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This paper evaluates a new multilevel hierarchical FPGA (MFPGA). The specific
architecture includes two unidirectional programmable networks: a downward
network based on the Butterfly-Fat-Tree topology; and a special upward
network. New tools are developed to place and route several benchmark
circuits on this architecture. Comparison with the traditional symmetric
Manhattan mesh architecture shows that MFPGA can implement circuits with
a smaller area and better speed.
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1. Introduction

Earlier field programmable gate arrays (FPGAs) provided a sea of look-up tables
(LUTs) and registers which are linked using programmable interconnections. Several
topologies of programmable interconnect like the Manhattan mesh based
FPGAs (Betz et al. 1999) and the hierarchical FPGAs (Aggarwal et al. 1994,
Laiand Wang, 1997, Tsu et al. 1999) have been proposed. These investigations pre-
sent the networks characteristics and how they scale.

Driven by Moore’s law on semiconductor scaling, ever larger FPGAs emerge.
Current architectures will not extend directly to this scale (the one-million gate and
more), because routing requirement and delays grow linearly. In addition, placement
and routing computational times are constantly increasing nowadays. Excessive
FPGA placement and routing runtimes are now often measured in hours.

Design of large devices imposes radical efficient change in architecture to improve
speed, density and software mapping time. Relying on industry experience with
standard ASICs, we believe that partitioning and hierarchy become unavoidable
for hardware and software developments. As an alternative, we propose a new multi-
level hierarchical FPGA (MFPGA) architecture where logic blocks and routing
resources are sparsely partitioned into a multilevel clustered structure.

This paper details the proposed architecture and preliminary results using specific
tools. Section 2 describes the new MFPGA interconnect architecture. Next suitable
techniques are proposed to place and route applications on MFPGA. In the
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experimental results section, MFPGA performances are compared to the common
mesh architecture using MCNC benchmark circuits.

2. Architecture overview

A standard hierarchical FPGA is denoted k-HFPGA, in which a cluster has k sub-
clusters. The structure can be presented by a tree. Figure 1 is an example of
a 4-HFPGA where a cluster contains 4 subclusters. A vertex in this tree is used to
represent a logic or a switch block. An edge between two vertices is used to represent a
routing channel which consists of a set of tracks. The logic blocks are at the bottom of
the tree while the switch boxes are those vertices above the logic blocks. A modified
multilevel hierarchical architecture denoted MFPGA, which can be more interesting
in terms of area and performances, is proposed, which can bemore interesting in terms
of area and performances. The architecture has the following particularities.

� The lowest level of the hierarchy contains the Logic blocks and the IO pads.
Each logic element contains one 4 inputs Look-Up Table (4-LUT) followed
by a bypass Flip-Flop.

� The routing architecture contains only unidirectional wires and the switch
boxes are depopulated.

� In each level, the ratio between parent tracks and child tracks is equal to k (k
is the number of slaves in the cluster).

As we use unidirectional switches, we can distinguish two connecting networks as
shown in figure 1.

� A downward connecting network whose topology is equivalent to the butter-
fly fat tree Leiserson (1985). In this tree, the edges come from the upper levels
and reach the inputs of the logic blocks. The topology of this tree is equivalent
to the one used in SPIN network Guerrier and Greiner (2000).

� An upward connecting network whose edges come from the leaves (outputs of
logic blocks and input pads) to the switch boxes of each level.

2.1 Downward network

Consider the case of a 2 levels tree with an arity equal to 4. In each level, a cluster
contains 4 slaves and a switch box. To depopulate the switch box, we divide it into

S

S S S S

Logic blocks

Figure 1. Connection networks.
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4 mini switch boxes (MSB). In level 0, each MSB is in charge of connecting the upper

level tracks and one input of each logic block as depicted in figure 2. Thus, each MSB
has 4 outputs which are equal to the number of logic blocks (slaves). Level 1 is

constructed in the same manner, the switch box of each cluster of level 1 is connected

to 4 clusters belonging to level 0. As each cluster in level 0 has 16 inputs, the switch
boxes are divided into 16 MSB and each one is connected to one cluster slave input.

