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Abstract

Considering the performance increase provided by re-
dundant operators such as adders and multipliers, it ap-
pears interesting to generalize the use of those operators in
high computational digital circuit design. Using redundant
arithmetic in conjunction with classical arithmetic is never-
theless a complex task. Optimization CAD tools which au-
tomate its use become therefore very helpful. However the
existing approaches are restricted in using only the Carry-
Save representation. In this paper we propose to overcome
this limitation with an exploration of the possible optimiza-
tions of using the Borrow-Save representation also. To illus-
trate this, the optimizations of a Distance Computation Unit
(DCU) and a Discrete Cosine Transform (DCT) operators
are presented.

1. Introduction

Redundant operators such as adders and multipliers have
very good performances in terms of time and area [13, 5, 8].
Using those operators in VLSI circuit design can thus ap-
pear advantageous, enabling architecture optimizations and
consequently further improvements as for circuits perfor-
mances. Several hand-made implementations have been
done using those architectures, such as circuits finding the
greatest common divisor [7], or performing the fast Fourier
transform [14]. Let us consider the implementation of a
DCU [3] and a DCT [4] operators: it results in both cases
in a significantly increase of the timing performance (up to
35%) with a small area overhead (17% in the worst case),
compared to a classical implementation.

Using redundant arithmetic in an explicit way can nev-
ertheless appear quite tedious to non initiated designers, for
whom, furthermore, the rapid pace of technological evolu-
tion puts a great ”time to market” pressure. Such a pres-
sure on design cycle combined with strict performance con-
traints make more and more useful the automation of the in-

troduction of redundant arithmetic in circuit design, bring-
ing it more accessible. There has therefore been an exten-
sive research work on the arithmetic optimizations in sev-
eral areas such as high level synthesis [12] and logical syn-
thesis [9, 10]. Those works however focus on using only the
Carry-Save representation. This leads to good results, but it
is not the best approach in order to handle substractions.

In this paper, we therefore present the use of the Borrow-
Save representation for computations involving substrac-
tions. Our work, described in [2], consists in studying
the chains of arithmetical operators, and proposing general
rules for optimization. Our previous approach, which fo-
cused only on the Carry-Save representation, resulted, for
the optimization of a DCT operator, in -13.1% for the timing
with a area overhead of +3.3%. The performances presented
in this paper result from the optimizations of the same op-
erator, as well as a DCU operator, using the Borrow-Save
representation. The remainder of this paper is organized as
follow: Section 2 and 3 contain a global description of the
redundant arithmetic and the associated architectures. In
Section 4, we brieftly describe our redundant optimization
tool. Section 5 presents the results of our experiments and
then we conclude.

2. Redundant arithmetic

2.1. Number representation

Redundant arithmetic involves two number representa-
tions [1]:

• Carry-Save representation: A digit is defined by
csi = cs0i +cs1i with csi ∈ {0, 1, 2} so that a number is
considered as the sum of two terms: CS = CS0+CS1

• Borrow-Save representation: A digit is defined by
bsi = bs0i − bs1i with bsi ∈ {−1, 0, 1} so that a
number is considered as the substraction of two terms:
BS = BS0 −BS1



The abbreviations CS and BS are commonly used for
Carry-Save and Borrow-Save representations, as well as NR
and R for classical and redundant representations.

2.2. Mixed arithmetic

The sole use of redundant arithmetic in data path descrip-
tion is not conceivable for several reasons. Firstly, we must
preserve the NR representations of the inputs/outputs of the
circuits. Secondly, we have to deal with non-arithmetic op-
erators such as multiplexors, boolean operators, etc... Clas-
sical and redundant arithmetics have therefore to be com-
patible. This involves: (1) having at disposal every arith-
metic operator accepting both R and NR inputs/outputs, (2)
being able to convert one representation to the other (e.g.
the conversion CS→NR is the addition between the two
terms composing the CS number). This new arithmetic is
called mixed arithmetic, defined as the combination be-
tween classical and redundant representations.

3. Architectures

3.1. Carry-Save architectures

Adders The architecture of a mixed adder (adding a CS
number and a NR number) is shown in Figure 1. A simi-
lar architecture exists for a redundant adder (adding two
CS numbers). Both adders provide a CS output made of the
effective sum and the carries (Output = S + C). This archi-
tecture shows the main benefit of redundant arithmetic: it
allows to suppress the carry propagation in the computation
of an addition. The time to perform an addition is thus con-
stant, independent of the number of digits. Addition being
an essential operator, the potential benefit of using redun-
dant/mixed adders is significant.

