
A New Coarse-Grained FPGA Architecture Exploration Environment

Husain Parvez, Zied Marrakchi, Umer Farooq, Habib Mehrez
LIP6, Université Pierre et Marie Curie
4, Place Jussieu, 75005 Paris, France

parvez.husain@lip6.fr

Abstract

This paper presents an exploration environment for the
design of 2D island-style coarse grained FPGA architec-
tures. An architecture description file defines various archi-
tectural parameters including the definition of new coarse
grained blocks, the positioning of blocks in the architecture
and the selection of routing network. Once the initial archi-
tecture is defined, a software flow places and routes a target
netlist on the generated architecture. The placement cost
of a netlist is optimized either by changing the position of
netlist instances on its respective blocks or by changing the
position of blocks on the architecture. A single FPGA ar-
chitecture can also be obtained for mapping a set of netlists
at mutually exclusive times. It has been found that the sum
of the placement costs of all the netlists is found to be min-
imum if all the netlists are used to get a single architecture.
A set of DSP test-benches is used to show the effectiveness
of the various techniques used in this work.

1. Introduction

This work proposes a new environment for the ex-
ploration of coarse-grained FPGAs. Previously VPR [3]
(Versatile Place and Route) has been extensively used for
the exploration of fine grained FPGAs. Inherently it does
not support coarse grained blocks. However [2] and [8]
have extended VPR to explore specific coarse grained
architectures. In the same context, [5] has developed the
virtual embedded block methodology (VEB) to model
arbitrary embedded blocks on existing commercial FPGAs.
Later [12] has incorporated VEB methodology in VPR,
thus enabling the support of architectures other than
commercial FPGAs. [10] has also developed a CAD tool
for FPGAs with Embedded Hard Cores.

All this previous work propose a pre-determined floor-
planning organization and does not consider the problem of
finding the block positions in the architecture. Our major
contribution consists of proposing an environment that
refines the FPGA floor-planning.

2. Exploration Environment

The basic working ground of the exploration environ-
ment is a grid of equally sized SLOTS. CELLS of differ-
ent sizes can be mapped on this grid. A CELL can be any
block; a soft block like a Configurable Logic Block (CLB);
or a hard block like an adder, multiplier or RAM etc. A
CELL when mapped on the slot-grid is referred to as a
SITE. Each SITE occupies one or more SLOTS. A rout-
ing channel passes between every two neighboring SITES.
A SITE occupying more than one SLOT can allow routing
channel to pass through it. A software flow maps the in-
stances of a netlist on the SITES of its respective types. The
PLACER, a software module, refines both the placement of
SITES on the slot-grid (floor-planning) and the mapping of
instances on the SITES (binding). The PLACER can also
generate an application specific FPGA floor-planning for
binding a set of netlists on it at mutually exclusive times.
This technique of placing a set of netlists is proposed in [6],
where it is used to explore configurable ASICs in a single
dimension. This work extends the same methodology to
explore two dimensional island-style FPGA architectures.
After floor-planning and binding, the ROUTER routes the
netlist on the architecture.

Architecture Description: An architecture description
file is used to define the complete architectural details. Nx
and Ny define the size of the slot-grid. The channel width
of the routing architecture is either fixed to a value W, or
a binary search algorithm searches the minimum possible
channel width between the minimum (Wmin) and the max-
imum (Wmax) channel widths. The position of SITES can
be either fixed to an absolute position on the slot-grid, or
it can be set as variable so that the PLACER can modify it
lateron. Each type of CELL is defined in the architecture
description file. The pins of the CELL are given a name, a
class number, a direction and the slot position on the CELL
to which this pin is connected. Pins having the same class
are considered equivalent. Thus a driver net targeting a re-
ceiver pin of a SITE (CELL instance) can be routed to any
of the pins of the SITE having the same class. If the routing
channel passes through a CELL, the PINS can be assigned
to any of the internal channels also. The routing network



Figure 1. Signal bounding box evaluation

supported by the environment can be either a bidirectional
mesh [3] or a unidirectional mesh [9].

