
Automatic Allocation of Redundant Operators in Arithmetic Data path
Optimization

Sophie Belloeil, Roselyne Chotin-Avot, Habib Mehrez and Alix Munier-Kordon
University Paris VI, LIP6/SOC Laboratory

4 place Jussieu,
75252 Paris Cedex 05, France

Sophie.Belloeil@lip6.fr

Abstract

Redundant operators such as adders and multipliers
increase performance (timing and area) of high compu-
tational digital circuits. Mixing redundant operators with
classical ones is nevertheless complex for circuit designers
who might not have necessarily the required arithmetic
knowledge. In this context, Computer Aided Design tools
considering redundant arithmetic are of interest.

In this paper, several algorithms based on graph theory
are described. They replace some classical operators of a
design with redundant ones to minimize the overall timing.
Several real life experiments are presented.

I. Introduction

Redundant operators such as adders and multipliers
have very good performances considering time and area
[7], [10], [14]. Using those operators in VLSI circuit design
can thus appear advantageous, enabling architecture opti-
mizations and consequently further improvements as for
circuits performances. Several hand-made implementations
have been done using those architectures, leading to good
results [5], [6], [9], [16]: improvement up to 35% for the
frequency with an area overhead bounded by 11% for a
Discrete Cosine Transform Operator for example.

Mixing classical and redundant arithmetics in an ex-
plicit way can nevertheless appear quite tedious to non
initiated designers, for whom, furthermore, the rapid pace
of technological evolution puts a great ”time to market”
pressure. Such a pressure on design cycle combined with
strict performance contraints make the automation of the
introduction of redundant arithmetic in circuit design more
and more useful, bringing it more accessible. There has

therefore been an extensive research work on the introduc-
tion of redundant arithmetic in logical synthesis [11], [12],
[15]. However, they focus mainly on using only Carry-
Save adders, and choose to transform substractions and
multiplications into additions. They do not address the
possibility of using redundant multipliers as well as the
Borrow-Save representation.

We have already proposed an approach based on pattern
matching techniques in [2]. We also have demonstrated
the interest of using the Borrow-Save representation in
[3]. However, the pattern matching approach is not the
most appropriate one for handling circuits which have
operators with multiple fanouts. Algorithms have been
developped for it to be handled, but increase a lot the
time to perform the optimisation.

In this paper, we present a new approach based on
graph theory. The two criteria considered are again the
timing and the area minimization. Two heuristics solving
this optimization problem are developped. The first one
modifies classical operators into redundant ones as much
as possible like the pattern matching approach. The second
one uses a cost function in order to choose the best allo-
cation possible for each operator. Furthermore, these two
algorithms consider Borrow-Save architectures to handle
substractions.

Several designs, such as a FIR filter, a Distance Com-
putation Unit (DCU), a Fast Fourier Transform (FFT)
butterfly and a Discrete Cosine Transform (DCT) are
optimised, using our two algorithms.

The remainder of this paper is organized as follows:
Section 2 contains a global description of the redundant
arithmetic and the associated architectures. In Section 3,
we describe our redundant optimization algorithms. Our
experimental results are presented in Section 4. Section 5
is our conclusion.



2II. Redundant arithmetic

A. Mixed arithmetic

Redundant arithmetic involves two number representa-
tions [1]:
• Carry-Save representation: a digit is defined by csi =
cs0
i + cs1

i with csi ∈ {0, 1, 2} so that a number is
considered as the sum of two terms: CS = CS0 +
CS1.

• Borrow-Save representation: a digit is defined by
bsi = bs0

i − bs1
i with bsi ∈ {−1, 0, 1} so that a

number is considered as the substraction of two terms:
BS = BS0 −BS1.

The abbreviations CS and BS are commonly used for
Carry-Save and Borrow-Save representations, as well as
NR and R for respectively Non Redundant and Redundant
representations.