Figure 1. Implementation of a mixed adder

Multipliers The architecture frame (Figure 2) is divided
into four parts [5]: (1) recoding, for inputs in R form, (2-3)
partial products+sum (effective computation of the multi-
plication), (4) conversion, to obtain the output in NR form.
The second and third parts are mandatory. The first and last
parts are optionnal, depending on the representations of the

Figure 2. Implementation of a multiplier

inputs/output. The output of the Wallace tree [13] being
in CS form, allowing the output of the multiplier to be in
CS form produces the deletion of the final conversion. CS
multipliers are therefore bound to have a better critical time
than classical ones, but a bigger area because of the input
recoders (especially with two R inputs).

Representations Schemantic representations used for
mixed/redundant operators are shown in Figure 3. For all
the tests presented, we used the place and route tools of the
Cadence CAD System using the Alliance [6] CMOS Stan-
dard Cell Library in 0.35µm.

a. Mixed adder b. Redundant adder

Figure 3. Representations

3.2. Borrow-Save architectures

Adders BS architectures allow to perform substractions.
Using the BS representation, a mixed adder (adding a BS
number and a NR number) consists in computing: BS+-
BS−+NR whereas a redundant adder (adding two BS
numbers) consists in: BS+

0 -BS−0 +BS+
1 -BS−1 . Two kind

of architectures exist in order to compute those operations:
(1) with a CS output (Figure 4) and (2) with a BS output
(Figure 5).

Table 1 compares the use of the different architectures, in
terms of time and area, to perform an arithmetic computa-
tion involving substractions: a classical architecture (Sklan-
sky adder [13]) (NR), the Carry-Save architecture (CS), the
Borrow-Save architecture with a BS output (BS1) and the
one with a CS output (BS2). Those results show that the
BS architectures are, at least, as good as the CS one. The
BS1 architecture seems to have a better timing and the BS2
a better area. They indicate also that the larger the numbers
are, the better the improvements are.

As it is going to be explained in the following section, the
interest of using BS architectures depends on the position



width Area Time
(mm2) (ns)

NR CS BS1 BS2 NR CS BS1 BS2
8 0.06 0.03 0.04 0.03 23.9 22.4 20.5 22.4

ref -50% -33.3% -50% ref -6.3% -14.2% -6.3%
16 0.14 0.07 0.09 0.05 30 24.4 23.8 25.7

ref -50% -35.7% -64.3% ref -18.7% -20.7% -14.3%
32 0.31 0.15 0.19 0.14 37.7 28.7 28.1 30

ref -51.6% -38.7% -54.8% ref -23.9% -25.5% -20.4%
64 0.66 0.3 0.39 0.3 48 34.8 34.1 36.1

ref -54.5% -40.9% -54.5% ref -27.5% -29% -24.8%
128 1.47 0.65 0.82 0.65 63.3 44 43.4 45.4

ref -55.8% -44.2% -55.8% ref -30.5% -31.4% -28.3%

Table 1. ( a - b ) + ( c - d )

of the substraction in the arithmetical chain: it is more prof-
itable when the substraction is in the middle of the chain.

Figure 4. BS adder with a CS output

(a) Adder’s architecture

(p) plus-plus-minus cell [8]

Figure 5. BS adder with a BS output

Multipliers BS architectures have the same frame than
the CS ones [5]. The difference is in the recoding part. The
computations made are then S+C=(BS+-BS−)*NR for
mixed multipliers and S+C=(BS+

0 -BS−0 )*(BS+
1 -BS−1 )

for redundant ones.
Table 2 compares the use of the different architec-

tures to perform a computation involving substractions
and multiplications: a classical architecture (Sklansky
adders+classical multiplier), the CS architecture and the BS

one. The results show that the BS architecture has a faster
timing than the CS one and that the area overhead is smaller.
They indicate also that the larger the numbers are, the better
the improvements are.

width Area Time
(mm2) (ns)

NR CS BS NR CS BS
8 0.18 0.25 0.21 50.1 48.4 45.9

ref +38.9% +16.7% ref -3.4% -8.4%
16 0.5 0.68 0.57 69.3 60.6 57.1

ref +36% +14% ref -12.5% -17.6%

Table 2. ( a - b ) * ( c - d )

