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Abstract

This paper presents a new environment for the exploration
of domain-specific coarse-grained FPGAs. An architecture
description mechanism is used to define a coarse-grained ar-
chitecture. A software flow is used to map a netlist on the
defined architecture. The software flow not only maps the
instances of a target netlist on their respective blocks in the
architecture, but also refines the position of the blocks on
the architecture. This environment can also be used to de-
fine and optimize a domain-specific architecture for a set of
netlists to be mapped on it at mutually exclusive times. A
set of DSP test-benches are used to show the effectiveness of
various techniques used in this work.

1. Introduction

The Versatile Packaging, Placement and Routing tool
(VPR) [4] has been widely used for the exploration of fine-
grained FPGA architectures. Inherently it does not support
coarse-grained blocks. However [3] and [8] have extended
VPR to explore specific coarse-grained architectures. Simi-
larly [5] has developed the virtual embedded block method-
ology (VEB) to model arbitrary embedded blocks on exist-
ing commercial FPGAs. One of the key advantages of VEB
is that new embedded blocks can be tested in commercial
FPGAs. But the VEB methodology can be used only with
existing commercial architectures. This deficiency has been
resolved in [13] by incorporating VEB methodology in VPR;
thus enabling support of architectures other than commercial
FPGAs. [12] has also developed a CAD tool for FPGAs with
Embedded Hard Cores.

All this previous work propose a pre-determined floor-
planning organization and does not consider the problem of
optimizing the floor-planning (block positions on the archi-
tecture). Our major contribution consists of proposing an
environment that refines the architecture floor-planning also.
Although an FPGA floor-planning can be achieved manu-
ally also. But such a task becomes more difficult when dif-

Figure 1. Coarse-grained FPGA

ferent variety of blocks are to be integrated in the archi-
tecture. The manual floor-planning becomes further com-
plicated when an FPGA architectures is required to be op-
timized for a set of netlists. The method proposed in this
work places all the netlists simultaneously and changes the
architecture floor-planning to get a trade-off architecture for
the given set of netlists. The technique of placing multiple
netlists is proposed in [6], where it is used to explore con-
figurable ASICs in a single dimension. Whereas this work
extends this methodology to explore two dimensional island-
style coarse-grained FPGA architectures.

2. Exploration Environment

The coarse-grained architecture is represented on a grid
of equally sized SLOTS called the slot-grid. CELLS of dif-
ferent sizes can be mapped on this grid as shown in Fig-
ure 1. A CELL can be any block; a soft block like a Con-
figurable Logic Block (CLB); or a hard block like an adder,



multiplier or RAM etc, or even a clusters of CELLS. An in-
stance of a CELL mapped on the slot-grid is called a SITE.
Each SITE occupies one or more SLOTS. A routing channel
passes between every two neighboring SITES. A SITE oc-
cupying more than one SLOT can allow routing channel to
pass through it. Once the architecture is defined, the architec-
ture description and an input netlist is passed to the software
flow. The software flow maps the instances of the netlist on
the SITES of its respective types. The PLACER, a software
module, refines both the placement of SITES on the slot-grid
(floor-planning) and the mapping of instances on the SITES
(binding). The PLACER can also generate a domain-specific
FPGA floor-planning for binding a set of netlists on it at mu-
tually exclusive times. This is done by allowing the binding
of multiple instances on a single SITE. But instances belong-
ing to the same netlist cannot be mapped on a single SITE.
After floor-planning and binding, the ROUTER routes the
netlist on the architecture.

Architecture Description: An architecture description
file is used to define the FPGA architecture. The parame-
ters Nx and Ny define the size of the slot-grid. A unidirec-
tional mesh [10] or a bidirectional mesh [4] is selected as the
routing network. The channel width of the routing network
is either fixed to a value W, or a binary search algorithm
searches the minimum possible channel width between min-
imum (Wmin) and maximum (Wmax) channel widths. The
position of SITES can be either fixed to an absolute posi-
tion on the slot-grid, or can be initialized to any position and
set as movable, so that the PLACER can refine its position.
The CELLS are also defined in the architecture description
file. Each CELL is given a name, size (number of slots occu-
pied), and input/output pins. Each pin of the CELL is given a
name, a class number, a direction and the slot position on the
CELL to which this pin is connected. Figure 1 gives the pic-
torial view of different CELLS mapped on the slot-grid. The
CELL “BLK-1” in the figure is composed of 2x3 slots. Four
of its input pins are defined to be on the LEFT side of the
slots (0,0), (0,1) and (0,2) of the CELL. Similarly other input
and output pins are also assigned a direction and slot posi-
tion. Pins having the same class are considered equivalent.
Thus a driver net targeting a receiver pin of a SITE can be
routed to any of the pins of the SITE having the same class.
If the routing channel passes through a CELL, the PINS can
also be connected to any of the internal channels, as in the
case of BLK-3.

