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Abstract This study presents a systematic approach for power-aware design of an optimized capacitive
vibration energy scavenger. The proposed method is based on the mechanical domain impedance analy-
sis. First we investigated the mechanical properties (impedance) of the capacitive transducer/conditioning
circuit block. We found that this impedance depends strongly on the energy state of the conditioning cir-
cuit. From this conclusion we derived a method allowing to find the conditioning circuit operating mode
(voltages on the capacitors) maximizing the power yield for a given resonant MEMS transducer block, a
given conditioning circuit and given external vibration parameters. This method was successfully applied
on the system composed from a charge pump and an inductive flyback circuit. The study was validated by
behavioral modeling in VHDL-AMS language environment.
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1 Introduction
Mechanical energy harvesters using capacitive elec-
tromechanical transducers have recently been objects
of extensive research activities. They belong to the
class of multiphysical systems with strong coupling
between the physical domains, non-linear and time
variable. These properties make them very complex
and at the same time, extremely interesting for a the-
oretical study. The goal of such a study is to provide
a comprehensensive and analytic relation between the
harvester system parameters and the operation char-
acteristics (performances), so that an optimization of
the energy yield would be possible.

So far, most analytical studies were based on sim-
plifying assumptions concerning the transducer be-
haviour (e.g., Columb-Damped Resonant Generator,
[1]), and considered separately mechanical and elec-
trical domains. Such studies provide an insight into
fundamental trends and trade-offs related with the
harvester physics, but are unsufficient for a system-
atic design of real energy scanvenging systems.

In this study we propose a complete analysis
of a coupled behaviour of the system ”resonator-
transducer-conditioning circuit” without making any
simplification about the linearity of the building
blocks. We apply this analysis to the electrostatic
harvester which uses the conditioning circuit with ar-
chitecture presented in [3], but the developed method
is valid any other architectures as well.

In the proposed approach, the harvester is consid-
ered as a mechanical system composed from a source
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Figure 1: Electrical scheme of the harvester.

of an external force (the external vibrations), from a
second-order lumped-parameter linear resonator and
from a capacitive transducer associated with its con-
ditioning circuit (fig. 1). For commodity, this me-
chanical system is analyzed through its electrical net-
work (fig. 2). Here, the second newtonian law is mod-
eled by the Kirschoff mesh law, the external force is
modeled by a voltage source, the resonator is modeled
by a reactive linear network with impedance Zm. The
transducer is modeled by a dipole generating some
voltage (force) on its terminals. The force generated
by the transducer depends on the resonator vibration
amplitude and on the electrical state of the condition-
ing circuit.

The paper is organized in the following way. In
the section 2 we present our approach to the me-
chanical analysis of the harvester. In the section 3
we present a coupled electromechanical analysis of
the block ”transducer/conditioning circuit”. In the
section 4 we show how a design of optimal harvester
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Figure 2: Equivalent electrical network of the harvester.

is possible. In the section 5 we present the modeling
experiment validating the theory.

2 Mechanical analysis of harvester
Mechanical modeling of electrostatic harvesters has
been presented in numerous papers [1]. Here we give
some assumptions and definitions necessary for the
further demonstrations.

1. The external vibrations are supposed to be si-
nusoidal.

2. The resonator is supposed to be narrow-band.
From 1) and 2), even if the transducer is non-linear,

the mass vibrations are still close to sinusoidal, with
the same frequency as the external vibrations.

3. We say that the transducer is non-linear, since :
– even if the mass displacement is sinusoidal, the

generated transducer force is non-sinusoidal,
– the force generated by the transducer doesn’t

scale linearly with the amplitude of the mobile mass
displacement.

4. We suppose that the transducer force is periodic
and have the same fundamental frequency as the ex-
ternal vibrations.

Note that the assumption (4) is generally wrong,
especially if the transducer is an active system. But
in our, case, this assumption is correct since we intend
to design a harvester which operates in a steady state
corresponding to the maximal energy yield.

