

Laborat

Abstract— This p
generating an FPGA
generator is to redu
area penalty. This
phase, it generates
algorithms. The pa
bitstream configura
and a balanced cloc
the generator comp
placer and router
maneuvering of the
proposed method i
island-style FPGA
mitigation of Single
generated using a s
easy migration to
successfully migrate

1. INTR

Developing a new
challenging task.
creation involves a
increasing the over
an interesting optio
of the product at th
to do this is by
process. The work
generation of FPGA
The generator pres
integrate manual
generation procedu
parameterized algo
Later, the automate
layout. The partial
the design that are
are too difficult to b
In this work the p
clock distribution a
A number of prev
automated generati
this domain is don
complete automati
reduced manual la
generate different t
a complete FPGA.
routed using SKIL
the automatic lay
systems [5]. They h
Generic Techniques and CAD tools for
automated generation of FPGA Layout

Husain Parvez, Hayder Mrabet and Habib Mehrez

oire d’informatique de Paris 6; Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
E-mail : {parvez.husain, hayder.mrabet, habib.mehrez}@ lip6.fr
aper presents an automated method of
 layout. The main purpose of developing a

ce the overall FPGA design time with limited
generator works in two phases. In the first
a partial layout using generic parameterized
rtial layout is generated to obtain a fast
tion mechanism, an efficient power routing
k distribution network. In the second phase,
letes the remaining layout using automatic

. This two-phase technique allows better
 layout according to initial constraints. The
s validated by generating the layout of an
which includes hardware support for the
 Event Upsets (SEU). The FPGA layout is
ymbolic standard cell library which allows
 any layout technology. This layout is
d to 130nm technology.

ODUCTION AND RELATED WORK

 FPGA is a time consuming and a
It is reported in [3] that a new FPGA
pproximately 50 to 200 person years, thus
all time to market of the final product. It is
n to significantly reduce the time-to-market
e expense of limited area penalty. One way
automating the complete FPGA design
 presented here discusses the automatic
 layouts using open-source VLSI tools.

ented here employs an elegant scheme to
intervention in the automated FPGA

re. This is done with the help of generic
rithms which generate a partial layout.
d tools are used to complete the remaining
 layout is performed on those portions of
either important in one aspect or other, or
e handled properly by the automated tools.
artial layout performs the power routing,
nd the configuration memory placement.
ious attempts have been made regarding
on of FPGAs. One of the major works in
e in [6] [3]. They have demonstrated the
on of FPGA creation with significantly
bor. The GILES [3] tools are used to

iles which are then abutted together to form
 The clock and power segments are later
L [7]. Phillips and Hauck have focused on
out of domain specific reconfigurable
ave reduced the amount of configurability

required by an application domain, and thus have generated
smaller layouts.
These previous FPGA generators have used the commercial
VLSI tools; whereas this work presents an FPGA generator
based solely upon open-source VLSI tools. These tools can be
adapted easily for specific demands. This work also defines a
set of layout parameters to modify the layout according to the
initial requirements.

2. FPGA GENERATION
This work focuses on the generation of Island style FPGAs. It
comprises an array of configuration logic blocks (CLBs).
Each CLB contains a 4-LUT followed by a by-pass flip-flop.
Each CLB has 4 inputs (one on each side) and an output that
derives adjacent channels on its top and right sides. The CLBs
communicate with each other through a disjoint bi-directional
routing network. All the inputs and outputs of a CLB connect
with all the wires in a channel (i.e. Fc=1). The generated
FPGA matrix can have ‘Nx’ CLBs in X direction, ‘Ny’ CLBs
in Y direction, and a channel width ‘Ch’.

A. Open-source VLSI tools: An open-source VLSI tool kit
ALLIANCE [1] and a python based language STRATUS [2]
has been used for the development of this FPGA layout
generator. Alliance is a complete set of free CAD tools and
portable CMOS libraries for VLSI design. It includes a VHDL
compiler and a simulator, logic synthesis tools, and automatic
place and route tools. STRATUS generates parameterized
VLSI modules. It extends the python language with a set of
methods and functions for the procedural generation of netlist
and layout views of structural cell based designs.