Software Flow: A software flow is worked out to map a
netlist on the newly defined coarse-grained FPGA. The com-
plete software flow can be seen in the Figure 2. An input to
this software flow is a structural netlist in VST (structured
VHDL) format. This netlist is composed of traditional stan-
dard cell library instances and hard block (HB) instances.
VST2BLIF tool is modified to convert the VST file hav-
ing hard blocks to BLIF format. Later PARSER-1 removes
all the instances of hard blocks and passes the remaining
netlist to SIS for synthesis into 4-LUT (LookUp Table with

Figure 2. Software Flow

Figure 3. Signal bounding box evaluation

4 inputs) format. All the dependence between the HBs and
the remaining netlist is preserved by adding new Input and
Output pins to the main netlist. After SIS, and later after
the packaging and conversion of the netlist to NET format
through T-VPACK, PARSER-2 adds all the removed HBs
into the netlist. It also removes all the previously added tem-
porary inputs and outputs. The final netlist in NET format,
and the architecture description parameters are passed to the
PLACER and ROUTER. In future instead of SIS, we intend
to use ABC [1].

This work also uses GAUT [2] to generate VHDL netlist
from C Code. GAUT has an extensive library of blocks that
it uses in the generated vhdl code. The current limitation of
GAUT is that the widths of the input and output pins of a
block should be equal. Thus a 16 bit multiplier has two 16
bit inputs and one 16 bit output (instead of a 32 bit output).

3. The Placer

3.1 Bounding box formation

The PLACER uses simulated annealing algorithm [4] [9]
to achieve a placement having the minimum sum of the half-
perimeters of the bounding boxes of all the nets. The bound-
ing box (bbx) of a signal or a net is the minimum rectangular
area that contains the driver instance and all the receiver in-
stances of the net. In this work the position and direction of
pins are also considered in the formation of bounding box.
Similarly all the input pins of a SITE having same class are
also included in the bbx. Thus the definition of the bounding
box used in this work is the minimum rectangular area that
contains the driver pin and the receiver pins of the net, and



Figure 4. Source Selection

all the input pins of a SITE having the same class as that of
the receiver pin of the SITE connected to the net. Figure 3(a)
shows a case in which all the input pins of SITE ‘A’ have
different class, whereas in Figure 3(b) all its input pins have
same class. The size of the bounding box actually increases
in 3(b) as compared to 3(a). This increase does not matter,
as we are concerned with improving the relative cost and not
the absolute cost. The driver instance targeting such a re-
ceiver pin of a SITE (having other peer pins of same class)
will be having multiple placement options for achieving the
same placement cost.

Figure 3(c) and Figure 3(d) show two cases in which the
bounding box is formed without considering the pin posi-
tions and directions. In both cases, the bbxs are equally
sized, however the placement in Figure 3(c) require lesser
number of routing wires than in Figure 3(d). Whereas Fig-
ure 3(e) and Figure 3(f) show the same two examples in
which bbx is formed using pin positions and their directions.
It can be seen from the sizes of bbx that the placement in
Figure 3(e) is to be preferred over the placement shown in
Figure 3(f).

3.2 Placer Operations

The PLACER either moves an instance from one SITE
to another, moves a SITE from one slot position to another,
or rotates a SITE at its own axis. After each operation, the
placement cost is recomputed for all the disturbed signals.
Depending on the cost value and the annealing temperature,
the simulated annealing algorithm accepts or rejects the cur-
rent operation.