Figure 3 shows the distribution of the interconnect in level 1. The previous

described butterfly fat tree has the following properties.

� From a track located in the top of a switch box one can reach any slave, but in
only one pin.

� From a track of a switch box there is only one path to reach a particular slave.
Due to the regularity of the architecture, this path is easily predicted.

� In each level, the interconnect resources are balanced between clusters.

2.2 Upward network

It is proposed to connect logic blocks output signals to specific switch boxes of upper

levels. Thus, for each logic block output (and input pad), a list of feedbacks is

defined, each one enabling the output to reach a switch box on a particular level.

L L L L

MSB MSB MSB MSB

Inputs Inputs Inputs Inputs

MSB : Mini switch boxL : Logic block

Figure 2. Top-down connecting tree in level 0.

L L L L

MSB MSB MSB MSB

L L L L

MSB MSB MSB MSB

L L L L

MSB MSB MSB MSB

L L L L

MSB MSB MSB MSB

MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

MSB : Mini switch boxL : Logic block

Figure 3. Top-down connecting tree in level 1.
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The way in which feedbacks are distributed on each level has an important impact on
the number of different paths to reach a destination logic block from a source. As
shown in figure 4, two feedbacks can connect a source to a destination using two
different paths.

3. Placement

The MFPGA placement problem can be stated as assigning to each netlist cell a logic
block (leaf) in the MFPGA architecture. The way cells are distributed also has an
important impact on routability. In fact, once cells are placed, the router tries to find
a path to connect a source LB (cluster leaf) to its destinations LBs (cluster leaf) using
architecture resources. Thanks to the interconnect predictibility provided by the
MFPGA architecture, some conditions to limit later conflicts in the routing phase
can be introduced in the placement phase.

3.1 Conflict condition

To present the effect of placement on routability, refer to figure 5. This figure
presents two different placement cases of the same netlist. In this netlist, cell1 and
cell2 drive cell0. In the first placement case, a conflict (dashed line) is obtained to
route the netlist using the lowest levels. Changing the position of cell2 resolves the
routing conflict problem (second placement case).

To consider routing constraints in the placement phase, a sufficient condition is
established to avoid conflicts occuring.

Lemma 1: If posðcellÞ � posðcell0Þ 6¼ ðl0up � lupÞ mod 4 there is no conflict between
cell and cell0 to reach a common destination using respectively lup and l0up levels.
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Figure 4. The upward connecting network.
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This Lemma is confirmed by placement examples presented in figure 5. In the
first example, (unfeasible routing), posðcell1Þ � posðcell2Þ ¼ 3 and l2up � l1up ¼ 3
(in base 4). This equality explains why a conflict in this placement case is obtained.
In the second example, (feasible routing), posðcell1Þ � posðcell2Þ ¼ 2 and
l2up � l1up ¼ 3. As Lemma 1 is verified, netlist routing with no conflict is achieved.

3.2 Partitioning

The way in which logic blocks are distributed between MFPGA clusters has an
important impact on routing congestion reduction. Based on the upward intercon-
nect specificity notice that the number of different paths to connect a source to a
destination depends on their enclosing clusters. If they are packed in the same
cluster, the source can use more levels to reach its destination (more different
paths). From this remark, consider that the netlist cut reduction is an important
factor for routability improvement.

A second partitioning objective is deduced from routability condition presented
in Lemma 1. Consider a netlist where cell and cell0 are driving a common destination.
If both sources are packed in the same cluster, one obtains on the one hand,
‘up � ‘0up ¼ 0 (‘up is the lowest used level by cell to reach the destination); on the
other hand posðcellÞ � posðcell0Þ 6¼ 0. In this case, referring to Lemma 1, no resource
conflict occurs.

