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Abstract— The paper presents a preliminary approach for the modeling
and simulation of a simple but complete Wireless Sensor Network with
two nodes using SystemC-AMS, an open-source C++ library dedicated to
the description of heterogeneous systems containing digital, analog, RF
hardware parts as well as embedded software. The WSN node, or mote,
detailed herein consists of a physical sensor, a continuous time sigma-
delta converter with its associated decimation filter, an ATMEGA128 8-bit
microcontroller running the embedded application and a QPSK-based 2.4
GHz RF transceiver. The node has been designed to be interoperable with
both the XBow MICAZ hardware platform and the TinyOS operating
system in a near future. The paper starts with the structural description
of the system as a hierarchical set of behavioural modules, then gives an
insight on how multi-frequency simulation is handled in SystemC-AMS,
and finally presents simulation results that are systematically compared
with the Matlab reference in terms of accuracy and simulation time.

I. INTRODUCTION

Needless to say that one of the great challenges of the next decade
is pervasive/wireless computing. In this context, the ability to design
optimal Wireless Sensor Networks is of paramount importance. To
improve their competitiveness, major players in the microelectronics
industry are faced with two antonymic issues : 1- the need to dramat-
ically reduce the cost and design time of their products like SoCs or
SIPs for economical reasons, 2- the lack of a unified design environ-
ment that can be used efficiently by system designers to model and
simulate state-of-the-art systems (i.e. systems that encompass several
research activity fields and combine on the same integrated circuit
physics, analog and digital electronics, RF/micro-wave and software
application). For the past 20 years, hardware description languages
have been widely used to model and simulate systems belonging
to various engineering fields, from digital and analog electronics
to mechanics, RF and even battery cell chemistry. EDA industry
proposed recently consistent modeling and simulation frameworks
that allow for the description of systems from different disciplines
and for the description of interactions between these systems. These
frameworks use VHDL-AMS [1] [2] [3] [4] and Verilog-AMS [5]
[4] as effective backbones for the modeling. However, when dealing
with WSN containing hundreds of nodes, and with a carrier frequency
of 2.4 GHz, these frameworks show rapidly their limits in terms of
interoperability and simulation performance. One possible solution to
the modeling and simulation of ”More than Moore” multiprocessor
heterogeneous systems [6] is SystemC-AMS [7] [8] [9] [10] [11],
an extension to the existing library SystemC [12]. The first version
has been released by Franhofer Gesellschaft EAS/IIS Dresden [13].
Figure 1, extracted from the SystemC-AMS documentation shows
how the objective of multi-discipline modeling can be achieved
with a set of interoperable userview layers corresponding to the
aforementioned research fields.
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Fig. 1. SystemC-AMS layered architecture.

In practice, SystemC-AMS allows to describe mixed-signal [14]
designs and currently supports two user views and their associated
semantic models: conservative and multi-rate Synchronous DataFlow
(SDF). For the moment, the conservative view is restricted to linear
networks and does not allow the design of real analog subsytems.
For the level of modeling required by this system, the multi-rate
synchronous dataflow approach is of much more interest. The key
idea of this approach is to embed continuous-time modules into
dataflow clusters. Modules perform computation and communicate
with others via directed data streams carrying time valued samples.
A dataflow cluster may contain any number of dataflow modules
whose execution is statically scheduled during simulation elaboration.
A cluster is managed by a dedicated SystemC process that handles
synchronization with the rest of the system. When scheduled by the
SystemC simulation kernel, a dataflow cluster runs at a constant time
step, defined by the sampling duration time assigned to one port of
one of the modules and automatically propagated to others. Hence,
SDF is specially suited for communication systems like WSN with
strong oversampling : a SystemC-AMS module can be seen as a
simple dataflow class function (always named sig proc()) which, at
every time step, reads its SDF inputs, computes and accumulates
results, and propagates them to the SDF outputs.

