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artial layout performs the power routing, 
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 The clock and power segments are later 
L [7]. Phillips and Hauck have focused on 
out of domain specific reconfigurable 
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required by an application domain, and thus have generated 
smaller layouts. 
These previous FPGA generators have used the commercial 
VLSI tools; whereas this work presents an FPGA generator 
based solely upon open-source VLSI tools. These tools can be 
adapted easily for specific demands. This work also defines a 
set of layout parameters to modify the layout according to the 
initial requirements.  

2. FPGA GENERATION 
This work focuses on the generation of Island style FPGAs. It 
comprises an array of configuration logic blocks (CLBs). 
Each CLB contains a 4-LUT followed by a by-pass flip-flop. 
Each CLB has 4 inputs (one on each side) and an output that 
derives adjacent channels on its top and right sides. The CLBs 
communicate with each other through a disjoint bi-directional 
routing network. All the inputs and outputs of a CLB connect 
with all the wires in a channel (i.e. Fc=1). The generated 
FPGA matrix can have ‘Nx’ CLBs in X direction, ‘Ny’ CLBs 
in Y direction, and a channel width ‘Ch’. 

A.  Open-source VLSI tools: An open-source VLSI tool kit 
ALLIANCE [1] and a python based language STRATUS [2] 
has been used for the development of this FPGA layout 
generator. Alliance is a complete set of free CAD tools and 
portable CMOS libraries for VLSI design. It includes a VHDL 
compiler and a simulator, logic synthesis tools, and automatic 
place and route tools. STRATUS generates parameterized 
VLSI modules. It extends the python language with a set of 
methods and functions for the procedural generation of netlist 
and layout views of structural cell based designs. 

B.  Tile based approach: A tile based approach is used to 
generate the desired FPGA architecture. In this approach a set 
of tiles are identified in the architecture which are repeatedly 
abutted to form the whole FPGA matrix. A set of 9 different 
tiles as shown in figure 1 are used for the generation of the 
target architecture. The principle tile is the ‘basic’ tile, 
whereas the other tiles are its derivations. The tiles on the 
leftmost column and the bottom row do not contain logic 
blocks. They only contain a channel which connects the 
adjacent IO pads and the adjacent logic block input. The rest 
of the tiles contain a top horizontal channel, a right vertical 
channel, a switch box, and a logic block. It can be seen in 
figure 1 that the horizontal repetition of 2nd column and the 
vertical repetition of 2nd row generate an FPGA of our 
desired size. An important aspect in the tile based design is 
that the adjacent sides of two abutted tiles must have same 
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length. While deciding the sizes of the tiles, priority is given 
to the tile which is used the most; in this case it is the ‘basic’ 
tile. The sizes of the other tiles are adjusted accordingly.  

 

 
 

 
 

Fig. 1 –Tiles  for island-
style FPGA 

Fig. 2 – Complete FPGA generation CAD 
Flow 

C.  Netlist generation: Each tile generator is written in the 
language STRATUS. The tile generator receives a set of 
architectural parameters as input. It then generates the netlist 
of the tile in accordance with the given parameters. Loops and 
conditional statements are used to generate a tile for different 
parameters. The netlist of each tile is generated directly using 
the standard cell library named SXLIB. It is a symbolic cell 
library which comes with the ALLIANCE tool chain. C++ 
routines are also merged in the tile generator for generating 
VHDL model of specific components. These components are 
synthesized by the Alliance synthesizer named BOOG. After 
synthesis these components are used by the tile generator. The 
generated netlists of all the tiles are passed to the FPGA 
generator which links them together to construct the netlist of 
a complete FPGA. This generated netlist may be integrated in 
any larger application. 

D.  Tile Layout: A tile generator generates both the netlist and 
the partial layout of a tile. The partial layout is generated with 
the help of parameterized algorithms which take a set of 
layout parameters as its input. Currently, the partial layout is 
performed for the generation of a fast bitstream configuration 
mechanism, proper buffering of few long wires, power routing 
and a balanced clock distribution network. Later-on the placer 
and the router are used to complete the remaining layout.  
The partial layout generation algorithm places all the SRAM 
bits in rows and columns with a fixed distance between each 
row, as shown in figure 3. Each SRAM bit in a row receives a 
vertical data signal, and a horizontal strobe signal. The data 
bits are written in all the SRAMs of a row only when strobe is 
high for that row and the column is high for the complete tile. 
The column and strobe signals come from bitstream 
configurator (loader), which is discussed later in section 4. 
The column and the data signals from the top are buffered 
before they exit on the bottom side of the tile. Similarly a 

strobe signals from the left is buffered before it exits on the 
right side of the tile. 
The algorithm starts placing the bitstream configuration cells 
from a layout parameter named “Start Position”. Similarly the 
height and width of a tile and the total SRAM bits are also 
variable parameters which change for each different channel 
width. These layout parameters change each time there is a 
change in the number of SRAM bits. For this purpose a small 
database is created which specify all these variables for 
different channel widths. The layout algorithm and the 
database specification are generic enough to handle other 
architectural parameters that are not yet generic. 