To include this objective in the clustering technique, it is proposed to construct a
cells constraints graph (CCG). The CCG denoted as Gn ¼ ðV, EnÞ consists of a set of
vertices and weighted edges derived from the netlist. An edge is established between
two vertices when they drive the same destination cell, which are called adjacent.
Each edge contains a weight equal to the number of common destinations between
two adjacent vertices. Using only this graph in the partitioning weakens the obtained
clusters netlist results in terms of external communication. To take this in considera-
tion, it is proposed to generate from the initial netlist hypergraph and the CCG a new
constrained cells hypergraph CCH, as presented in figure 6. In this hypergraph,
vertices are cells (as in the netlist) and it contains all hyperedges of the netlist and all
edges of the CCG. This constrained hypergraph is partitioned by hMetis Karypis

A B C D 10101010A B C D 00000000 A B C D10101010A B C D 00000000

MSB MSB MSB MSB

MSBMSB

MSB

MSB MSB MSBMSB MSB

MSB MSB MSB

MSB

MSB MSB MSB MSB

MSBMSB

MSB

MSB MSB MSBMSB MSB

MSB MSB MSB

MSB

Unfeasible routing Feasible routing

LBLB LB LBCell2Cell1 Cell0 LB LBLB LB LBCell1 Cell0 Cell2LB

Figure 5. Placement example.
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and Kumar (1999) partitioning tool and objectives priorities are defined by hyper-
edges weights.

It is proposed to use a top-down patitioning approach (global connectivity infor-
mations). First construct clusters of the top level and then each cluster is partitioned
into sub-clusters. This is done until the bottom of the hierarchy is reached. To run
partitioning hMetis is used, since it generates a good solution in a short time due to
its multi-phase refinement approach.

3.3 Detailed placement

If during detailed placement Lemma 1 condition is taken into account, significant
gain can be obtained in terms of routability and congestion reduction. For this
purpose, one introduces the advanced cells constraints graph (ACCG), with which
is associated a given a multilevel clustered netlist (previous section) and a placement
problem. Input and output Pads are also concerned by the detailed placement. To
simplify method description, we consider only logic blocks. Input pads are treated
exactly like logic blocks. Output pads are clustered with their logic block drivers.

3.3.1 Advanced cell constraints graph. An ACCG is a CCG that contains extra cells
partitioning informations required to check conditions of Lemma 1. An ACCG
denoted as Gn ¼ ðV,EnÞ consists of a set of vertices and directed edges derived
from the netlist and the way its cells are partitioned between clusters in each level,
where each vertex corresponds to a cell of the netlist. A pair of opposite directed
edges is established between two vertices when they drive the same destination cluster
(located at any level), which are then called adjacent. To be able to verify conditions
proposed in Lemma 1, it is necessary to add further information to the constraints
graph. This information is stored in each directed edge connecting two adjacent
vertices and consists of the forbidden shift between adjacent vertices positions.

shift ¼ ð‘up � ‘0upÞ mod 4

C0 C4

C2

C1

C0

C2

C3

C4

C5

Constrained hypergraph

Netlist hypergraph

Cell constraints graph

C1

C0

C2

C3

C4

C5

C1
11

1

2

1

2 1

1

Figure 6. CCH: Cell constraints hypergraph.

280 Z. Marrakchi et al.



D
ow

nl
oa

de
d 

B
y:

 [B
IU

S
 J

us
si

eu
/P

ar
is

 6
] A

t: 
14

:3
5 

22
 M

ay
 2

00
8 

It is worthwhile using the lowest level feedback link to connect a source to its

destination, since it has an important impact on delay reduction. That is why the

ACCG is constructed, ‘up corresponds to the lowest level where the source has to go

up to reach its destination. Reducing the conflict between sources using the lowest

level is beneficial for the first routing iteration. In fact, as will be explained in the next

section, an iterative rip-up routing algorithm based on the congestion negotiation is

used. An adjustable cost to each feedback is assigned. A lower level induces lower

cost; consequently in the first routing iteration, signals will be routed using the lowest

levels. Using the lowest levels to construct the ACCG has two advantages:

� fewer switches will be crossed to route signals
� a good initial solution for the iterative router exists: first iteration is run with

the least number of resource conflicts

The construction of the ACCG is described in Algorithm 1.