The sole use of redundant arithmetic in data path de-
scription is not conceivable for several reasons. Firstly, we
must preserve the NR representation of the inputs/outputs
of the circuits. Secondly, we have to deal with non-
arithmetic operators such as multiplexors, boolean opera-
tors, etc... Classical and redundant arithmetics have there-
fore to be compatible. A new arithmetic is presented, called
mixed arithmetic, defined as the combination between
classical and redundant representations. This involves:

1) having at disposal every arithmetic operator accept-
ing both R and NR inputs/outputs: the three repre-
sentations of classical, redundant and mixed adders
are presented in Figure 1 for example.

2) being able to convert one representation to the other:
for example, the conversion CS→NR is the addition
between the two terms composing the CS number.

a. Classical
adder b. Redundant adder c. Mixed adder

Fig. 1. Adders representation

B. Carry-Save architectures

1) Adders: The architecture of a redundant adder,
adding two CS numbers, is presented in Figure 2. A similar
architecture exists for a mixed adder, adding a CS number
and a NR number, such as shown in Figure 3. Both adders

provide a CS output made of the effective sum and the
carries (Output = S + C).

These architectures show the main benefit of redundant
arithmetic: it allows to suppress the carry propagation in
the computation of an addition. The time to perform an
addition of two numbers is thus constant, independent of
the number of digits. Addition being an essential operator,
the potential benefit of using redundant/mixed adders is
significant.

Fig. 2. Implementation of a redundant adder

Fig. 3. Implementation of a mixed adder

2) Multipliers: The multiplier architecture frame (Fig-
ure 4) is divided into four parts [7]: (1) recoding (for inputs
in R form), (2-3) partial products + sum, (4) conversion (to
obtain the output in NR form). The second and third parts
are mandatory; they represent the effective computation of
the multiplication. The first and last parts are optionnal,
depending on the representations of the inputs/output. The
computations made are then Output = (CS0+CS1)∗NR
for mixed multipliers and Output = (CS0

0 + CS1
0) ∗

(CS0
1 + CS1

1 ) for redundant ones.

Since the output of the Wallace tree [14] (part 3) is in
CS form, allowing the output of the multiplier to be in
CS form generates the supression of the final conversion.
CS multipliers are therefore bound to have a better critical
time than classical ones, but a bigger area because of the
input recoders (especially with two R inputs).



3

Fig. 4. Multiplier

C. Borrow-Save architectures

1) Adders: BS architectures allow to perform substrac-
tions. They have the same frame as the CS ones (cf.
the mixed adder architecture in Figure 5). Using the BS
representation, a mixed adder (adding a BS number and a
NR number) consists in computing Output = C + S =
BS+ − BS− + NR. A redundant adder (adding two BS
numbers) consists in Output = C + S = BS+

0 −BS
−
0 +

BS+
1 −BS

−
1 .

Fig. 5. Borrow Save mixed adder

The three different ways to implement the computation
(a−b)+(c−d) are shown in Figure 6: the NR architecture
(Sklansky adders [14]: substractions transformed into ad-
ditions using the two’s complement) in Figure 6.a, the CS
architecture (same treatment as for substractions) in Figure
6.b and the BS one in Figure 6.c. We have compared in [3]
the use of those architectures, in terms of time and area
1. The results presented show that the BS architectures
performances are in the same order of magnitude as the
CS ones.

2) Multipliers: BS architectures have the same frame
as the CS ones [7]. The difference is in the recoding part.
The computations made are then Output = S + C =
(BS+−BS−)∗NR for mixed multipliers and Output =
S + C = (BS+

0 − BS
−
0 ) ∗ (BS+

1 − BS
−
1 ) for redundant

ones.
We have compared in [3] the use of the different archi-

tectures to perform a computation involving substractions

1Note that for all the tests presented, we used the place and route tools
of the Cadence CAD System using the Alliance [8] CMOS Standard Cell
Library in 0.35µm

a. NR
architecture

b. CS
architecture

c. BS
architecture

Fig. 6. Computation of (a− b) + (c− d)

and multiplications: (a − b) ∗ (c − d). As before, three
architectures habe been compared: the NR architecture
(Sklansky adders and a classical multiplier), the CS one
and the BS one. The results show that the BS architecture
is faster and smaller than the CS one.