Software Flow: Once the architecture is properly de-
fined, a software flow maps the netlists on it. The input to
this software flow is a structural netlist in VST (structured
VHDL) format. This netlist is composed of the traditional
standard cell library instances and the hard block instances.
VST2BLIF tool is modified to convert the VST file having
hard blocks to BLIF format. Later a PARSER removes all
the instances of hard blocks and passes the remaining netlist
to SIS [11] for synthesis into 4-LUT format. All the depen-
dence between the hard blocks and the remaining netlist is
preserved by adding new input and output pins to the main
netlist. After SIS, and later by the conversion of the netlist
to NET format through T-VPACK [4], another parser adds
all the removed hard blocks into the netlist. It also removes
all the previously added inputs and outputs. This final netlist
in NET format, containing LUTs and hard blocks, is passed
to the PLACER and the ROUTER. In future instead of SIS,
we intend to use ABC [1].

3. The Placer

3.1 Bounding box formation

This work considers the position and direction of pins in
the formation of bounding box (bbx). All the input pins of a
SITE having same class are also included in the bbx. Thus
the bounding box of a net used in this work is the minimum
box which encompasses the driver and the receiver pins of
the net, and all the input pins of a SITE having the same
class as that of the receiver pin of the SITE connected to
the net. The PLACER tries to achieve a placement having
the minimum sum of the half-perimeters of the bounding
boxes of all the nets. Figure 1(a) shows a case in which
all the input pins of SITE ‘A’ have different class, whereas
in Figure 1(b) all its input pins have same class. The size
of the bounding box actually increases in 1(b) as compared
to 1(a); but this increase does not matter. The driver in-
stance targeting such a receiver pin (having other peer pins
of same class) will be having multiple placement options
for achieving the same placement cost.

Figure 1(c) and Figure 1(d) show two cases in which the
bounding box is formed without considering the pin posi-

(a) (b) (c) (d) (e) (f)

Figure 2. Site Movement Cases

tions and directions. In both cases, the bbxs are equally
sized. Whereas Figure 1(e) and Figure 1(f) show the same
two examples in which bbx is formed using pin positions
and their directions. It can be seen from the sizes of bbx
that the placement in Figure 1(f) is to be preferred over the
placement shown in Figure 1(e).

3.2 Placement Move Generation

The PLACER either moves an instance from one SITE to
another, moves a SITE from one SLOT position to another,
or rotates a SITE at its own axis. After each operation the
placement cost is recomputed for all the disturbed nets. De-
pending on the cost value and the annealing temperature the
operation is accepted or rejected. Multiple netlist files can
be placed together to get a single architecture floor-planning
for all the netlists. With multiple netlist placements, each
SITE can allow multiple instances to be mapped on it; but
multiple instances of the same netlist cannot be mapped on
a single SITE.

The PLACER performs an operation on a “source” and
a “destination”. The “source” is randomly selected to be
either an instance from any of the input netlists or a SITE
from the architecture. If the source is an instance, then any
random matching SITE is selected as its destination. If the
source is a SITE to be rotated, the same source position be-
comes the destination as well.

If the source SITE is to be moved, a random slot is
selected as its destination. The rectangular window start-
ing from this destination slot, having the same size as the
source SITE is called as the destination window, whereas
the rectangular window occupied by source SITE is called
as source window. The dashed line in Figure 2(a) is the
source window, and the solid line in Figure 2(b) depicts a
valid destination window. The source window will always
contains a single SITE, whereas the destination window can
contain multiple SITES. The destination slot is rejected if (i)
the destination window exceeds the boundaries of the slot-
grid, (ii) the destination window contains atleast one such
SITE which exceeds the limits of the destination window
(as shown in Figure 2(c)) and (iii) the source window over-
laps the destination window diagonally (i.e partially hori-
zontal, partially vertical overlap). The procedure is repeated
until a valid destination slot is found.

Instance Move: In this case, a move operation is applied



on the source instance and the destination site. If the desti-
nation site is empty, the source instance is simply moved to
the destination site. If the destination site is occupied by an
instance, then a swap operation is performed.

Site Jump: If the source window does not overlap with
the destination window, a JUMP operation is performed.
All the sites in the destination window are moved to the
source window, and the source site is moved into the desti-
nation window. Each affected SITE breaks its link with the
current slots and connects with new slots.

Site Translate: If the source site is common both in the
source and the destination windows then a translation is per-
formed. Currently only the horizontal or vertical translation
is performed. No diagonal translation is performed. Fig-
ure 2(d) and 2(e) show a case of vertical translation. The
five sites found in the upper 2 rows of the destination win-
dow (as shown in Figure 2d) are moved to the lower 2 rows
of the source window (as shown in Figure 2e). The source
site is then moved to the destination window.