4. Automatic optimization

4.1. Pattern matching

Our aim is to take advantage of redundant arithmetic by
introducing automatically redundant operators in the pro-
cess of circuit design. Our CAD tool is part of a classi-
cal VLSI design flow and takes place just before logical
synthesis: from a functional specification of a circuit and
a knowledge in arithmetic, we obtain an optimized virtual
description (i.e. before structural mapping) of the circuit.
Our tool modifies the specification of the different opera-
tors and interconnections, while ensuring the feasibility of
the mapping toward a target technology. After this process,
the VLSI design flow remains unchanged. It is out of the
scope of this paper to detail our tool, interested readers will
find informations in [2]. Here we will summarize its main
features. The principle is to search for patterns (collection
of arithmetical operators and their interconnections) which
are bound to be replaced by new ones, composed of redun-
dant operators, such as shown in Figure 6. Pattern couples
are called rules. The fundamental assumption for a rule is
that a pattern and its substitute have the same behavior and
the same inputs/outputs. The second assumption is that the
substitute pattern is more optimized than the first one.



Figure 6. A pattern and its substitute

Three sets of rules have been established: a Carry-
Save set and two Borrow-Save sets (one using the BS→BS
adders architectures and the other the BS→CS ones). In
each set, every pattern has been evaluated in terms of tim-
ing and area in order to check that the substitute pattern of
each rule has better performances than the one it is substi-
tuted to. Each set has been created in order to be sufficient
to handle most cases of connection between arithmetic op-
erators: with smaller sets, results might not be optimal, in
opposition, bigger sets would not lead to better results, and
would make tough the choice of an optimal rule if several
patterns matched.

4.2. Advantage of the Borrow-Save repre-
sentation

We aim at showing the interest of using the BS represen-
tation to optimize substractions. It is based on two assump-
tions. First of all, the BS architectures are as optimized as
the CS ones. Second of all, the use of the CS architectures
leads to the introduction of invertors in arithmetical chains
(because, in order to handle substractions, it is done after
having changed the substractions into additions using two’s
complement), which can block possible optimizations, such
as shown in Figure 7. Figure 7.b shows that the use of the
BS representation allows to avoid that issue.

a. Circuit b. BS optimization

c. Pre-treatment d. CS optimization

Figure 7. Problem due to a substraction

Table 3 compares the use of the different architectures
to perform three arithmetic computations with substractions

a. Substractions tree b. Sequential substractions

Figure 8. Substraction computations

emphasizing this issue: (1) the computation of Figure 7.a,
(2) an eight operands substraction tree (Figure 8.a), (3) eight
operands sequential substractions (Figure 8.b). Those re-
sults show that both BS architectures result in a better tim-
ing and area than the CS one. They highlight better the
point of using the BS architectures than the ones of Table
1 as the computations are chosen intentionally in order to
have several substractions in a row, i.e. several invertors in
the middle of the arithmetical chains.

4.3. Multiple operation trees

One important issue to handle is the management of mul-
tiple operation trees. Our tool provides three different ways
to handle this.

a. Circuit b. Priority to the area

c. Priority to the timing d. Trade-off

Figure 9. Multiple operation trees

Let us consider the operation of Figure 9.a:

• Each tree can be optimized separately: this produces
the minimum area, but a non optimal optimization of
the timing (because of an extra cost of CS→NR con-
versions). This behavior is called Priority to the area
(Figure 9.b).



Computation width Area Time
(mm2) (ns)

NR CS BS1 BS2 NR CS BS1 BS2
8 0.05 0.04 0.04 0.03 23.1 27.4 20.4 22.4

ref -20% -20% -40% ref +18.6% -11.7% -3%
16 0.13 0.1 0.09 0.07 29.3 33.5 23.8 25.7

ref -23.1% -30.8% -46.1% ref +14.3% -18.8% -12.3%
(a+b)-(c+d) 32 0.3 0.23 0.19 0.14 36.9 41.1 28.1 30

ref -23.3% -36.7% -53.3% ref +11.4% -23.8% -18.7%
64 0.63 0.48 0.39 0.3 47.3 51.5 34.1 36.1

ref -24.7% -38.7% -51.8% ref +8.9% -27.9% -23.7%
128 1.41 1.05 0.82 0.65 62.6 66.8 43.4 45.4

ref -25.7% -41.6% -53.6% ref +6.7% -30.7% -27.5%
8 0.13 0.1 0.12 0.11 36 44.5 33.3 34.5

ref -23.1% -7.7% -15.4% ref +23.6% -7.5% -4.2%
16 0.32 0.22 0.26 0.24 44.9 53.3 39.4 40.7

ref -31.2% -18.7% -25% ref +18.7% -12.2% -9.3%
tree 32 0.72 0.49 0.59 0.55 55.3 63.7 47.1 48.3