D. Advantage of the Borrow-Save representation

It has been shown in [3] that the interest of using the BS
representation is better emphasized when substractions are
inside arithmetical chains. Let us consider the computation
(a + b) − (c + d). The three possible architectures to
implement this computation are presented in Figure 7. We
can see in Figure 7.b that, when using the CS architectures,
the introduction of an inverter in the arithmetical chain
prevents from using a redundant operator, leading to a non
optimal design. Using the BS architecture avoids that issue,
such as shown in Figure 7.c.

a. NR
architecture

b. CS
architecture

c. BS
architecture

Fig. 7. Computation of (a+ b)− (c+ d)

The timing and area performances of these implemen-
tations are presented in [3]: using CS architectures results
in 25.7% area improvement and 6.7% timing deterioration
whereas using BS architectures result in 53.6% area im-
provement and 27.5% timing improvement, compared to
the classical implementation (Figure 7.a). The BS imple-
mentation is therefore 94% smaller and 32% faster than
the CS one.



4III. Automatic optimization

Our aim is to take advantage of redundant arithmetic in
order to improve circuits timing. Our CAD tools are part
of a classical VLSI design flow and take place just before
logical synthesis. We have developped two algorithms
which, from a functional specification of a circuit described
with the Stratus language [4], modify the specifications of
the different operators and interconnections of the circuit,
while preserving its behavior and inputs/outputs. After this
process, the VLSI design flow remains unchanged.

This Section is organized as follows. First, some def-
initions are introduced. Secondly, our algorithms are de-
scribed. Last but not least, the implementation of the final
circuit is presented.

A. Definitions

Our optimization algorithms are based on graph the-
ory. We therefore consider our circuits as graphs to use
algorithmic tools to optimize them.

1) Arithmetic computation graph: An arithmetic data-
path can be modelled using a directed acyclic graph G =
(V,A) such that:

1) the set of operators (arithmetic or not), inputs and
outputs of the circuit represents the set of vertices
V of the graph G,

2) all signals of the circuit represent the set of arc
(x, y) ∈ A.

For any vertex x ∈ V , Γ−(x) denotes the set of direct
predecessors of x,

Γ−(x) = {y ∈ V, (y, x) ∈ A}.

2) Allocation function: An allocation function is de-
fined in order to distinguish the signals in redundant rep-
resentation from the others. The reasons a signal can not be
put in redundant representation are if it is an input/output
of the circuit, or if it is an input/output of a non arithmetical
operator. Let Vo ⊂ V be the set of vertices from V
corresponding to binary arithmetic operators. Elements
from Vo may be implemented using classical, mixed or
redundant operators. Elements from V − Vo correspond
then to inputs, outputs or non arithmetic operators. The
set of arcs that may be implemented using a redundant
representation is then Ao = {(x, y) ∈ A, x ∈ Vo, y ∈ Vo}.

An allocation is a function a : A → {0, 1} such that,
1) ∀(x, y) ∈ A−Ao, a(x, y) = 0;
2) ∀(x, y) ∈ Ao, a(x, y) = 1 if (x, y) is in redundant

representation, a(x, y) = 0 otherwise.
For any feasible allocation a, the set of arcs im-

plemented using a redundant representation is R(a) =
{(x, y) ∈ Ao, a(x, y) = 1}.

B. All in redundant algorithm

The all in redundant algorithm moves all arcs from Ao
into redundant representation, i.e. for any arc e = (x, y) ∈
Ao, a(e) = 1 so that R(a) = Ao.

