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Abstract: Telecommunication applications require an in-
creasingly high throughput; their task graph often exhibits
a high level of coarse grained parallelism. We extend the
KPN model by multiple writers and readers and present the
SystemC based co-design of a packet classification applica-
tion on a multi processor system on chip.

1 Introduction

Telecommunication applications process packet streams,
where essentially the same sequence of operations is per-
formed on each packet, but the actual computing depends
on the packet contents. Throughput requirements are vari-
able: backbone equipments, such as routers, require high
throughput and low processing per packet, while e g. traf-
fic analysis requires less throughput but intensive compu-
tation per packet. For [5], this variable processing time is
the main characteristic of network applications. Inter-task
communications can be done through message passing like
in STepNP [3], modeled in the form of data flow graphs
like Ptolemy [1] or use the shared memory capabilities of
the multi-processor hardware architecture. Kahn Process
Networks (KPN [2]) propose a semantics of inter-task com-
munication through point to point FIFO channels.

2 Application model

We focus on telecommunication applications written in
the form of a set of coarse grain parallel threads communi-
cating with each other. While the KPN formalism is well
suited for video and multimedia applications, which can be
modeled by a task graph where each communication chan-
nel has only one producer and one consumer, it is not con-
venient for telecommunications applications where several
tasks access the same communication buffer and whose task
graph exhibits a hybrid pipelined/task farm parallelism.

The application structure can be modeled as a directed
bipartite graph, where the two types of nodes are the tasks
and the communication channels. Each task can be imple-
mented as a software task running on programmable proces-
sors, or as an hardware coprocessor. Each communication

channel can have several producers, and several consumers,
and is protected by a specific exclusive access lock.

Classification is an important and resource-consuming
part of many telecommunication applications. Packet head-
ers or contents are analyzed, depending on the chosen
method, before sending on the packet to one of several pri-
ority queues. Figure 1 shows the task and communication
graph (TCG) of a typical classification application. For a

Figure 1. Classification application TCG

large majority of networking applications it is sufficient to
consider thebeginningof a packet, which is consequently
stored in faster on-chip RAM. Assume that packets have al-
ready been cut into chunks of equal size; these so-called
slots of 128 bytes are adapted to the size of the on-chip
memory banks. Each slot has a small descriptor (usually
eight byte) containing the address of the next slot and some
necessary information to retrieve it. Only descriptors transit
the MWMR channels, limiting thus the size of the memory
allocated to the channels. Theinput taskaccepts on-chip
and off-chip addresses from two separate channels. It reads
Ethernet IP packets, computes the number of slots required,
and copies these slots to on-chip and off-chip memory, re-
spectively. Aclassification tasktries to read one or more
descriptors and then retrieves the packet from memory. The
packet is deallocated if one of various checks fails. The
classification task then writes the descriptor to one of twelve
priority queues. Thescheduling tasksponder by the priority
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Figure 2. Generic hardware architecture

of the current queue and write the descriptor to the unique
output queue if eligible. Abootstrap taskorganizes the sys-
tem startup. Theoutput taskconstantly reads the output
queue. Each time a slot is read and sent to the buffer, its lib-
erated address is sent to either of the two address channels.
Classification, scheduling and bootstrap are software tasks,
while input and output tasks are hardware coprocessors.

3 Target hardware architecture

All components are integrated on a single chip (Multi
Processor System-on-Chip MPSoC). Our generic target
MPSoC architecture contains a variable number of small
programmable 32 bit RISC processors, a variable num-
ber of embedded RAM banks, other components such as
lock engine, terminals, interrupt controllers, and several
I/O coprocessors. These hardware components are cho-
sen from a large selection of simulation models from a
public domain library of simulation models written in Sys-
temC [4]. Hardware component models are connected to
an VCI/OCB compliant micro-network based on the shared
memory paradigm. There are two types of components:ini-
tiators (typically a processor’s cache or a coprocessor) and
targets (most others like RAM and terminal). Our hard-
ware descriptions are cycle-accurate bit-accurate. Figure 2
shows the hardware architecture with two processors and
one memory bank. On the TTY the progress of the applica-
tion can be observed, the Locks Engine manages the locks
when more than one initiator is present. The MWMR chan-
nel is located in on-chip RAM; it implements a communi-
cation channel between a software task running on CPU0
and a hardware task executed by coprocessor 1. To connect
a MWMR coprocessor to the VCI interconnect and thereby
to the RAM, a hardware wrapper is required.

To reduce contention on the interconnect in the presence
of many components, we use a clustered platform. The in-
put cluster contains one input coprocessor, a controller of
access to external memory and a memory bank for on-chip
slot storage. It is connected to other clusters by a network-

on-chip. The output cluster is symmetric to the input clus-
ter. Processing clusters contain four processors and their
caches, two memory banks, a timer and a locks engine. The
platform contains eight clusters: two are dedicated to I/O,
the remaining six are general purpose. In such a NUMA
(Non Uniform Memory Access) architecture, memory ac-
cess times differ depending on whether a processor accesses
a memory bank local to the cluster, or on another cluster.

Tasks are statically mapped unto processors, one task per
processor, to avoid context switching overhead the MIPS
R3000 processor model does not support multiple contexts.
For sake of efficiency, all MWMR channels are mapped to
cachedsegments. To guarantee coherency in the presence
of multiple readers and multiple writers, cache lines are se-
lectively invalidated after each MWMR channel access.

Small packets of 40 bytes payload and 14 bytes Ethernet
header constitute the worst case for classification, because
the number of headers to verify is largest wrt. the data
throughput. Mean latency is measured in SystemC simu-
lation cycles, from reading a packet from the input stream
to writing it to the output stream insteady state: bootstrap
is terminated and buffers have filled up. We observe de-
creasing latencies with increasing packet number: the In-
putEngine starts to copy packets into memory while the
classification tasks have not yet started their work; mean
latency is 14.000 cycles. For our platform running 200MHz
MIPS R3000, we achieve 1.67 bit/cycle i e. 334Mbit/sec.

4 Conclusion and perspectives

We designed a MPSoC platform using SoCLib com-
ponents and added two specialized I/O coprocessors. A
MWMR channel based task graph description has been inte-
grated as an optional front end for SoCLib. We are currently
exploring the design space more thoroughly.
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