II. WIRELESS SENSOR NETWORK SYSTEM

The modeled WSN system, presented in figure 2, consists of
two independent nodes that exchange information through a noisy
2.4GHz communication channel. Nodes are totally equivalent from
the hardware standpoint, and can only be distinguished by the soft-
ware application they run. The paper describes in turn the interesting
parts of the system.
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Fig. 2. The WSN, consisting of two nodes.



Structurally, a node consists of 4 parts, as shown in figure 3. One
can notice that the node has four different clock domains (3.65 KHz,
8.55 MHz, 2.4 MHz, and 2.4 GHz), with frequency differences of
several orders of magnitude. Section II.E shows how these domains
are managed altogether by SystemC-AMS.
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Fig. 3. Structure of a wireless sensor network mote.

A. Sensor
The sensor part, described in figure 4, is quite unrealistic but is

sufficient for our application. The current source and load resistor are
modeled using the conservative view and means offered by SystemC-
AMS.

R = xkΩ

u(t) = xsin(2πft)Vi(t) = sin(2πft)mA

Fig. 4. Simple electrical model of a sensor.

Listing 1 shows how the design of figure 4 can actually be coded in
SystemC-AMS. The sca elec port (line 6) and sca elec ref (line 7)
are conservative ports that obey GKL, and are very similar to VHDL-
AMS terminals. The constructor SC CTOR (line 17) instanciates
the two SystemC-AMS linear devices (current source and resistor)
and connects them according to figure 4. To be compatible with
the ADC, the conservative value is converted into its synchronous
dataflow equivalent through the use of the sca v2sdf SystemC-AMS
construct.

Listing 1. The sensor conservative subpart.
1 #ifndef WAVE_H
2 #define WAVE_H
3

4 SC_MODULE (wave)
5 {
6 sca_elec_port w1;
7 sca_elec_ref gnd;
8

9 sca_isin *i_sin_1;
10 sca_r *i_r_1;
11

12 void init(double a, double f){
13 i_r_1->value = a*1000;
14 i_sin_1->freq = f;
15 }
16

17 SC_CTOR (wave) {
18 i_sin_1=new sca_isin("i_sin_1");

19 i_sin_1->p(w1); // pos
20 i_sin_1->n(gnd); // neg
21 i_sin_1->ampl=0.001; // magnitude in A
22

23 i_r_1=new sca_r("r1");
24 i_r_1->p(w1);
25 i_r_1->n(gnd);
26 }
27 };
28 #endif

B. A/D converter
To pragmatically experiment the capabilities of the SystemC-AMS

library, the ADC that converts the analog measure coming from the
sensor into its digital equivalent is nothing less that a second order
sigma-delta 1-bit modulator with return-to-zero feedback [15], and a
decimator using a third order FIR2 [16], that can be parameterized
to generate a n-bit word, as shown in figure 5. The oversampling rate
can be set accordingly in order to follow particular specifications.
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Fig. 5. Second order sigma-delta continuous-time modulator and decimator.

In the SystemC-AMS methodology, the boxes presented in figure
5 are synchronous dataflow modules and correspond to one single
dataflow cluster, and therefore obey the semantic model of multi-rate
synchronous dataflow graphs. Each SDF module is dedicated to the
computation of a mathematical equation that consumes input data and
produces output data. As an example, listing 2 gives the complete
code for the integrator integrator sd of the sigma-delta converter.
The integrator, described as a SystemC AMS Synchronous Dataflow
Module SCA SDF MODULE (line 4), takes two sdf ports as inputs,
in1 and in2 (line 6), and generates the integrated result on out(line 7).
The init member function (line 13) is called once during elaboration
and allows to initialize the Laplace transform function matrix. The
Laplace transform function is conveniently handled by the dedicated
class sca ltf nd (line 11) and operates exactly like the VHDL-AMS
corresponding construct. Each time the cluster process is triggered
by the SystemC simulation kernel, the sig proc() function (line 22)
is called. In1 and in2 are read, the Laplace transform is performed,
and the result written on the output out.

Listing 2. The complete SystemC-AMS source code for the SD integrator,
using the Laplace transform SystemC-AMS native construct.