In other words, this algorithm can be stated as follows:
Given a graph G of arithmetic computations, classical
arithmetic operators are transformed, when possible, into
their mixed or redundant form, with the preservation of
the functionnality of the design.

C. Optimal allocation algorithm

1) Motivations: Transforming systematically each
arithmetical operator into its redundant form leads to good
results but is not necessarily the optimal approach to obtain
the best timing. The computation in Figure 8 emphasises
this issue:

a. Cell b. All in
redundant

c. Optimal
allocation

Fig. 8. Timing optimal allocation

• the critical path of the classical implementation con-
tains two classical adders and one classical multiplier
(cf. Figure 8.a),

• the all in redundant algorithm reduces the critical path
to one redundant multiplier, one redundant adder and
one classical adder (cf. Figure 8.b),

• since a classical adder is faster than a redundant
multiplier, the addition between E and F can be
performed in parallel with the multiplication without
altering the critical path. Not transforming the adder
results in changing the redundant adder in the critical
path into a mixed adder. The critical path is therefore
smaller (cf. Figure 8.c).

Table I presents the performances of the different ar-
chitectures of Figure 8. They show an increase of the area
and an improvement od the timing. The improvement of
the timing being our main objective, those result confirm
that, with an optimal allocation, the optimization of the
timing is better than with the all in redundant allocation,
with an area overhead.



5width Area Time
(mm2) (ns)

a b c a b c
8 0.24 0.21 0.24 60.5 54.7 50.6

ref -9.8% 0% ref -9.6% -16.4%
16 0.66 0.61 0.68 81.64 65.71 61.71

ref -8% +1.9% ref -19.5% -24.4%

TABLE I. Computation of (a+b)∗(c+d)+(e+f)

2) Cost of an allocation function: In order to find the
best allocation choice for the operators, a cost function
which evaluates each operator is defined, such as follows.

Let a be an allocation function such as defined in III-
A.2. The cost of any arc e = (x, y) ∈ A represents the
cost of its input vertex and therefore depends on a(x, y)
considering the 8 possibilities presented by Figure 9. This
cost, noted C(a, (x, y)), is computed as follows:

1) if a(x, y) = 1, then the arc (x, y) is implemented
using a redundant representation. Its cost depends
on the representation of the two inputs arcs of x
following the cases (a), (b1), (b2) and (c) in Figure
9.

2) if a(x, y) = 0, then the arc (x, y) is implemented
using a classical representation,

a) if x ∈ V − V0, the cost of (x, y) is a constant
independent from a,

b) if x ∈ Vo, the cost of (x, y) depends on
the representation of the two input arcs of x
following the cases (d), (e1), (e2) and (f) in
Figure 9.

In case of arithmetical operators (cases 1 and 2.b),
the cost is based on the complexity of the correponding
architecture, for example: 1 for a mixed adder, 2 for a
redundant adder, log2(n) for a slansky adder, ...

Let P(G) denotes the paths of G. The cost of any path
ν ∈ P(G) is

∑
e∈ν C(a, e). The cost C(a) of an allocation

is the maximum cost of a path from G, so

C(a) = max
ν∈P(G)

∑
e∈ν
C(a, e).

(a) (b1) (b2) (c)

(d) (e1) (e2) (f)

Fig. 9. All cases of connections

3) Allocation functions for in-trees: We suppose here
that the arithmetic data-path graph is an in-tree denoted by
τ . So, every vertex x ∈ V has one successor in G.

4) Algorithm: The optimal allocation algorithm mini-
mizes the cost function using dynamic programming. Let
the arc e = (x, y) ∈ A and let τ(x) be the sub-tree of τ
rooted in x. Let also O(e, 1) be a set of arcs from τ(x) in
a redundant representation for an optimal solution for the
graph τ(x) with the constraint that a(e) = 1. On the same
way, let O(e, 0) be a set of arcs from τ(x) in a redundant
representation for an optimal solution for the graph τ(x)
with the constraint that a(e) = 0.