Algorithm 1:

for each leaf cluster cl

for each level l

for each receiver rc of cl in level l

for each leaf driver dr of rc

//cl and dr both drive rc

if No edge between cl and dr

create edge e between cl and dr

end if

shift¼ ShiftCompute(cl,dr,rc)

append shift to edge e

end for

end for

end for

end for

Figure 7 presents the advanced cell constraints graph constructed from the placed

netlist in figure 5. Since cell1 and cell2 drive a common destination, a directed edges

pair is established between both vertices. The weight presented on each edge corre-

sonds to the shift value: ð‘1up � ‘2upÞ mod 4 and ð‘2up � ‘1upÞ mod 4.

3.3.2 Simulated annealing strategy. A detailed placement consists of assigning
a position for each cell inside its owner cluster. The objective is to reduce the number

of resource conflicts. To compute this number, one takes each vertice in the ACCG

Cell 1

shift = 1

shift = 3

Cell 2

Figure 7. ACCG: advanced cell constraints graph.

Performances comparison between interconnects 281



D
ow

nl
oa

de
d 

B
y:

 [B
IU

S
 J

us
si

eu
/P

ar
is

 6
] A

t: 
14

:3
5 

22
 M

ay
 2

00
8 

and checks whether the condition of Lemma 1 is verified, if then the global cost
function is incremented by 1. Computing this cost for a specific detailed placement is
given by the following procedure.

Algorithm 2:

cost¼ 0

for each vertice v

mark vertice v visited

for each adjacent vertice adj of v

if adj was not visited

for each shift value

(*) If conict(v,adj,shift)

costþþ

end if

end for

end if

end for

end for

The cost is updated incrementally in the sequel. To check whether there is a resource
conflict (*), one must check the condition of Lemma 1. In order to do this, informa-
tion about the first source position, the second source position (adjacent) and the
forbidden shift value is needed. All the information is provided by the ACCG.

To find the best detailed placement combination, it is proposed to use an adaptive
simulated annealing algorithm (Kirkpatrick et al. 1983). In this algorithm, the oper-
ating parameters are controled using statistical techniques (Aars et al. 1985).

Moves are randomly applied to the configuration and consist of assigning new
positions to cells. First, an element to be moved is randomly chosen. Secondly, we
randomly choose the new position inside the direct cluster owner and, if it is occupied,
both elements positions are swapped. The cost function is updated incrementally by
evaluating the incremental cost of the moved vertices and their adjacents. A hard
windowingmove restriction approach is adopted. A cell can only move inside its direct
owner. This restriction is important to keep the partitioning result constant. In addi-
tion, by respecting this restriction, it is not necessary to update the ACCG since the
common receivers and the levels to use to reach them always remain the same. This
yields important run time reduction for the cost updating phase.

Moves that decrease the configuration cost are always accepted, while moves that
increase the cost function are accepted with a probability that is directly related to
the temperature and inversely related to how much the move impairs the system as a
whole. As annealing proceeds, the temperature is slowly lowered.

4. Routing

The routing problem can be stated as assigning signals to routing resources, in order
to successfully route all signals. This goal is difficult to achieve in the architecture,
because of the lack of routing resources (depopulated switch boxes). In fact, the
number of paths to reach a destination from a source is significantly reduced and

282 Z. Marrakchi et al.
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those paths depend on the location of cells and the number of levels in the archi-
tecture. Thus, signals will compete for the same resources and the challenge is to find
a way to allocate resources allowing all signals to be routed. Despite this disadvan-
tage, there is a great advantage in our architecture, since our unique path connecting
an MSB to a logic block is predictable.