Source selection:- The placer performs operations on
“source” and “destination”. The “source” can be an instance
selected from any of the input netlist or a SITE selected from
the group of SITES found in the architecture. The probability
of selecting a “source” from any of the source group should
be proportional to the ratio of the elements in that group to
the sum of the elements of all the groups. Thus all the SITES,
and the instances of all the netlists are linearly arranged and
given a unique ID as shown in figure 4. Z is the sum of the
SITES in the architecture that can be moved or rotated, and
the instances found in all the netlists. A random number se-
lected from Z decides if the operation is to be performed on
a SITE or on an instance of any netlist. If the selected ran-
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Figure 5. Site Movement Cases

dom number is an instance, then the instance of the netlist
referred by this random number is chosen as the “source”. If
it is a SITE, then another random operation will decide as to
which SITE should be moved or rotated. Thus all the sites
are linearly arranged with Y being the sum of all the sites that
can be either moved or rotated. The IO SITES can neither be
moved nor rotated. The remaining SITES in the architecture
can be moved, and are represented as “sm”. The rotation is
allowed only for those SITES which have allowed so in the
architecture definition of their respective blocks, and such
sites are represented as “sr”. It is to be noted that Y is not
equal to “s0” because there can be sites which can be moved
as well as rotated. Thus a random operation on Y selects a
SITE to be moved or rotated.

Destination selection:- Once the “source” is selected, a
destination is selected where this “source” can be moved. If
the source is an instance, then any random matching SITE
is selected as its destination. If the source is a SITE to be
rotated, the same source position becomes the destination.

If the source SITE is to be moved then any random slot
is to be selected as the destination where this SITE can be
moved. This destination slot selection is done using the fol-
lowing steps

1. Get the size of the source site. The rectangular win-
dow occupied by the source site is called as the source
window. The source window depicted in dashed line is
shown in figure 5(a).

2. Choose any random slot as destination. The rectangu-
lar window starting from this slot, having the same size
as the source window is called as the destination win-
dow. The source window will always contain a single
SITE, whereas the destination window can contain one
or more SITES. A valid destination window depicted in
solid line is shown in figure 5(b).

3. If the destination window exceeds the boundaries of the



Block Name Netlists Block Sizes
1 2 3 4 5 6 7 8 9 10 11 12

Fir Fft Adac Dcu Target-1 Block Size Inputs Outputs No. of slots Block No. of shadow
Lamda2 for ch >= 9 Size/Shape CLBs for ch=11

clb 32 94 47 34 94 58500 4 2 1 1x1 -
mul 8 8 16 4 4 - 1 4 1075250 16 16 9 3x3 1.86
slansky 16 3 3 - 1 3 306750 32 16 8 2x4 2.75
sff 8 4 - 2 4 4 36000 8 8 3 2x2 6.5
sub 8 - 6 - 2 6 154500 17 8 4 2x2 0.87
smux 16 - - 1 2 2 36000 33 16 8 2x4 6.89

Fir16 Prodmat Ellipticass Target-2 CLB4 for ch=22
clb4 (4 clbs) 572 1112 818 - 1112 798000 10 4 1 1x1 -
add 16 16 16 8 11 15 - 15 106750 32 16 3 2x2 4.15
mul 16 16 16 16 27 - - 27 1908750 32 16 4 2x2 1.89

Table 1. Netlist block utilisation table

slot-grid (as shown in Figure 5(c)) , then reject this des-
tination slot.

4. If the source and the destination windows do not over-
lap, and if the destination window contains at least one
such site which exceeds the limits of the destination
window, then reject this slot. Figure 5(d) depicts this
case. This is done because in such a case, it would not
be possible to move all the destination sites to the source
window.

5. If the source and the destination window overlap diago-
nally (as shown in Figure 5(e)), then reject the destina-
tion slot.

6. If the source and the destination windows overlap hori-
zontally or vertically, then accept this destination slot
position. Horizontal or vertical translation operation
will be applied in these cases. Figures 5(f) shows a
valid destination window overlapping vertically with
the source window. Figures 5(g) shows the positions of
source and destination SITES after vertical translation.

7. If a slot is rejected then the procedure is repeated until
a valid destination slot is found.

Instance Move: In this case, a move operation is applied
on the source instance and the destination SITE. If the des-
tination SITE is empty, the source instance is simply moved
to the destination SITE. If the destination SITE is occupied
by an instance, then a swap operation is performed.