SetsO(e, 0) andO(e, 1) are built recursively as follows:

1) If x ∈ V −Vo, then every allocation function verifies
a(e) = 0 and thus O(e, 1) is not defined. If x is an
input vertex, we set O(e, 0) = ∅. Otherwise, all the
elements from Γ−(x) must be classical operators and
O(e, 0) =

⋃
y∈Γ−(x)O((y, x), 0).

2) Otherwise, x ∈ Vo is a binary arithmetic operator
and has exactly two inputs vertices denoted by y1

and y2.
• For O(e, 0), we fix a(e) = 0 and the output of x

is implemented using a classical representation.
Then, O(e, 0) is the minimum cost solution
between the four following alternatives:
a) the arcs (y1, x) and (y2, x) are implemented

using a redundant representation, so the first
alternative is O((y1, x), 1) ∪O((y2, x), 1) ∪
{(y1, x), (y2, x)} (case (d) of Figure 9);

b) the arc (y1, x) is implemented using a classi-
cal representation, and the arc (y2, x) is im-
plemented using a redundant representation,
so the second alternative is O((y1, x), 0) ∪
O((y2, x), 1)∪{(y2, x)} (case (e1) of Figure
9);

c) the arc (y1, x) is implemented using a re-
dundant representation, and the arc (y2, x) is
implemented using a classical representation,
so the third alternative is O((y1, x), 1) ∪
O((y2, x), 0)∪{(y1, x)} (case (e2) of Figure
9);

d) lastly, arcs (y1, x) and (y2, x) are im-
plemented using a classical representation
and the fourth alternative is O((y1, x), 0) ∪
O((y2, x), 0) (case (f) of Figure 9).

• O(e, 1) is evaluated on the same way by consid-
ering that the output of x is implemented using
a redundant representation. Four alternatives are
investigated following cases (a), (b1), (b2) and
(c) of Figure 9.

The optimum solution is O((x, y), 0) with y, the root
of τ (since y ∈ V − Vo).



6
D. Implementation

Once the used algorithm has determined the best repre-
sentation of each arc, the corresponding optimized circuit
has to be created. It can be feasible only if, for each opera-
tion (addition, substraction, multiplication), an architecture
exists for every possible case of connection.

Table II presents all possible cases and the corre-
sponding architectures. Three architectures exist for each
operation (the classical one, the mixed one and the re-
dundant one), which is sufficient to handle all the cases
(a conversion CS → NR is done if the output of a
R operator has to be NR). Comments can nevertheless
be done upon the two cases marqued with a ”*”. In
these cases, a null value has to be added in order to
use redundant operators. The operation wanted is indeed
NR− (CS0 +CS1) which is equal to NR−CS0−CS1.
This operation can be implemented only by transforming
it into (NR− CS0) + (′0′ − CS1).

IV. Experimental results

The tests performed are meant to show the usefulness
of the redundant arithmetic. We have therefore made, for
each benchmark, an implementation using classical arith-
metic only, and one or several implementations using our
algorithms. We present the performances of the circuits, in
terms of timing and area, with and without optimizations.

The first two benchmarks presented (FIR and DCU)
have been optimized with the two different optimization
algorithms. They can be modelled using trees and are
therefore supported by the optimal allocation algorithm.
The other two benchmarks (FTT butterfly and DCT) can
not be modelled using trees, the optimizations presented
result then from the all in redundant algorithm.

1) FIR Filter operator: The filter architecture is shown
in Figure 10. Three implementations are done: the classical
one, the one resulting from the all in redudant algorithm,
and the one resulting from the optimal allocation algo-
rithm. Since this design contains no substraction, both
algorithms use the CS representation.

The results (from a filter with 8 registers and 16 bits
datas) are summarized in Table III. Thoses results show
that both algorithms optimize timing and area. They also
show that the optimal allocation algorithm optimizes better
the timing, but less the area.