1 #ifndef INTEGRATOR_SD_H
2 #define INTEGRATOR_SD_H
3

4 SCA_SDF_MODULE (integrator_sd)
5 {
6 sca_sdf_in < double >in1, in2;
7 sca_sdf_out < double >out;
8

9 double fs, ai, ki;
10 sca_vector < double >NUM, DEN, S;
11 sca_ltf_nd ltf1;
12

13 void init (double a, double f, double k) {
14 DEN (0) = 0.0;



15 DEN (1) = 1.0;
16 NUM (0) = 1.0/3.0;
17 ai=a;
18 fs=f;
19 ki=k;
20 }
21

22 void sig_proc () {
23 out.write(
24 ltf1(NUM,
25 DEN,
26 S,
27 fs*(ai*in1.read()-ki*in2.read())
28 )
29 );
30 }
31

32 SCA_CTOR (integrator_sd) {}
33 };
34 #endif

C. ATMEL ATMEGA128 Microcontroller
The ATMEGA128 microcontroller belongs to the ATMEL AVR

devices [17] [18]. It is a RISC microcontroller with 16-bit wide
instructions and a flash program memory of 128Kbytes. The program
executed by the microcontroller can be written in assembly language
or directly in C. The AVR-GCC C/C++ compiler is freely available
and can generate efficient code for this target device. The microcon-
troller has been chosen for the WSN system to be compatible with
the MICAZ platform commercially available, and mostly because it is
directly supported by the TinyOS [19] application design environment
and operating system. From the SystemC viewpoint, the micro-
controller is coded as a traditional Instruction Set Simulator (ISS)
that respects the execution times of each instruction. In particular,
the microcontroller SystemC class provides a member function that
allows to program the flash code memory with the contents of an
Motorola SREC or Intel HEX file. In the presented system, the 8-bit
value coming from the ADC decimation filter is connected to digital
port B of the microcontroller. The application software permanently
reads port B, serializes the corresponding value and propagates the
corresponding bitstream on pin 0 of port A. When receiving RF data,
microcontroller reads pin 0 of port C.

D. 2.4 Ghz QPSK RF transceiver
The RF transceiver, presented in figures 6 and 7 is responsible

for converting the digital bitstream into RF information and vice
versa. It uses a QPSK (Quadrature Phase Shift Keying) transmission
scheme, with a Fc carrier frequency and a Fb data frequency. AWGN
(Additive White Gaussian Noise) allows to take into account channel
noise in the modeling of the RF communication channel and is
necessary for calculating the fundamental RF characteristic BER (Bit
Error Rate) with respect to SNR (Signal-to-Noise Ratio). The QPSK
transmitter consists of a 1-bit D/A converter, a demultiplexer, two
mixers and a signal adder. The D/A converter, also called encoder
shifts voltage levels of the input bitstream following energy user
specifications. Multiplied by a cosine or sine oscillation into the
mixer, signals sI and sQ are combined in the adder, and the sum
yields the QPSK-modulated signal. From the receiver viewpoint, the
received signal is mixed with a cosine and sine oscillation and each
part is integrated. The integration of cosine mixed part allows to
extract the I-part of information, Q-part is similarly extracted from
integration sine mixed part. A decision device digitalizes positive

values to symbole ’1’ and negative values to symbole ’0’. This
block allows a hardware transmission error correction while the value
received does not change its sign. The signal is finally multiplexed
and get totally rebuilt. One can notice that neither the power amplifier
(PA) nor the low noise amplifier (LNA) have been implemented in
the design. Likely, the communication channel is considered as an
ideal gain block with an additive white Gaussian noise (AWGN).
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Fig. 6. QPSK RF transmitter.
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Fig. 7. QPSK RF receiver.

E. Multi-frequency modeling and module interfacing
Hierarchical design in SystemC-AMS can be achieved by means

of plain SystemC modules. For example, the instanciation of the
integrator module in the sigma-delta converter is obtained with the
following lines of code :

...
i_integrator_1 =

new integrator_sd ("i_integrator_1");
i_integrator_1->in1 (in);
i_integrator_1->in2 (sig_switcher_1);
i_integrator_1->out (sig_integrator_1);

...