Site Jump: If the source window does not overlap with
the destination window, then a JUMP operation is performed.
All the SITES in the destination window are moved to the
source window, and the source site is moved in the destina-
tion window. Each affected SITE breaks its link with the
current slots and connects with new slots and vice-versa.

Site Translate: If the source and the destination windows
overlap, then a translation is performed. Currently only the
horizontal or vertical translation is performed. No diagonal
translation is performed. Figure 5(f) and 5(g) show a case
of vertical translation. The five sites found in the upper 2
rows of the destination window (as shown in Figure 5f) are

moved to the lower 2 rows of the source window (as shown
in Figure 5g). The source site is then moved to the destina-
tion window.

Site Rotate: The rotation of SITES is important when
the classes assigned to each of its pins are different. In such
a case the bounding box varies depending upon the pin posi-
tions and their directions. A SITE can have an orientation of
0◦, 90◦, 180◦ or 270◦. The orientation of a SITE is used by
the bounding box evaluation function to correctly calculate
the exact position and direction of each of its PINs. When an
instance of a netlist is moved from one SITE to another SITE
having different orientations, the orientation of both the old
site and the new SITE are used to compute the difference
in the bounding box. Figure 5(h) depicts a 90◦ clock-wise
rotation. Multiples of 90◦ rotation are allowed for all the
SITEs having a square shape, whereas at the moment only
multiples of 180◦ rotation are allowed for rectangular (non-
square) SITEs. A 90◦ rotation for non-square SITEs involves
both rotation and move operations; which is left for future
work.

4. Experimentation

Two set of test-benches are used to show the effectiveness
of various techniques used in this work. The first set com-
prise of 4 benches which are a subset of 8-bit fir, fft, adac,
and dcu algorithms. These are relatively small benches, and
are obtained from their generators written in a procedural
language. The second set of 3 benches are generated from
GAUT [2]. These are relatively large benches. The CLBs
in this set are grouped into a cluster of 4 CLBs connected
through a full-crossbar. Each CLB is a 4 input LookUp Ta-
ble (LUT). All these benches and their block classifications
can be seen in Table 1. In the first step, the sizes of the blocks
used in the benches are determined using an area model.
Later these blocks are defined in the architecture descrip-
tion file and two separate target architectures, Target-1 and
Target-2, are defined for these two set of netlists. The block



(a) Placement Cost Table Target-1 (b) Placement Cost Table Target-2
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Figure 6. Comparison results for 2 target Fpga architectures.

classifications of these architectures can be seen in column
6 of Table 1. Different placement/floor-planning techniques
are then applied upon them to refine the architectures for the
given netlists.

4.1 Area Model

The area model is devised to determine (i) the area of a
single slot in the slot-grid and (ii) the number of slots re-
quired by each hard block. This model is derived from a pre-
vious work on tile-based FPGA Layout generation method-
ology [11]. So in this work each slot is considered to be a
single tile containing the block, the connection boxes (for
connecting inputs and outputs with the routing channel), the
routing channels on its top and right side, and the switch box
of the top right corner. Thus the area of a slot depends on
(i) the area of a block (ii) the total number of inputs and out-
puts of the block and (iii) channel widths. The basic sizes of
the blocks (without connection boxes and routing channel)
are measured in ALLIANCE [7] using a symbolic standard
cell library ‘SXLIB’. These sizes are shown in the 7th col-
umn of Table 1. The smallest block in the target architec-
ture is made equivalent to be occupying 1 slot. Considering
the basic block sizes and the total number of input and out-
put pins of blocks, the smallest block in Target-1 architec-
ture is a ‘clb’ for a channel width equal or greater than 9.
Fewer channel widths give some false advantage to blocks
like smux 16 and sff 8 whose block sizes are very small but
have high number of IOs. Once the size of a single slot is de-
termined, the sizes of all the remaining blocks are measured
in units of number of slots occupied. Column 10 of Table 1
shows the slots required by each block for a channel width