Architectures obtained with the different algorithms are
shown in Figure 11 (exemple with 4 registers):
• Figure 11.a presents the result of the all in redundant

algorithm, in which all arithmetical operators are
transformed into their redundant form.

*

*

TABLE II. Architectures



7

Fig. 10. FIR filter operator

Classical All redundant Optimal
Area 3.97 2.94 3.34

(mm2) ref -25.92% -15.83%
Time 134.39 109.58 87.95
(ns) ref -18.47% -34.56%

TABLE III. Results of the FIR filter

• Figure 11.b presents the result of the optimal alloca-
tion algorithm, in which the instanciation of several
classical multipliers leads to mixed adders in the
critical path instead of redundant adders. This choice
can be made because redundant representations are
not nessessary in this case to improve the timing: the
classical multipliers remain faster than the computa-
tion made on the other input of the adders in the
critical path.

a. All in redundant

b. Optimimal allocation

Fig. 11. FIR filter optimizations

2) DCU operator: The DCU architecture [5] is com-
posed of two parts, such as shown in Figure 12: the first
one computes the distances (Ai − Bi)2, the second one
performs the sum of these distances.

The results, summarized in Table IV, present the op-
timizations of both algorithms. This operator containing
subtractions, each algorithm is used twice, once using the
CS architectures, once using the BS ones. Those results
show that the optimal allocation algorithm results in the
same architecture as the all in redundant one: in this case
the optimal allocation is indeed to transform all the arcs
into redundant representation. They also show that the BS
architectures produce a better timing and a better area than
the CS ones.

3) FFT butterfly: The butterfly is the elementary cell
composing the Fast Fourier Transform [16]. Its architecture

Fig. 12. DCU operator

Classical All Redundant Optimal
CS BS CS BS

Area 0.24 0.29 0.24 0.29 0.24
(mm2) ref +24.27% 0% +24.27% 0%

Time 65.87 56.72 54.44 56.72 54.44
(ns) ref -13.89% -17.36% -13.89% -17.36%

TABLE IV. Results of the DCU operator

is shown in Figure 13. In this Figure, complex numbers
are used, and we have:X = A+w.B Y = A−w.B where
w = Cos+ i.Sin.

The results, from the all in redundant algorithm with
CS architectures and BS ones, are summarized in Table
V. Once again, the BS architectures result in better perfor-
mances than the CS ones.

Fig. 13. FFT butterfly operator

Classical All Redundant
CS BS

Area 0.77 0.68 0.62
(mm2) ref -10.91% -19.54%

Time 63.68 66.24 56.42
(ns) ref +4.02% -11.39%

TABLE V. Results of the Butterfly operator

4) 1-D DCT operator: The architecture of the DCT
is shown in Figure 14. It represents the the Loeffer Signal
Flow Graph [13] which computes the 1-D DCT of 8 pixels
in only one cycle.

The results are summarized in Table VI, resulting again
in better performances for the BS architectures. Let us
compare those implementations with the ones resulting
from our previous approach in [2] and [3]: the optimal al-
gorithm produces better area (up to -4.6%) and timing (up
to -1.7%). In addition, the optimal algorithm is performed
up to 84% faster than the pattern matching technique.



8

Fig. 14. 1-D DCT operator

Classical All redundant Pattern Matching
CS BS CS in [2] BS in [3]

Area 3.96 3.91 3.73 4.1 3.85
(mm2) ref -1.23% -5.82% +3.5% -2.8%

Time 115.7 100.25 95.99 100.53 97.65
(ns) ref -13.35% -17.04% -13.1% -15.6%

TABLE VI. Results of the DCT operator

V. Conclusion

In this paper, two algorithms have been presented,
which use automatically redundant arithmetic in order to
optimize high computationnal digital circuits. The first
algorithm does a systematic transformation of arithmetical
operators into their redundant form. The second one does
an optimal allocation for the timing. In addition, those
algorithms use the Carry-Save architectures only or the
Borrow-Save architectures also in order to optimize sub-
stractions. We aimed at introducing the different solutions
and outlining their prons and cons.