To route the architecture, a particular iterative rip-up algorithm based on the
congestion negotiation called PathFinder (McMurchie and Ebeling 1995) is adopted.
PathFinder was applied to the mesh architecture and adapted to MFPGA architec-
ture. Since there is a unique downward path to reach a destination from an MSB, the
breadth-first search in the detailed routing part has been eliminated.

Since the choice of the feedback imposes the path to use, the negotiation must be
done on the choice of the feedback that leads to a path with less congestion.
According to this remark, an adjustable cost is assigned to each feedback. The global
router dynamically adjusts the congestion penalty for each feedback. During each
iteration, individual routing resources may be used by more than one signal. The
penalty to use shared resources is gradually increased, so that signals will negotiate
effectively for resources. The implemented algorithm is described by the Algorithm 3.

Algorithm 3:

While shared resources exist

/*global router*/

Loop over all signals i

Loop until all sinks tij are found

Rip up branch Bij

Find feedback j with lowest cost

Bij <- j

/*detailed router*/

Loop until new tij is found

Find next_wire

Add next_wire to Bij

End

End

End

/*backtrace*/

Loop over nodes in Bij

/*path from tij to si*/

Update cost of j

END

END

5. Timing analysis

This work is intended to evaluate the performance of MFPGA architectures in term
of their functional speed. Thus, once an application has been completely placed
and routed it is proposed to estimate the minimum feasible clock period to run it.
Since there is a tree-connecting network, it is proposed to divide a path into several
sub-paths. Each sub-path connects a source to a sink and consists in going from

Performances comparison between interconnects 283
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a source up to a particular level and then down to the sink. The number of sub-paths

depends on the number of levels. The first step consists of estimating delays on each

sub-path, next compute the delay for each path composed of several sub-paths. This

method enables the estimation of the clock frequency for applications implemented

on MFPGA.

5.1 Sub-paths delays evaluation

A sub-path connects a source to a sink and crosses several MSBs. The number of

sub-paths in the architecture is limited and depends on the number of levels.

Consequently, given an architecture with n levels, one can isolate the n different

sub-paths (symmetric structure). In figure 8, the 3 isolated sub-paths of an architec-

ture containing 3 levels are shown. The SPICE circuit simulator is used to obtain

highly accurate delay estimation in each sub-path. Each architecture is composed of

combinational sub-paths that either start at a logic block (combinational/sequential)

or an input pad pi and either end at a logic block (combinational/sequential) or an

output pad po. To ensure proper circuit function, it is also necessary to take register

setup-times tset and sequential propagation delays dseq into account (sometimes

denoted as ‘‘clock-to-Q’’ delays). Classification of sub-paths and resulting delays is

given below.

1. Combinational logic block!Combinational logic block
dðpÞ ¼ dðswitchesÞ

2. Combinational logic block!Output-pad
dðpÞ ¼ dðswitchesÞ þ dðpoÞ

L
U

T

Sink of
Sub-path 2 

L
U

T

Sink of
Sub-path 1

L
U

T

Sink of 
Sub-path 0

L
U

T

Source

Level 0

MX6MX6 MX6 MX6

MSB
Level 0

MX6MX6 MX6 MX6

MSB
Level 0

MX6MX6 MX6 MX6

MSB

Level 1

MX6MX6 MX6 MX6

MSB
Level 1

MX6MX6 MX6 MX6

MSB

Level 2

MX6MX6 MX6 MX6

MSB

LB LB LB LB

Figure 8. Sub-paths timing caracterisation.
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3. Input-pad!Combinational logic block
dðpÞ ¼ dðpiÞ þ dðswitchesÞ