The power harvested by the transducer is given by
the formula:

P = −
1

T

∫

T

ftvdt, (1)

The velocity v is sinusoidal, the force ft is periodic
and non-sinusoidal, with the same period T : it can
be proven that only the fundamental component of
ft contributes to P . Thus, considering only the fun-
damental sinusoidal components of all system quan-
tities, it is possible to analyse the network through
the formalism of complex amplitudes. This formalism
uses extensively the notion of impedance. A mechan-
ical impedance is defined as the ratio between the
complex amplitude of force and velocity (the com-

plex amplitudes are named by dotted capial letters):

Zmech =
Ḟ

V̇
. (2)

This is the general definition of the mechanical
impedance, and it is usually employed for linear sys-
tems. To apply this definition to a non-linear trans-
ducer, we add to this definition that Ḟ represents
the complex amplitude of the fundamental sinusoidal
component of the force (generated by the transducer)
when the mass moves sinusoidly with a complex ve-
locity V̇ .

The formalism of complex amplitude allows to re-
place the differential newtonian equation by a com-
plex algebraic equation which is the mesh equation
for the equivalent network (fig. 2):

mȦext = (Zm + Zt)V̇ , (3)

where Ȧext is the complex amplitude of the exter-
nal vibration acceleration, m is the mass, Zm is the
impedance of the resonator, Zt is the impedance of
the transducer. The phase of the external vibrations
acceleration is taken to be zero, hence, Ȧext = |Ȧext|.

For the harvested power, (1) becomes:

P = 0.5|V̇ |2Re Zt. (4)

Hence, to maximize the power yield, both the am-
plitude of the mass vibration and the real part of the
transducer impedance are to be maximized.

In the next section we provide an insight into the
calculation of the transducer’s impedance.

3 Electromechanical properties of
the harvester

3.1 Electrical optimization of the condition-

ing circuit

The conditioning circuit presented in fig. 1 is com-
posed from a charge pump and from a flyback circuit
(in gray). The role of the chargepump is to trans-
fer the charge from a large reservoir capacitor Cres

toward a much smaller capacitor Cstore, making use
of the variation of the transducer capacitance (Cvar).
During the pumping, starting from a state where the
voltages of the three capacitors are equal, the volt-
age Vstore increases, Vres decreases very slightly (since
Cres ≫ Cstore). After some number of pumping cy-
cles, the Vstore growth is saturated. Fig. 3 presents an
example of evolution of Vstore and the corresponding
flow (power) of the harvested energy which is accu-
mulated in the system of capacitors Cstore and Cres

connected in series. It can be seen that at saturation,
the harvested power is close to zero.
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Figure 3: Example of operation of the conditioning cir-
cuit with and without flyback (thick and thin lines respec-
tively). Top: Vstore evolution, bottom: evolution of the
average power harvested during one Cvar variation cycle.

The flyback circuit is activated by the switch SW
when the chargepump approaches the saturation.
The flyback circuit has two roles. Firstly, it returns
the charge pump to some earlier state away from the
saturation, so to allow a continuous harvested energy
flow. Secondly, it takes away the harvested energy
from the system CresCstore and, using the inductive
energy buffer L, puts it in the reservoir capacitor
Cres, which is connected with the load supply cir-
cuit. This operation is presented by the thick line
curves in fig. 3.

The plots of fig. 3 were obtained by modeling, un-
der conditions that the resonator displacement am-
plitude and the Cvar variation are constant. This
plot helps to make a choice of the thresholds V1 and
V2 corresponding to the switching instants. It can
be seen that V1 and V2 points should be distributed
around the maximum of the power curve of the lower
plot. Theoretical calculation provides the value of the
Vstore at which the harvested power is maximal:

Vstore optimal = Vres

γ + σ
γ

+ 1
σ
γ

+ 2
, (5)

where γ = Cmax/Cmin, σ = Cmax/Cstore.

3.2 Transducer impedance

To calculate the transducer impedance following the
definition of section 2, it is necessary to calculate the
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Figure 4: Evolution of the transducer impedance during
the charge pump operation.

time evolution of the real transducer force ft(t) dur-

ing one vibration period and to expand it in complex
Fourier series: Ḟt is equal to the first (fundamen-
tal) complex Fourier coefficient, and the impedance
can be calculated using (2). Thus, the transducer’s
impedance is defined on one vibration period. Note
that this definition doesn’t require a periodicity of
the transducer force.

Fig. 4 presents three examples of the trans-
ducer impedance evolution with Vstore during the
chargepump operation, with different amplitudes and
Vres voltages. It can be seen that the real part of the
impedance has a maximum: this maximum happens
exactly to the optimal Vstore voltage given by the for-
mula (5) obtained by the electrical analysis. As well,
the formula (4) obtained by the mechanical analysis
states that at this point of maximal ReZt the energy
yield is maximal.

