GPLVT 
transistors in typical conditions. Electrical simulation under Eldo 
proved that the aim of getting to the maximum throughput of one 
event (data transfer) per cycle is attained, and these low-area      
high-throughput FIFOs have low initial latencies. 

 6
Due to relation between the asynchronous event entrance time 

and the consumer clock phase, AS_FIFO has various latencies 
with a difference of about one clock cycle. Caused by skew 
relation between the consumer and the producer clocks, SS_FIFO 
has different latencies too. The simulation results are presented in 
Table 2. In this Table, T is the consumer clock cycle time. 

The SA_FIFO throughput value is related to asynchronous 
handshake protocol. The throughput of AS_FIFOs with more than 
3 stages is limited on asynchronous side components too. But in 
the case of 2-Place (2-Stage) and 3-Place AS_FIFO there are the 
other constraints: regarding to Fig. 8 in 2-Place AS_FIFO, Acki+ 
and Reqi+1+ must be happened in the same clock cycle if 
maximum throughput of one data word transferring per cycle is 
required. Fig. 9 shows that the throughput of one event per cycle 
for 3-Place AS_FIFO is attained if ROKi- and ROKi+ are 
occurred in the same clock. This constraint should also be 
respected in 6-Place (3-Stage) SS_FIFO. 

Due to the inability of 2-Place AS_FIFO to reach the 
maximum throughput (comparing 1.5 GEvents/Sec with 2.61 of   
3-Place AS_FIFO), in order to sustain the throughput, one could 
opt for 3-Place AS_FIFO. Its area (2011 μm2) is not negligible, 
but it should not be forgotten that these components in addition of 
robustly interfacing have another advantage: providing a storage 
place with a FIFO behavior. As we know, in order to obtain 
minimum overhead of data communication between two different 
timing domains, having a FIFO in the interface is not eliminable. 

So, we suppose that using a FIFO with the storage place of more 
than three may also be reasonable! 

Finally, as a quick comparison, the minimum latency of a 
Mixed-Clock FIFO presented in [10] is 0.5 TP + 2.5 TC and its 
maximum value is 0.5 TP + 3 TC where TP is the producer clock 
cycle time and TC is that of the consumer. The max throughput of 
an 8-bit 4-place Mixed-Clock FIFO is 549 MHz. This evaluation 
has been given for 0.6 µm HP CMOS technology. The same 
evaluations for Async-Async, Async-Sync, and Sync-Async 
FIFOs are respectively 423, 421, and 454. 

. Conclusion 
Three new FIFO architectures for interfacing asynchronous 

NoCs and synchronous subsystems or two adjacent               
multi-synchronous routers, in MP-SoCs have been presented. The 
synchronizer used in the architectures can be arbitrarily chosen by 
the system designer, supporting various trade-off between latency 
and robustness. The FIFOs can achieve the maximal throughput of 
one word per cycle, even if the selected synchronizer has a large 
latency. The designs have been physically implemented with 
portable ALLIANCE CMOS standard cell library. The throughputs 
and latencies have been proved by SPICE simulation from the 
extracted layout. 
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