4. Sequential logic block! Sequential logic block
dðpÞ ¼ dseq þ dðswitchesÞ þ tset

5. Sequential logic block!Combinational logic block
dðpÞ ¼ dseq þ dðswitchesÞ

6. Sequential logic block!Output-pad
dðpÞ ¼ dseq þ dðswitchesÞ þ dðpoÞ

7. Input-pad!Sequential logic block
dðpÞ ¼ dðpiÞ þ dðswitchesÞ þ tset

8. Combinational logic block!Sequential logic block
dðpÞ ¼ dðswitchesÞ þ tset

Delays on sub-paths depend on the length of wires connecting MSB and logic blocks.
These lengths are extracted from the routed MFPGA layout. Figure 9 shows the
placed symmetric layout of a 4-levels MFPGA architecture (256 LBs). The basic tiles
of the structure are:

� the LB that contains one multiplexer 16:1, one flip-flop and a bypass 2:1
multiplexer;

� the MSB that contains 4 multiplexers;
� the configuration memory blocks composed of 16 SRAM cells;
� the decoder for configuration memory adressing.

These basic tiles are duplicated at each level to construct the hierarchy recursively.
Those tiles using a symmetric H00 plannig technique are abutted.

The MFPGA prototype is targeted to 0.13 CMOS process with 6 metal layers.
This layout could be packed more tightly, since it has large tile areas composed of
standard cells. With a Full-Custom technique, a more careful design of the inter-
connect coupled with the sub-clusters resources would decrease the total area and
improve delay performances.

5.2 Critical path extraction

Once the circuit has been placed and routed, a direct graph called ‘‘routing graph’’ is
obtained . This graph describes wires that will be used to connect logic block pins as
described in the netlist according to the use made with architecture routing resources.
Each wire and each logic block pin becomes a node in this ‘‘routing graph’’ and each

Figure 9. 4-levels symmetric MFPGA layout.
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passing switch (inside the MSB) becomes a directed edge. Edges are also added
between inputs of logic blocks and their outputs. Figure 10 shows a simple
circuit implemented via 2-input LUTs and registers, and the corresponding
‘‘routing graph’’. On this graph, one can easily isolate different sub-paths through
a depth-first traversal. Each sub-path is replaced by only one edge labelled with the
sub-path delay.

Thus, a new direct acyclic graph called ‘‘timing graph’’ is obtained. In this graph,
nodes represent the input pins and output pins of basic circuit elements, such as
registers and LUTs. Register input pins are not linked to register output pins.
Register outputs have no edges incident to them and register inputs have no edges
leaving them (acyclic graph). Similarly, primary inputs (input pads) have no incident
edges and primary outputs (out pads) have no exit edges. Each edge is labelled
with the delay required to pass through circuit element or routing (sub-path
delay). Figure 10 shows the obtained ‘‘timing graph’’ of the routed circuit.

One can determine the minimum required clock period with O(n) computation
for a ‘‘timing graph’’ with n nodes via a breadth-first traversal. This traversal begins
at nodes with no incident edges (primary inputs and register outputs) and labels each
with a signal arrival time, Tarrival, of 0. Each node which has incident edges from
already labeled nodes is then labelled with its arrival time according to

TarrivalðiÞ ¼ max
j2faninðiÞ

fTarrivalðjÞ þ delayðj, iÞg

where node i is the node being labelled, and delayðj, iÞ is the delay value marked
on the edge joining node j to node i. This procedure continues until every node in
the graph has been labelled. Then the node with the largest arrival time, which
will be always a primary output or a register input, defines the maximum delay,
Dmax (¼ minimum clock period), through the circuit. In figure 10, for example,
the arrival time at node Reg is 5.5 ns, which is the largest arrival time, and hence
the maximum circuit delay.