The transducer impedance depends on the mass
vibration amplitude |Ẋ |. The transducer impedance
value can only be deduced numerically, even for the
simpliest transducers with linear Cvar(x) relation.

The good news is that the function
Zt(Vres, Vstore, |Ẋ |) scales quadratically with Vres

and Vstore, as can be noticed from the plots of the
fig. 4 obtained with |Ẋ | = 50µm. Thus, it can be
tabulated for one value of Vres, for a given vibraiton
amplitude.

4 Optimal harvester design
The optimisation presented in the precedent section
assumes a constant and known vibration amplitude.
However, from (3), the amplitude of the mass vi-
bration depends on the mechanical impedance of the



transducer, which depends itself on the vibration am-
plitude. Thus, the problem is formulated as follows:
given a Cvar(x) of the transducer, given a resonator
with impedance Zm and given the amplitude of the
external vibrations, find the optimal operation con-
ditions of the resonator, i.e., the voltages Vres and
Vstore and the resonator vibration amplitude.

The optimization of the electrical part ties Vres

and Vstore: we always want Vstore = Vstore opt for
a given Vres and the resonator vibration amplitude.
Thus, since Z(Vres, Vstore, |Ẋ |) scales quadratically
with Vres and Vstore, we have:

Z(Vres, Vstore opt, |Ẋ |) = (6)

Z(Vres0, Vstore opt0, |Ẋ |) ·

(

Vres

Vres 0

)2

= α(|Ẋ |)V 2

res, (7)

where α is a complex number calculated numerically
for a given amplitude and for an arbitrary Vres0 value.

We now have one complex equation (3) and tree
free real unknown parameters, Vres and the absolute
value and the argument of the complex vibration am-
plitude. We propose to fix the needed mass vibration
amplitude. This does make sense since to maximize
the harvested power, the mass vibration amplitude
should be as high as possible following the formula
(4). Thus, in the most cases, the amplitude of the
mass vibration should be chosen close to the maxi-
mal amplitude allowed by the system geometry.

After the amplitude is chosen, the equation (4) pro-
vides an unique solution for the absolute value of Vres:

V 2

res opt =
m|Ȧext|

ω|Ẋ||α|

√

1 −

[

|Zm|ω|Ẋ|

m|̇Aext|
sin(φZ − φα)

]2

(8)

−
|Zm|

|α|
cos(φZ − φα), (9)

where m is the transducer mass, φZ and φα are the argu-
ments of the resonator impedance and the value α(|Ẋ |).

This Vres guarantees that for the chosen vibration
amplitude, the power yield is optimal.

5 Validation of the theory
To validate the theory, we designed a harvester with
the parameters and Cvar(x) profile given in [2]. We
chosen the mass vibration amplitude to be 47 µm:
our algorithm highlighted that an optimal energy
yield is obtained when Vres = 8.7 V , Vstore = 20.8 V .

We modeled the harvester using a precise VHDL-
AMS model [2]. The results agreed perfectly. An ex-
ample of results of the modeling experiment is shown
in fig 5: exactly 47 µm of the resonator displace-
ment was obtained for the optimum value of Vres,
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Figure 5: Modeling results: vibration amplitude and har-
vester power with Vstore = 20.8V (V1 = 20V , V2 = 21.6V ).

which corresponds to a maximal harvested power of
4.9 µW, also predicted by the analysis. Moreover,
making the experiment with Vres voltages different
from the prescribed value of 8.7 V, we systematically
observed degradation in the harvested power and, for
lower Vres, an unwanted contact with the stoppers lo-
cated at +/- 50 µm (fig. 5).

6 Conclusion and future work
The proposed approach of the harvester system anal-
ysis provides an insight into the mechanism defining
the energy yield. As it can be seen, this technique is
much more complex than a simple impedance match-
ing approach: firstly, because of the non-linearity of
the system, secondly, because of the structural limi-
tations of the available transducer impedance range,
which are imposed by the physics of the transducer
and by the architecture of the conditioning circuit.

This study opens a way for a more deep investiga-
tion of the fundamental properties of the system. For
example, given the non-linearity of the studied sys-
tem, the question about the stability of the solution
provided by the formula (9) remains open.
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