B. Tile based approach: A tile based approach is used to
generate the desired FPGA architecture. In this approach a set
of tiles are identified in the architecture which are repeatedly
abutted to form the whole FPGA matrix. A set of 9 different
tiles as shown in figure 1 are used for the generation of the
target architecture. The principle tile is the ‘basic’ tile,
whereas the other tiles are its derivations. The tiles on the
leftmost column and the bottom row do not contain logic
blocks. They only contain a channel which connects the
adjacent IO pads and the adjacent logic block input. The rest
of the tiles contain a top horizontal channel, a right vertical
channel, a switch box, and a logic block. It can be seen in
figure 1 that the horizontal repetition of 2nd column and the
vertical repetition of 2nd row generate an FPGA of our
desired size. An important aspect in the tile based design is
that the adjacent sides of two abutted tiles must have same

Layout
Tile-N

Placer

Router

Netlist
Tile-1

Layout
Tile-1

Netlist
Tile-N

Architectural
Parameters

Database of
Layout

Parameters

Partial Tile
Layout

Tile Netlist

Tile Layout

FPGA
Netlist

FPGA
Layout

Tile generator

Loader
Netlist

Loader
Layout

FPGA generator

length. While deciding the sizes of the tiles, priority is given
to the tile which is used the most; in this case it is the ‘basic’
tile. The sizes of the other tiles are adjusted accordingly.

Fig. 1 –Tiles for island-
style FPGA

Fig. 2 – Complete FPGA generation CAD
Flow

C. Netlist generation: Each tile generator is written in the
language STRATUS. The tile generator receives a set of
architectural parameters as input. It then generates the netlist
of the tile in accordance with the given parameters. Loops and
conditional statements are used to generate a tile for different
parameters. The netlist of each tile is generated directly using
the standard cell library named SXLIB. It is a symbolic cell
library which comes with the ALLIANCE tool chain. C++
routines are also merged in the tile generator for generating
VHDL model of specific components. These components are
synthesized by the Alliance synthesizer named BOOG. After
synthesis these components are used by the tile generator. The
generated netlists of all the tiles are passed to the FPGA
generator which links them together to construct the netlist of
a complete FPGA. This generated netlist may be integrated in
any larger application.

D. Tile Layout: A tile generator generates both the netlist and
the partial layout of a tile. The partial layout is generated with
the help of parameterized algorithms which take a set of
layout parameters as its input. Currently, the partial layout is
performed for the generation of a fast bitstream configuration
mechanism, proper buffering of few long wires, power routing
and a balanced clock distribution network. Later-on the placer
and the router are used to complete the remaining layout.
The partial layout generation algorithm places all the SRAM
bits in rows and columns with a fixed distance between each
row, as shown in figure 3. Each SRAM bit in a row receives a
vertical data signal, and a horizontal strobe signal. The data
bits are written in all the SRAMs of a row only when strobe is
high for that row and the column is high for the complete tile.
The column and strobe signals come from bitstream
configurator (loader), which is discussed later in section 4.
The column and the data signals from the top are buffered
before they exit on the bottom side of the tile. Similarly a

strobe signals from the left is buffered before it exits on the
right side of the tile.
The algorithm starts placing the bitstream configuration cells
from a layout parameter named “Start Position”. Similarly the
height and width of a tile and the total SRAM bits are also
variable parameters which change for each different channel
width. These layout parameters change each time there is a
change in the number of SRAM bits. For this purpose a small
database is created which specify all these variables for
different channel widths. The layout algorithm and the
database specification are generic enough to handle other
architectural parameters that are not yet generic.