E.  Power routing: The layout generation algorithm generates 
horizontal and vertical power segments as shown in figure 3. 
The alternating VDD and GND segments in the horizontal 
direction are fixed whereas the placement of vertical power 
segments is supported by few layout parameters. The total 
number of vertical segments for power and ground in a tile, 
their positions and their widths are defined in the layout 
database. These values can be changed for tiles of different 
sizes. The horizontal power segments use the 1st and 2nd 
routing layer; whereas the vertical power segments use the 5th 
routing layer. 

F.  Clock generation: In this work, we have used a tile based 
approach for the routing of a symmetric H-tree clock 
distribution network. It is found that a group of 13 tiles can be 
used to generate a clock tree for a matrix of size 2N x 2N where 
N>1. Each corresponding clock tile is automatically merged 
with the FPGA tiles during the partial layout phase. This 
results in the generation of multiple copies of the same FPGA 
tiles having different clock routings. After the merging of 
FPGA tiles and the clock tiles, 23 different tiles are produced. 

Fig. 3 –Partial layout of a sample FPGA Tile  
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These tiles can be abutted together to construct any FPGA of 
size 2N x 2N. All these clock tiles and the sample 8x8 clock 
distribution matrix is shown in figure 4 and 5. The main 
advantage of this mechanism is that we have a generic, tile 
based and a balanced clock distribution network. One of the 
disadvantage is that it limits the FPGA size in X and Y 
direction to be equal and power of 2. But since the clock 
generation algorithms and their merging with the FPGA tiles 
is totally automatic; we can always implement a generic 
algorithm for other clock distribution networks found in [4]. 
The only thing to consider for writing a new clock routing 
algorithm is that the placement of clock buffers must not 
overlap the partial layout. Currently the clock is routed in the 
5th and 6th routing layer, whereas the partial layout is done on 
the first 4 routing layers.  
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Fig. 4 – H-tree clock distribution network 
for 8x8 FPGA 

Fig. 5 – Tiles for 
constructing clock H-tree 

G.  Pin generation: In a tile based FPGA, the tiles connect 
together by abutment, and the pin locations on the boundaries 
of adjacent tiles must overlap. The positions of few of these 
pins are calculated on the basis of the layout parameters found 
in the database. Since the database is common for all the tiles, 
thus the pin abutment problem does not arise for these pins. 
There exist other pins which do not have fixed positions. 
Since the final automatic placement of all the tiles is done 
independently; it is difficult for the placer to correctly choose 
the pin locations of the tiles. So a generic algorithm is written 
to place all the remaining pins. This algorithm places the pins 
in all the four directions of the tile and ensures that the pins 
are not congested to a limited place. It utilizes all the available 
space and tries to distribute the pins with equal spacing.  

H.  Automatic placement & routing: After the partial layout 
generation of all the tiles; each tile is separately placed and 
routed with the help of ALLIANCE automatic placer and 
router named OCP and NERO respectively. The partial layout 
information is firstly given to the placer to place the remaining 
logic. If the placer is unable to place the design, the 
dimensions of the tile are manually increased in the database. 
The X and Y dimensions of the tile must be properly adjusted 
to make sure that a tile does not waste any extra space. The 
placer automatically adds the empty cells to fill up any extra 
space. After placement, NERO routes the whole design. All 
the tiles are successfully routed using 4 routing layers. Only 
the clock and the vertical power segments are routed on the 5 

and 6 routing layer. The overall process of the netlist and 
layout generation is shown in fig 2. 
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Fig. 6(a) – Standard sytem 
for deriving a single track 

Fig. 6(c) - Set of tiles required to 
construct island-style FPGA 
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Fig. 6(b) – Decoder system 
for deriving a single track 

Fig. 6(d) – Scalable error detection 
method 

3. ARCHITECTURE FEATURES 
The above process of FPGA generation has been used to 
generate an island style FPGA with hardware support for the 
mitigation of Single Event Upsets (SEU) [8].
SEU are induced by energized particles hitting the silicon 
device. A particle hit with sufficient energy changes the logic 
state of the memory elements producing a transient error. An 
SEU on configuration bits may change the functionality of the 
look-up tables as well as the interconnect controlled by the 
SRAM cells, thus producing a hard error. These hard errors 
can be eliminated by using simple decoders, as shown in 
figure 6(a) and 6(b), to implement a system dependency 
between switches that derive the same track. An error 
detection system is integrated in each tile which enables an 
error signal whenever a change is detected in configuration 
bits. The error signal propagates through row and column, as 
shown in figure 6(d).  
The addition of this architectural feature increases the total 
number of tiles to 16 as shown in 6(c). The merging of clock 
tiles with 16 different FPGA tiles produces a total of 34 
different tiles. According to the final application requirements, 
these tiles are used to generate a 32x32 FPGA matrix with a 
channel width of 8.   