ref -31.9% -18.1% -23.6% ref +15.2% -14.8% -12.7%
64 1.6 1.1 1.3 1.2 69 77.4 57.5 58.7

ref -31.2% -18.8% -25% ref +12.2% -16.7% -14.9%
128 3.54 2.38 2.84 2.67 88.6 97 73 74

ref -32.8% -19.8% -24.6% ref +9.5% -17.6% -16.5%
8 0.14 0.14 0.11 0.09 76.1 76.1 58.3 53.4

ref 0% -21.4% -35.7% ref 0% -23.4% -29.8%
16 0.32 0.32 0.24 0.2 93.6 93.6 70.4 64.7

ref 0% -25% -37.5% ref 0% -24.8% -30.9%
sequential 32 0.72 0.72 0.53 0.44 114.7 114.7 83.6 78

ref 0% -26.4% -38.9% ref 0% -27.1% -32%
64 1.6 1.6 1.15 0.98 140.1 140.1 100.7 95

ref 0% -28.1% -38.7% ref 0% -28.1% -32.2%
128 3.54 3.54 2.49 2.16 174.1 174.1 124.6 118.2

ref 0% -29.7% -39% ref 0% -28.4% -32.1%

Table 3. Computations involving substractions

• In order to avoid that problem, another behavior, called
Priority to the timing, consists in treating every ex-
pression with a separate tree and without any ressource
sharing: this generates a minimal timing, but an exces-
sive overload as for the area (Figure 9.c).

• The most optimal solution is to make trade-offs be-
tween area and timing as discussed in [10]: it allows to
optimize the timing while minimizing the area penalty
(Figure 9.d).

5. Benchmarks

DCU operator The architecture [3] is composed of two
parts (Figure 10): the first one computes the distances (Ai -
Bi )2, the second one performs the sum of these distances.

Figure 10. DCU operator

1-D DCT operator Several algorithms have been pro-
posed in order to compute the 1-D DCT. We have chosen
the Loeffer Signal Flow Graph [11] which has been widely
used. This implementation (Figure 11) computes the 1-D
DCT of 8 pixels in only one cycle.

Figure 11. 1-D DCT operator



Area Time
Architecture Mode (mm2) (ns)

No CS BS 1 BS 2 No CS BS 1 BS 2
DCU - 0.24 0.29 0.24 0.24 65.9 56.7 54.4 54.4

Operator ref +20.8% 0% 0% ref -14% -17.4% -17.4%
Priority 3.96 3.9 3.9 3.95 115.7 114.84 114.84 117.04

1-D to the area ref -1.5% -1.5% -0.25% ref -0.7% -0.7% +1.2%
DCT Priority 3.96 7.41 7.43 8.11 115.7 106.27 98.84 96.25

operator to the timing ref +87.1% +87.6% +104.8% ref -8.1% -14.6% -16.8%
Trade 3.96 4.09 4.91 3.85 115.7 100.53 96.57 97.65
-off ref +3.3% +24% -2.8% ref -13.1% -16.5% -15.6%

Table 4. Experimental results

Experimental results The tests performed are meant to
show the usefulness of the Borrow-Save representation. We
have therefore made, from the classical arihmetic represen-
tation, the three different kinds of optimizations: using the
CS architectures, and the two kind of BS architectures.

The DCT architecture contains multiple operation trees,
and therefore is a good example in order to test the perfor-
mances of the three kinds of options of the tool also: Pri-
ority to timing, Priority to area and Trade-off. Table 4
shows the performances obtained with the different behav-
iors as for timing and area: it results in a better timing im-
provement for both BS architectures compared with the CS
one, with, in the worst case, a limited area overhead. Note
that those BS results offer better performances in area than
the manual implementation presented in [3, 4] with the per-
formances in timing in the same order of magnitude.

6. Conclusion

In this paper, we have presented the use of the Borrow-
Save representation during automatic optimization of high
computational digital circuits using redundant arithmetic.
We aimed at showing that using this representation in con-
jonction with the Carry-Save representation leads to better
results than using only the Carry-Save representation, when
optimizing computations involving substractions. Experi-
mental results indicate that the use of Borrow-Save architec-
tures leads to a better improvement of the critical time than
the use of the Carry-Save ones, with areas in the same order
of magnitude. This shows that our work can be used ef-
fectively on several designs with mixture of additions, sub-
stractions and multiplications. We therefore aim at testing
our tool on other benchmarks with substractions in order to
strenghten our conclusion.
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