E. Power routing: The layout generation algorithm generates
horizontal and vertical power segments as shown in figure 3.
The alternating VDD and GND segments in the horizontal
direction are fixed whereas the placement of vertical power
segments is supported by few layout parameters. The total
number of vertical segments for power and ground in a tile,
their positions and their widths are defined in the layout
database. These values can be changed for tiles of different
sizes. The horizontal power segments use the 1st and 2nd
routing layer; whereas the vertical power segments use the 5th
routing layer.

F. Clock generation: In this work, we have used a tile based
approach for the routing of a symmetric H-tree clock
distribution network. It is found that a group of 13 tiles can be
used to generate a clock tree for a matrix of size 2N x 2N where
N>1. Each corresponding clock tile is automatically merged
with the FPGA tiles during the partial layout phase. This
results in the generation of multiple copies of the same FPGA
tiles having different clock routings. After the merging of
FPGA tiles and the clock tiles, 23 different tiles are produced.

Fig. 3 –Partial layout of a sample FPGA Tile

Vertical vdd & vss

column in

strobe out

(dim_x, dim_y)

strobe in

data in

data out
column out Start Position

buf

sram sram sram sramand buf

sram sram sram sramand buf

sram sram sram sramand buf

sram sram sram sramand buf

buf buf buf buf

Horizontal vdd & vss

Channel ‘Ch’

FPGA Size (NX, NY)

Logic Block

Switch Box

0ny

00

iny

basic

i0

nxny

nxj

nx0

0j

These tiles can be abutted together to construct any FPGA of
size 2N x 2N. All these clock tiles and the sample 8x8 clock
distribution matrix is shown in figure 4 and 5. The main
advantage of this mechanism is that we have a generic, tile
based and a balanced clock distribution network. One of the
disadvantage is that it limits the FPGA size in X and Y
direction to be equal and power of 2. But since the clock
generation algorithms and their merging with the FPGA tiles
is totally automatic; we can always implement a generic
algorithm for other clock distribution networks found in [4].
The only thing to consider for writing a new clock routing
algorithm is that the placement of clock buffers must not
overlap the partial layout. Currently the clock is routed in the
5th and 6th routing layer, whereas the partial layout is done on
the first 4 routing layers.

1 1 1 1 1 1

2

5

2 ‘8 ‘8 ‘8 2 2 6
‘7 5’ 7’ 5’ ‘7 7’ 1 5

2 4 4 2 4 26’
5 1 3 3 7 1 13

6’ ‘8 ‘8 ‘8 6’ ‘82
3 5’ 7’ 5’ 3 7’ 11

2 4 4 4 2 4 2 2

1

‘8

4

1
2

3
4

5
8 6

7

5’
6’

7’

‘7
‘8

Fig. 4 – H-tree clock distribution network
for 8x8 FPGA

Fig. 5 – Tiles for
constructing clock H-tree

G. Pin generation: In a tile based FPGA, the tiles connect
together by abutment, and the pin locations on the boundaries
of adjacent tiles must overlap. The positions of few of these
pins are calculated on the basis of the layout parameters found
in the database. Since the database is common for all the tiles,
thus the pin abutment problem does not arise for these pins.
There exist other pins which do not have fixed positions.
Since the final automatic placement of all the tiles is done
independently; it is difficult for the placer to correctly choose
the pin locations of the tiles. So a generic algorithm is written
to place all the remaining pins. This algorithm places the pins
in all the four directions of the tile and ensures that the pins
are not congested to a limited place. It utilizes all the available
space and tries to distribute the pins with equal spacing.

H. Automatic placement & routing: After the partial layout
generation of all the tiles; each tile is separately placed and
routed with the help of ALLIANCE automatic placer and
router named OCP and NERO respectively. The partial layout
information is firstly given to the placer to place the remaining
logic. If the placer is unable to place the design, the
dimensions of the tile are manually increased in the database.
The X and Y dimensions of the tile must be properly adjusted
to make sure that a tile does not waste any extra space. The
placer automatically adds the empty cells to fill up any extra
space. After placement, NERO routes the whole design. All
the tiles are successfully routed using 4 routing layers. Only
the clock and the vertical power segments are routed on the 5

and 6 routing layer. The overall process of the netlist and
layout generation is shown in fig 2.