Site Rotate: The rotation of SITES is important when
the classes of each of its pins are different. In such a case
the bounding box varies depending on the pin positions and
their directions. Multiples of 90◦ rotation are allowed for all
the SITES having a square shape, whereas only 180◦ rota-
tion is allowed for rectangular (non-square) SITES. A 90◦

rotation for rectangular SITES involves both rotation and
move operation; which is left for future work. The orienta-
tion of SITE is used by the bounding box cost function to
correctly calculate the exact position and direction of each
of its PINS. Figure 2(f) depicts a 90◦ clock-wise rotation.

4. Experimental Results

In this work a set of 4 testbenches is used to design
an FPGA. The goal is to generate a single coarse-grained
FPGA floor-planning for the given testbenches. In the first
step, these benches are experimentally analyzed to deter-
mine which components should be made as hard blocks.
The selected blocks are defined, and different placement
and floor-planning techniques are applied on them to min-
imize the overall placement cost. The total switches in the
architecture and the switches used for routing are measured
with bi-directional and uni-directional routing channels.

Netlist generation: The netlists are extracted from gen-
erators written in a procedural language. These netlists are
generated in a modular fashion which makes it much easier
to extract different blocks. Only those blocks are selected
as hard blocks which are used at least by 2 netlists. The re-
maining blocks are converted to soft blocks (CLB) using the
software flow. The set of blocks used by each of the netlists
are shown in Table 1. The final target architecture, as shown
in the last row of Table 1, contains the maximum number of
blocks required by any of the netlist. Once the blocks are
identified, the sizes of each of these blocks are measured
and then compared with a CLB. This is done by placing and

clb mul 8 8 16 slans 16 sff 8 sub 8 smux 16 1 cmd
FIR 32 4 3 4 - -
FFT 94 4 3 - 6 -

ADAC 47 - - 2 - 1
DCU 34 1 1 4 2 2

Target 94 4 3 4 6 2

Table 1. Netlist block utilisation table

Size Lamda2 Ratio w.r.t clb MB Size
clb 280x250 1 1x1

slans 16 615x600 5.27 3x3
sff 8 215x200 0.61 2x2
sub 8 410x450 2.63 2x2

smux 16 1 cmd 215x200 0.61 3x3
mul 8 8 16 1120x1150 18.4 4x5

Table 2. Block size table

routing them in standard cell library using ALLIANCE [7].
Table 2 shows the related area information. This informa-
tion is used to decide the size of each block on the slot-grid.
Another major factor in deciding the sizes of these blocks
is their pin-demand. An imbalanced pin-demand gives rise
to under utilization of routing resources in a uniform rout-
ing channel. Thus, in this work all hard blocks are defined
with routing channel passing through them. The pins are
not only limited to the boundaries of the blocks, but are also
attached to the routing channel passing through them. The
sizes of the hard blocks are increased to make them rectan-
gular shaped, as well as to balance their pin demand; caus-
ing some area loss. One method to overcome this area loss
can be to employ the shadow cluster technique [8]. The
empty space can be filled by shadow CLBs that can be used
if the hard block is not used.

Architecture evaluation: From the required number
of blocks of each type an initial architecture is generated by
firstly placing all the hard blocks and then placing the CLBs.
The initial architecture floor-planning achieved is shown in
the Figure 4(a).

All the netlists are mapped together on the architecture
and different floor-planning techniques are tested. Once
the final floor-planning is achieved each netlist is individ-
ually placed and routed on it (without changing the floor-
planning). A set of 5 different combinations of floor-
planning are generated. (1) The initial architecture shown
in Figure 4(a) (I). (2) Only the rotation of blocks allowed
on the initial architecture (R). (3) Only block movement
allowed (M). (4) Both the block movement as well as the
rotation of all the blocks (MR). (5) The block movement
and the rotation of all the blocks allowed (except the CLBs)
(MRC). Each netlist is individually routed on these architec-
tures with both the bi-directional and uni-directional rout-
ing channel. Figure 3(a) shows how the placement cost



(a) Placement Cost w.r.t architecture (b) Switches Used (bi-directional)