In a SystemC-AMS design with a single clock domain, the sig proc()
function of each connected module of a dataflow cluster is called
periodically, on the basis of the cluster sample duration time. The
system designer can setup sample duration by assigning a value to
a module port through the use of the set T() function. The simula-
tion sample duration is automatically propagated to each connected
module of the cluster. To allow multi-frequency simulation, SystemC-
AMS proposes the set rate() function that can be called on a specific
module port to define its relative sample rate. By default, the sample
rate of each port of a dataflow cluster is 1. Sample rates control
simulation sample time when a given module consumes a different
number of samples that it produces. In a cluster, if the equation (1)
is not verified for every module interface port, the simulator ends
with an error. Sample rate is defined with respect to sample time, in
order to use SystemC-AMS modules in other projects with different
sample time configuration.

out sample time

out sample rate
=

in sample time

in sample rate
(1)
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The figure 8 presents the complete design of a standard peer to
peer diagram and puts emphasis on the used semantic models(event
driven, SDF or conservative), clock domains corresponding to SDF
clusters and interface port kinds. When shifting from one semantic
model to an other, an interface adapter is needed. The figure also
shows sampling duration time (with set T). Frequency of samples
is set to 85.34 MHz in the delay output port, this setting is spread
on the whole cluster 1 with rate adaptations : the output of sampler
module operates at :

85.34

10
MHz = 8.53MHz

sample frequency and the output of decimator :
85.34

10 ∗ 64
MHz = 133.34kHz

Regarding ADC frequency (8.53 MHz) in figure 3, the SystemC-AMS
design takes 10 samples per period. That samples are not needed
when the signal becomes digital, because the sampler/holder holds
the sampled value during that 10 samples, the information would
be identical 10 times. Thereby, we justified the sampler module
implementation that changes data rate.

On cluster 2, frequency of samples is set to 2.4 MHz at the output
of interface module. Like previous sampling duration computation,

interpolate module puts data at its output port with a 24 GHz
frequency (10 samples per period). Regarding RF frequency during
the transmission in figure 3, such simulation frequency is necessary
for a 2.4 GHz wave simulation.

One can notice that the A/D converter is a dataflow process with
feedback. To ensure that each module of the cluster has sufficient
samples on its inputs and therefore can be executed correctly, a
special delay module has been added. In strongly oversampled
systems like WSN, this is negligible.

III. SIMULATED PLATFORM

The simulated platform contains 26 files, organized hierarchically
with subdirectories corresponding to subparts. The ADC oversam-
pling rate is 64, and the decimator produces an 8-bit word. The
application running on each microcontroller is currently written in
AVR assembly language and converted into a binary file that complies
to the Intel HEX format. During the elaboration of the SystemC-
AMS simulation, the two microcontrollers call their respective init-
FromHEX() function to initialize their flash code RAM.

The design and simulation flow is described in figure 9. ”WSN
node model” is the entire project architecture written in SystemC and
SystemC-AMS previously described. ”Application.c” contains the C



compliant microcontroller behaviour and implements the communica-
tion protocol. C based language for embedded application description
is compiled with GNU AVR C Runtime Library. Trace results can
be displayed with GNU gnuplot. One can notice that all the tools
needed to obtain simulation results are totally open source.

Application.c

SystemC and SystemC-AMS
compilation

WSN node model

executable file

Application.bin

objcopy -O ihex

Application.hex Simulation

trace file.dat

Gnuplot

avr-gcc -mmcu=atmega128

Fig. 9. Programming methodology.

IV. SIMULATION RESULTS

For simulation purposes, some parameters have been set up, for
each component. ADC oversampling rate is 64, decimator produces
8 bits. Gain values of Σ∆ feedback loop are specified from amplitude
histogram analysis, they are set to 2 and 7/6. We used a 2.4 MHz
clock frequency for microcontroller, so bit rate for RF transmission
is 2.4 Mbps. Carrier frequency is 2.4 GHz.