0ny

00

1ny

1j

11

10

iny

basic

i1

i0

nxny

nxj

nx1

nx0

0j

01

Fig. 6(a) – Standard sytem
for deriving a single track

Fig. 6(c) - Set of tiles required to
construct island-style FPGA

CLB

de
co

de
r

error

error

 O
R

OR
Error

detector

error O
R

OR
Error

detector

error O
R

OR
Error

detector

error

 O
R

OR
Error

detector

 O
R

OR
Error

detector

 O
R

OR
Error

detector

error

 O
R

OR
Error

detector

 O
R

OR
Error

detector

 O
R

OR
Error

detector

Fig. 6(b) – Decoder system
for deriving a single track

Fig. 6(d) – Scalable error detection
method

3. ARCHITECTURE FEATURES
The above process of FPGA generation has been used to
generate an island style FPGA with hardware support for the
mitigation of Single Event Upsets (SEU) [8].
SEU are induced by energized particles hitting the silicon
device. A particle hit with sufficient energy changes the logic
state of the memory elements producing a transient error. An
SEU on configuration bits may change the functionality of the
look-up tables as well as the interconnect controlled by the
SRAM cells, thus producing a hard error. These hard errors
can be eliminated by using simple decoders, as shown in
figure 6(a) and 6(b), to implement a system dependency
between switches that derive the same track. An error
detection system is integrated in each tile which enables an
error signal whenever a change is detected in configuration
bits. The error signal propagates through row and column, as
shown in figure 6(d).
The addition of this architectural feature increases the total
number of tiles to 16 as shown in 6(c). The merging of clock
tiles with 16 different FPGA tiles produces a total of 34
different tiles. According to the final application requirements,
these tiles are used to generate a 32x32 FPGA matrix with a
channel width of 8.

4. VALIDATION

A. Software flow: A software flow is followed to test the
functionality of the generated architecture. The sample
application (in VHDL format) to be mapped onto the FPGA is
the input to the software flow. Initially BOOG synthesizes the
VHDL input into a netlist of gates VST. VST2BLIF and later

CLB
Srams

Srams

SIS is used to convert it into LUT form. T-VPACK and later
VPR is used for the placement and routing of the netlist. A
bitstream generator is written which generates a binary stream
that contains all the required information for the configuration
of the sample application onto the FPGA.

B. Bitstream configuration mechanism: An Nx by Ny FPGA
contains (Nx+1) by (Ny+1) tiles; where Nx+1 is the total
number of columns and Ny+1 is the total number of rows.
Each FPGA tile comprises a set of SRAM bits arranged in
multiple rows. The SRAM bits in a row are called a ‘word’.
For writing data to a word of a tile; a row number, a column
number and a word number must be specified. The row and
column numbers gives the location of the tile in a matrix,
whereas the word number gives the location of word in a tile.
All these three parameters are passed to the shift registers. The
data to be written in a word is also specified in the same shift
registers. With the help of the row, column and word
decoders, the exact strobe and column signal is turned on.
Thus when write enable turns high, the data is written onto the
specific word of the requested tile. This process is repeated for
all the words of all the tiles. The shift registers and decoder
are implemented in a loader which is also generated by the
FPGA generator.

C. Simulation: The generated FPGA netlist is tested on the
ALLIANCE simulator called ASIMUT. Different test
applications are mapped on the FPGA with the help of the
sofware flow. Once the FPGA is programmed, the respective
testbench of each test application is applied on the inputs of
the FPGA and the outputs are compared. These simulations
can also be easily performed on other commercial tools like
SYNOPSYS.