4. VALIDATION 

A.  Software flow: A software flow is followed to test the 
functionality of the generated architecture. The sample 
application (in VHDL format) to be mapped onto the FPGA is 
the input to the software flow. Initially BOOG synthesizes the 
VHDL input into a netlist of gates VST. VST2BLIF and later 
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SIS is used to convert it into LUT form. T-VPACK and later 
VPR is used for the placement and routing of the netlist. A 
bitstream generator is written which generates a binary stream 
that contains all the required information for the configuration 
of the sample application onto the FPGA. 

B.  Bitstream configuration mechanism: An Nx by Ny FPGA 
contains (Nx+1) by (Ny+1) tiles; where Nx+1 is the total 
number of columns and Ny+1 is the total number of rows. 
Each FPGA tile comprises a set of SRAM bits arranged in 
multiple rows. The SRAM bits in a row are called a ‘word’. 
For writing data to a word of a tile; a row number, a column 
number and a word number must be specified. The row and 
column numbers gives the location of the tile in a matrix, 
whereas the word number gives the location of word in a tile. 
All these three parameters are passed to the shift registers. The 
data to be written in a word is also specified in the same shift 
registers. With the help of the row, column and word 
decoders, the exact strobe and column signal is turned on. 
Thus when write enable turns high, the data is written onto the 
specific word of the requested tile. This process is repeated for 
all the words of all the tiles. The shift registers and decoder 
are implemented in a loader which is also generated by the 
FPGA generator.  

C.  Simulation: The generated FPGA netlist is tested on the 
ALLIANCE simulator called ASIMUT. Different test 
applications are mapped on the FPGA with the help of the 
sofware flow. Once the FPGA is programmed, the respective 
testbench of each test application is applied on the inputs of 
the FPGA and the outputs are compared. These simulations 
can also be easily performed on other commercial tools like 
SYNOPSYS. 

D.  Netlist layout comparison: The generated netlist and the 
generated layout must match with each other. For this purpose 
the ALLIANCE extraction tool COUGAR is used. It extracts 
a netlist from a layout. Later the ALLIANCE comparison tool 
LVX is used to compare the extracted netlist with the 
generated netlist. This confirms that the generated layout 
matches with its netlist. This method of layout verification is 
validated for a set of generated FPGAs. But the flattened 
32x32 FPGA matrix is too large to be compared due to the 
limitations of COUGAR. So, instead of LVX, CALIBRE LVS 
is used to compare the 32x32 FPGA layout with its netlist. 

E.  Electric simulation: The ALLIANCE extraction tool 
COUGAR is used to extract the spice model of each tile. These 
models are later electrically simulated using ELDO. Our 
extraction tool is unable to support very large circuits. So it 
was impossible to electrically simulate the complete 32x32 
FPGA. However for the proof of concept we successfully 
simulated the electric model of a smaller 4x4 FPGA matrix 
with channel width of 8. 

5. TAPEOUT 
The layout generation is done using symbolic standard cell 
library which works on unit λ (lambda). The ALLIANCE tool 
S2R (symbolic to real) is used to convert the symbolic design 

to 130nm technology. The corresponding GDS and LEF files 
are also obtained. The 32x32 FPGA occupies an area of 
3885.6 µm by 3882 µm. It is noticed that 19% of the FPGA 
area increases due to the hardware support for the mitigation 
of SEU. The generic symbolic design rules help easy 
migration to any technology but with some area penalty. 
Instead of symbolic library, if the netlist of the generated 
FPGA is laid out in ENCOUNTER using directly a 130nm 
technology library, 40% area reduction is noticed. 
The generated FPGA layout can be used as a black box in any 
other larger system. For the proof-of-concept, it is used to lay 
out a complete chip. The pads are placed and routed using 
ENCOUNTER. The DRC and LVS verification is performed 
using CALIBRE. The final FPGA chip measures 23.86 mm2. 
 

 
Fig. 7 – A Prototype FPGA chip layout 

Tile 

6. CONCLUSION AND FUTURE WORK 
In this work we have presented a completely automatic 
method for the generation of an FPGA using an open-source 
VLSI tool-kit. We are able to generate FPGAs having different 
architectural parameters. In future, we intend to increase the 
number of variable architecture parameters. We also intend to 
add support for other clock distribution networks. 
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