equal to or greater than 9. There is certainly some wastage
of area when the blocks are represented in terms of num-
ber of slots occupied. Similarly while deciding the shapes
of the blocks, the user might require to further increase the
area. Like for the sake of experimentation, we have made
sff 8 and add 16 16 16 a square (i.e instead of 1x3, a size
of 2x2 is used). The final sizes and shapes of blocks are
shown in column 11 of Table 1. The free area in each block
is also reported by the area model. This free area can be used
to integrate shadow clusters [8] so that the precious routing
resources can be reutilized if the hard block is not used. Col-
umn 12 of the table shows the number of CLBs that can be
added in the free space in each block for channel width of 11.
The experimental analysis with shadow clusters is left for fu-
ture work. All the above procedure is repeated for Target-2
architecture also where the single slot is a cluster of 4 CLBs.

4.2 Architecture Evaluation

Firstly an initial architecture (I) is generated in which all
the hard blocks are concentrated on the left, whereas the clbs
are on the right side of the FPGA. To be a little more realistic
the hard blocks are later moved to the center with columns of
clbs distributed on its left and right sides. The centered initial
architecture (I+C) floor-planning for Target-1 can be seen in
figure 7(a). All the netlists are simultaneously mapped on the
architecture and the floor-planning is refined using different
algorithms. Once the final floor-planning is achieved each
netlist is individually placed and routed on it (without chang-
ing the floor-planning). A set of 4 different floor-plannings
are generated. (1) The centered initial architecture shown
in figure 7(a) (I+C). (2) Only the rotation of blocks allowed



in the centered initial architecture (I+C+R). (3) Only block
movement allowed (I+M). (4) Both the block movement as
well as the rotation of all the blocks (I+M+R). An average re-
duction of 17% and 13% is noticed in the placement cost of
all the netlists between the initial architecture and the I+M+R
for Target-1 and Target2 architectures respectively. The op-
timized Target-1 architecture is shown in figure 7(b). The
arrows in the figure show the orientations of the blocks. Fig-
ure 6(a) and 6(b) show the placement results for both target
architectures. Another important test compares the place-
ment costs of each of the netlists mapped on an architecture
optimized for all the netlists together, or for each of the in-
dividual netlists. The sum of the placement costs of all the
netlists is found to be minimum if all the netlists are used
together to get a single floor-planning. Figure 6(c) and 6(d)
show how the required channel width and total number of
switches used in the routing have reduced significantly with
each technique. The decrease in channel widths and the total
switches used show that the improvement in the placement
costs have well shown their effect.

The implementation of our PLACER module is not yet
optimized, but still we feel it important to give some initial
run-time results. It is found that the time taken to optimize
a common floor-planning for the three netlists for Target-2
I+M+R architecture is on average 8 times more than the to-
tal time taken to place the three netlists individually on the
Target-2 I+C architecture (having fixed floor-planning). This
factor can be significantly reduced by exploiting parallelism
in the PLACER. The bounding box formation is indepen-
dent for different netlists as the nets are not shared between
the netlists. Thus, operations on netlist instances can be per-
formed parallely on different machine. However the opera-
tions on SITES are to be performed serially as multiple in-
stance of different netlists can be found on the same SITE.
We intend to perform a detailed run-time optimization and
analysis in future.

5. Conclusion and Future Work

In this paper we have presented new techniques and tools
for the conception of coarse-grained FPGAs. This explo-
ration environment can be used to develop application spe-
cific FPGAs optimized for a given set of netlists. It has
been found that the best possible trade-off architecture floor-
planning is achieved when all the netlists are optimized to-
gether. In future we intend to gather and test much larger test
benches containing coarse-grained components. The SITE
movement techniques need to be improved i.e. 90◦ and 270◦

rotation for rectangular (non-square) sites, diagonal transla-
tion, and finally considering “source window” having multi-
ple sites. The suggested method of reutilizing the free space
in each hard block by the addition of shadow clusters need to
experimentally analyzed. Finally we intend to target the ex-
isting commercial FPGA and judge their floor-planning with
this environment.

(a) (b)

Figure 7. Optimized FPGA Floor-planning

In this work we have optimized only the floor-planning
of an FPGA for a set of applications. This work can also
be extended towards optimizing the reconfigurable routing
channel for the set of input netlists.
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