D. Netlist layout comparison: The generated netlist and the
generated layout must match with each other. For this purpose
the ALLIANCE extraction tool COUGAR is used. It extracts
a netlist from a layout. Later the ALLIANCE comparison tool
LVX is used to compare the extracted netlist with the
generated netlist. This confirms that the generated layout
matches with its netlist. This method of layout verification is
validated for a set of generated FPGAs. But the flattened
32x32 FPGA matrix is too large to be compared due to the
limitations of COUGAR. So, instead of LVX, CALIBRE LVS
is used to compare the 32x32 FPGA layout with its netlist.

E. Electric simulation: The ALLIANCE extraction tool
COUGAR is used to extract the spice model of each tile. These
models are later electrically simulated using ELDO. Our
extraction tool is unable to support very large circuits. So it
was impossible to electrically simulate the complete 32x32
FPGA. However for the proof of concept we successfully
simulated the electric model of a smaller 4x4 FPGA matrix
with channel width of 8.

5. TAPEOUT
The layout generation is done using symbolic standard cell
library which works on unit λ (lambda). The ALLIANCE tool
S2R (symbolic to real) is used to convert the symbolic design

to 130nm technology. The corresponding GDS and LEF files
are also obtained. The 32x32 FPGA occupies an area of
3885.6 µm by 3882 µm. It is noticed that 19% of the FPGA
area increases due to the hardware support for the mitigation
of SEU. The generic symbolic design rules help easy
migration to any technology but with some area penalty.
Instead of symbolic library, if the netlist of the generated
FPGA is laid out in ENCOUNTER using directly a 130nm
technology library, 40% area reduction is noticed.
The generated FPGA layout can be used as a black box in any
other larger system. For the proof-of-concept, it is used to lay
out a complete chip. The pads are placed and routed using
ENCOUNTER. The DRC and LVS verification is performed
using CALIBRE. The final FPGA chip measures 23.86 mm2.

Fig. 7 – A Prototype FPGA chip layout

Tile

6. CONCLUSION AND FUTURE WORK
In this work we have presented a completely automatic
method for the generation of an FPGA using an open-source
VLSI tool-kit. We are able to generate FPGAs having different
architectural parameters. In future, we intend to increase the
number of variable architecture parameters. We also intend to
add support for other clock distribution networks.

7. REFERENCES
[1] A. Greiner and F. Pecheux, “Alliance : A complete set of cad tools for

teaching vlsi design”, in Proceedings of 3rd Eurochip Workshop, 1992
[2] S. Belloeil, D. Dupuis, C. Masson, J.P. Chaput, H. Mehrez, “Stratus: A

procedural description language based upon Python”, in Proceedings of
the 19th International Conference on Microelectronics, december 2007

[3] K. Padalia, R. Fung, M. Bourgeault, A. Egier, and J. Rose, “Automatic
transistor and physical design of FPGA tiles from an architectural
specification.”, in Proceedings of 2003 ACM/SIGDA 11th international
symposium on FPGAs, pp. 164-172. ACM press, 2003.

[4] E. G. Friedman, “Clock Distribution Networks in Synchronous Digital
Integrated Circuits”, in Proceedings of the IEEE, May 2001

[5] S. Phillips and S. Hauck. “Automatic layout of domain-specific
reconfigurable subsystems for system-on-a-chip”, In Proceedings of the
2002 ACM/SIGDA tenth International symposium on FPGAs, pages
165-173. ACM Press, 2002

[6] I. Kuon, A. Egier, J. Rose, “Design, layout and verification of an FPGA
using automated tools”, In Proceedings of the 2005 ACM/SIGDA 13th
international symposium on FPGAs, 2005

[7] Cadence. SKILL Programming Language, http://www.cadence.com
[8] J.H. Elder, J. Osborn, W.A. Kolasinski, R. Koga, “A method for

characterizing a microprocessor’s vulnerability to SEU”, IEEE
Transaction on Nuclear Science, Dec 1988 v 35 n 6.

Pads

Matrix
of Tiles

Loader