(c) Routing Results (d) Placement Cost w.r.t netlist optimized architecture

Figure 3. Comparison results

of each netlist reduces with different floor-planning archi-
tectures. An average reduction of 25% in the placement
cost of all the netlist is noticed between the initial archi-
tecture and the MRC. The MRC architecture is shown in
Figure 4(b). The arrows in the figure show the orientations
of the blocks. Since all the four input pins of CLBs have the
same class, and the single output pin is found both on the
right and top side, the rotation of CLB is not of greater ad-
vantage in reducing the placement cost. Rather turning off
its rotation gives higher probability of movement/rotation to
other hard blocks. That is why a slight benefit in the place-
ment cost is noticed with no rotation of CLBs. Figure 3(b)
shows how the total switches used for routing reduce with
each floor-planning. Figure 3(c) shows the total number of
the switches in the architecture. These switches are propor-
tionate to the number of routing channels required to route
a netlist. It has been noted that the minimum number of
switches among all the netlists are found with the archi-
tecture (M). Moreover, the uni-directional routing network
takes on average 28% less number of switches than the bi-
directional network.

Figure 3(d) compares the placement costs of the netlists
on the architectures whose floor-planning is optimized ei-
ther for individual netlists (netlist name opt.) or for all the
netlists together (all opt.). The floor-planning optimized for
an individual netlist gives relatively better results only for
that particular netlist, but worse results for all the remain-
ing netlists; thus increasing the total placement cost of all
the netlist. Whereas the sum of placement costs of all the
netlists is found to be minimum with the “all opt.” floor-
planning. However the placement cost of a single netlist on
“all opt.” floor-planning is on average 17% higher than on
the floor-planning optimized for that particular netlist.

5. Conclusion and Future Work

In this paper we have presented an exploration environ-
ment for the conception of coarse-grained FPGAs. This ex-

(a) (b)

Figure 4. Optimized FPGA Floor-planning

ploration environment can be used to develop application
specific FPGAs optimized for a given set of netlists. In fu-
ture we intend to gather and test more test benches con-
taining coarse-grained components. The SITE movement
techniques need to be improved i.e. 90◦ and 270◦ rota-
tion for rectangular (non-square) sites, diagonal translation
and finally considering “source window” having multiple
sites. The hard blocks whose sizes have been increased for
balancing the pin demand produce some free space. This
space can be used to incorporate shadow clusters in those
blocks. Finally we intend to judge the floor-planning of ex-
isting commercial FPGAs using this environment.

References

[1] Berkeley logic synthesis and verification group, abc:
A system for sequential synthesis and verification.
http://www.eecs.berkeley.edu/ alanmi/abc/.

[2] M. Beauchamp, S. Hauck, K. Underwood, and K. Hemmert.
Embedded floating-point units in fpgas. FPGA, 2006.

[3] V. Betz, A. Marquardt, and J. Rose. Architecture and CAD
for Deep-Submicron FPGAs. January 1999.

[4] V. Betz and J. Rose. VPR: A New Packing Placement and
Routing Tool for FPGA research. International Workshop
on FPGA, pages 213–22, 1997.

[5] C.H.Ho, P.H.W.Leong, W.Luk, S.Wilton, and S.Lopez-
Buedo. Virtual embedded blocks: A methodology for eval-
uating embedded elements in fpgas. FCMM, 2006.

[6] K. Compton and S. Hauck. Automatic design of area-
efficient configurable asic cores. IEEE Transaction on Com-
puters, 2007.

[7] A. Greiner and F. Pecheux. Alliance: A complete set of cad
tools for teaching vlsi design. 3rd Eurochip Workshop, 1992.

[8] P. Jamieson and J.Rose. Enhancing the area-efficiency of
fpgas with hard circuits using shadow clusters. FPT, 2006.

[9] G. Lemieux, E. Lee, M. Tom, , and A. Yu. Directional and
single-driver wires in fpga interconnect. FPT, 2004.

[10] S.Dai and E.Bozorgzadeh. Cad tool for fpgas with embed-
ded hard cores for design space exploration of future archi-
tectures. FCCM’06, 2006.

[11] E. M. Sentovich and al. Sis: A system for sequential circuit
analysis. Tech. Report No. UCB/ERL M92/41, University of
California, Berkeley, 1992.

[12] C. Yu. A tool for exploring hybrid fpgas. FPL, 2007.