Our experimental results can be summarized as follows.
First of all, a systematic transformation of arithmetical
operators into their redundant form is not the optimal
approach to obtain the best timing. An algorithm finding
the best allocation for each operator (classical, mixed or
redundant) seems like the best alternative. Second of all,
this new approach based on graph theory seems better
adapted to DAGs than the previous one.

We aim at testing our algorithms on other benchmarks
in order to strengthen our conclusion that the optimal
allocation algorithm leads to better results. Since this

algorithm is currently limited to trees, we also aim at
extending its use to DAGs in order to be able to use it
on more benchmarks.

References

[1] A. Avizienis. Signed-digit number representation for fast
parallel arithmetic. IRE Trans. Electronic Computers,
10:389–400, 1962.

[2] S. Belloeil, R. Chotin-Avot, and H. Mehrez. Data path op-
timization using redundant arithmetic and pattern matching.
In Workshop on Design and Architectures, 2007.

[3] S. Belloeil, R. Chotin-Avot, and H. Mehrez. Arithmetic data
path optimization using borrow-save representation. In IEEE
annual symposium on VLSI, 2008.

[4] S. Belloeil, D. Dupuis, C. Masson, J.-P. Chaput, and
H. Mehrez. Stratus: A procedural circuit description lan-
guage based upon python. In International Conference on
Microelectronics, pages 275–278, 2007.

[5] Y. Dumonteix, Y. Bajot, and H. Mehrez. A fast and
low-power distance computation unit dedicated to neural
networks, based on redundant arithmetic. In International
Symposium on Circuits and Systems, volume 4, pages 878–
881, 2001.

[6] Y. Dumonteix, R. Chotin, and H. Mehrez. Use of redundant
arithmetic on architecture and design of a high performance
DCT macro-bloc generator. In Conference on Design of
Circuits and Integrated Systems, pages 428–433, 2000.

[7] Y. Dumonteix and H. Mehrez. A family of redundant multi-
pliers dedicated to fast computation for signal processing. In
International Symposium on Circuits and Systems, volume 5,
pages 325–328, 2000.

[8] A. Greiner and F. Pecheux. Alliance: A complete set of cad
tools for teaching vlsi design. In EuroChip Workshop, 1992.

[9] A. Guyot. Ocapi: architecture of a vlsi coprocessor for the
gcd and the extended gcd of large numbers. Symposium on
Computer Arithmetic, pages 226–231, 1991.

[10] A. Guyot, Y. Herreros, and J.-M. Muller. Janus, an on-line
multiplier/divider for manipulating large numbers. Sympo-
sium on Computer Arithmetic, pages 106–111, 1989.

[11] T. Kim, W. Jao, and S. Tjiang. Arithmetic optimization
using carry-save-adders. In Design Automation Conference,
pages 433–438, 1998.

[12] Y. Kim and T. Kim. Accurate exploration of timing
and area trade-offs in arithmetic optimization using carry-
save-adders. In Conference on Asia South Pacific design
automation, pages 622–628, 2001.

[13] C. Loeffler, A. Lightenberg, and G. Moschytz. Practical fast
1d-dct algorithms with 11 multiplications. In Intl. Conf. On
Acoustics, Speech and Signal Processing, pages 988–991,
1989.

[14] J. M. Muller. Elementary Functions, Algorithms and Im-
plementation. Birkhauser Boston, 1997.

[15] J. Um, T. Kim, and C. Liu. Optimal allocation of carry-save-
adders in arithmetic optimization. In IEEE International
Conference on Computer-Aider Design, pages 410–413,
1999.

[16] A. Vacher, M. Benkhebbab, A. Guyot, T. Rousseau, and
A. Skaf. A vlsi implementation of parallel fast fourier
transform. European Design and Test Conference, pages
250–255, 1994.