Simulation sample frequency is set to 2.4 MHz for multiplexer
output or demultiplexer input, these signals are converted from or to
systemC digital signals so we need just one sample per bit. According
to rate settings in figure 8, simulation sample frequency for cosine
mixer is 24 GHz.

The first simulation (fig. 10) images and validates RF transmission
in a mote communication. The first representation (fig. 10.A) shows
data to be transmitted. The next figure (fig. 10.B) represents trans-
mitted wave through noisy channel. Finally, we can see (fig. 10.C)
that data received is the same as data to be sent.
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Fig. 10. Data transmission through noisy channel

After validation of behaviour, we analyse simulating durations
(table I). We timed Matlab/Simulink vs. SystemC-AMS simulations,
controlling the exact equivalent behaviour and the same number
of samples used. Simulation of communication between 2 motes
cannot be performed with Matlab, because of the complexity of
microcontroller modeling. This problem reveals the advantage of
SystemC-AMS simulation : we are able to simulate both digital
and analog models simultaneously, Matlab/Simulink doesn’t contain
microcontroller models yet.

TABLE I
SIMULATION RESULTS.

Configuration Simulation Matlab SystemC-AMS
OSR=64 1 ms

ADC 8 bits output 16*1024 pts 1.605s 0.934s
for output
416.67 µs

2.4 GHz 10
3 pts

RF carrier freq. for µc input, 2m30.746s 54.360s
10

7 pts
for RF i/o

2-mote Same 416.67 µs – 4m19.572s
WSN settings

We verified accuracy of results with some more technical tests.
We simulated a variable sine amplitude input, to compute SNR char-
acteristics of ADC and we compared with similar matlab/simulink
model result (fig. 11).
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Fig. 11. SNR analysis for ADC in relation to input amplitude.

Then, we set optimal sine amplitude for maximal SNR. In fact,
the better amplitude is -5 dB, so we used a = 0.56. We can observe
frequency responses to validate ADC behaviour and to compare with
Matlab results.
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Fig. 12. Frequential response analysis of Sigma-Delta and decimator outputs.



In the RF part, we wanted to run an analysis to visualise bit error
rate according SNR variation, we needed 10 Kbits. Bit error rate is
the number of bad received bits divided by the number of transmitted
bits. A theorical BER is computed from AWGN characteristics and
is compared with simulation results. Figure 13 shows similarities
between simulation and theorical results.

RF mixer module has to compute 10000*10000 sample multipli-
cations with cosine for each I and Q part. An other transmission
modeling solution, like baseband equivalent, should be used soon. In
this case we will be able to abstract carrier frequency transmission
and reduce simulation sample time.
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Fig. 13. Bit error rate for QPSK transmission through an AWGN channel.

Representations on figure 14 permit to image received symbol dis-
persion, according to different non-idealities. Those figures represent
2-bit symbols received when a non-ideality is present. We can see
the value dispersion and we can remember (section II.D ) that this
value is corrected by decision device when the dispersion is not to
strong.
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Fig. 14. Constellation of symbols received from QPSK transmission through
AWGN channel (A), with a DC offset (B), frequency offset (C) and phase
mismatch (D).

V. CONCLUSION

In the paper, we presented the prelminary results obtained from the
simulation of two nodes WSN coded in C++, SystemC, and SystemC-
AMS.

This work can be seen as a starting point for the modeling
of a more ambitious network with other nodes perturbating the
commuinication between the emitting node and the receivng node
to which the message is sent. With the current platform many
experiences can be performed globally or locally. In particular, we
intent to introduce known approaches in the RF domain like baseband
equivalent. Ongoing research will focus on the development of soft-
ware using the TinyOS environment and on the automatic generation
of SystemC-AMS models from subpart specifications, constraints and
technological parameters. For instance, taking the ideal behaviour of
a component (like an amplifier with a simple behaviour O=A.I) as
a starting point, along with its structural representation in terms of
transistor netlist and foundry technological parameters, we intend to
automatically generate a derived SystemC-AMS model using more
accurate Laplace transform construct with faithfull coefficients.
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