6. Experimental results

To evaluate architecture and tools performances, some of the MCNC benchmark
circuits are placed and routed .
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MSB
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Primary
inputs
(pads)
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output
(pad)

MSB
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In In Reg InIn
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Su
b

Sub

Su
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Su
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Figure 10. Timing graph modeling of a simple circuit.
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6.1 Density performances

The same benchmark circuits are used to compare the switch and area requirements
between MFPGA architecture and clustered mesh topology (

ffiffiffiffi

N
p

x
ffiffiffiffi

N
p

clusters). The
mesh architecture uses uniform routing with single-length segments and a subset
switch box. Each cluster logic block contains four 4-LUTs. 10 inputs and 4 outputs
appear on the 4 sides of the cluster. Both inputs and outputs are fully populated
(Fc¼ 1). IO pads are fully populated too. A t-vpack is used (Marquart et al.1999) to
construct clusters and the channel minimizing router VPR 4.3 (Betz et al. 1997) to
route the mesh. VPR chooses the optimal size as well as the optimal channel width
needed to place and route each benchmark.

Compare the areas of both architectures using successively a simple cost model
based on routing switches count, and a more refined model that estimates effective
circuit area. The mesh area is the sum of its basic cells areas like SRAMs, Tri-states
andmultiplexers. The same evaluation is made for theMFPGA, composed of SRAMs
and Multiplexers. The same cells library is used for both architectures. In table 1 it is
shown that circuits on MFPGA using a smaller area than with mesh architecture can
be implemented. The area reduction is about 17.5%. It is noticed that, in some cases
(‘‘tseng’’ and ‘‘alu4’’ circuits), MFPGA is penalized by its low occupation.

6.2 Speed performances

It is clear from the previous comparison that the MFPGA architecture is more
efficient in terms of area and this has a positive effect on circuit speed: the smaller
the area, the shorter are the connecting wires. In addition, due to the multilevel
hierarchy aspect of MFPGA architecture, logic blocks are partitioned between clus-
ters to reduce external communications. This has an important impact on circuit
speed improvement, since communication is faster. The speed of the MFPGA
architecture to the Mesh was compared. The same circuits were implement the
timing analysing tool was used for the MFPGA and the one proposed in VPR
for the mesh (note: we applied a VPR timing-driven placement and routing).

Table 1. Area comparison: MFPGA vs mesh.

Mesh MFPGA

Circuits Size
ffiffiffiffi

N
p Switches

number
Area

(�2 � 103Þ Arch Occup
Switches
number

Area
(�2 � 103)

alu4 584 13 81926 207423 4� 4� 4� 4� 4 57 106496 299008
C5315 725 19 220004 555362 4� 4� 4� 4� 4 69 106496 299008
tseng 1047 17 210014 531058 4� 4� 4� 4� 4� 2 51 253952 679936
ex5p 1064 17 315084 785075 4� 4� 4� 4� 4� 2 51 253952 679936
apex4 1262 19 329894 822706 4� 4� 4� 4� 4� 2 61 253952 679936
dsip 1370 27 396504 1009107 4� 4� 4� 4� 4� 2 66 253952 679936
misex3 1397 20 353376 882555 4� 4� 4� 4� 4� 2 68 253952 679936
diffeq 1497 20 332324 836917 4� 4� 4� 4� 4� 2 73 253952 679936
bigkey 1707 27 337062 864003 4� 4� 4� 4� 4� 2 80 253952 679936
AVER 1183 20 286243 721578 64 221184 595285
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Timing results are presented in table 2. In this comparision, only small benches
(< 1024 BLEs) were used. In fact, until now only architecture layouts (16, 64, 256
and 1024) have been generated and, as explained in } 5, layout information (wires
lengths) is important for sub-paths delay caracterization. It is noted that MFPGA
largely outperforms clustered mesh architecture (40%) in terms of speed despite
timing driven placement and routing techniques having not yet been integrated.

7. Conclusion

The preliminary results show that good balancing of the LUT and the interconnect
utilization reduces area compared with traditional mesh architectures. Thanks to the
hierarchy aspect of the MFPGA there is a very good performance in terms of speed
compared with the common mesh architecture.

The routing key of the proposed architecture is the upward network. Enhancing
the routability needs to populate the upward network to increase the number of
paths between sources and destinations. This can lead to area increasing, but can
be compensated by applying Rent’s rule to reduce the cluster signals bandwidth.
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