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Résumé 

Ce travail de thèse porte sur la conception et implantation physique d’un micro-

réseau sur puce avec garantie de service. Ces études reposent sur le micro-réseau sur 

puce DSPIN développé au Lip6.  

Dans un premier temps, nous étudions l’incorporation des communications avec 

garantie de service dans ce micro-réseau. Ce type de communications est très utilisé 

dans les systèmes ayant de fortes contraintes temporelles comme, par exemple, les 

traitements de flux vidéo ou audio. La solution proposée est capable d’offrir des 

garanties de latence et de bande passante à faible coût matériel. 

 Dans un deuxième temps, nous analysons une FIFO qui permet d’interconnecter 

des systèmes synchrones qui n’ont pas le même domaine d’horloge. Ce type de FIFO 

est optimisé pour des profondeurs faibles ainsi que pour faciliter son implantation 

dans des architectures compatibles avec l’approche Globalement Asynchrone, 

Localement Synchrone. Sa conception repose sur des cellules standard sans utiliser 

des cellules spécifiques ni asynchrones. 

Enfin, nous présentons une implantation matérielle du micro-réseau DSPIN dans 

la plate-forme FAUST développée par le CEA-Léti. Toute la chaîne de conception, 

depuis la synthèse de l’architecture jusqu’au dessin des masques, est décrite en détail 

pour illustrer la façon dont la technologie DSPIN s’intègre dans un flot de conception 

industriel. Ainsi, le circuit final est testé avec des données réelles. 

 

Mots-clés : Micro-réseau sur puce, implantation physique, garantie de service, 

NoC, DSPIN, FAUST, FIFO bi-synchrone, Globalement Asynchrone Localement 

Synchrone (GALS). 

 

Titre en Anglais : Design and Implementation of a Network-on-Chip with 

Guaranteed Service. 
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Abstract 

 

This dissertation addresses the design and the physical implementation of a 

Network-on-Chip (NoC) with guaranteed service traffic.  In this context, the DSPIN 

Network-on-Chip developed at Lip6 was used as target architecture. 

Firstly, we analyze the implementation of the guaranteed service traffic in the 

DSPIN architecture. This type of communications is largely used in real-time 

applications, such as video decoding or audio processing. The proposed solution 

features low area cost while delivering guaranteed latency and throughput. 

Secondly, we analyze a bi-synchronous FIFO that is capable to interface 

synchronous systems working with different clock signals (frequency and/or phase). 

This FIFO is optimized for low depth while being compatible with the Globally 

Asynchronous, Locally Synchronous approach. Its implementation uses only 

standard cells, without either asynchronous or custom cells. 

Finally, we present a physical implementation of the DSPIN architecture on the 

stream-oriented FAUST platform developed by CEA-Léti. The full implementation 

flow from synthesis up to mask design is detailed in order to illustrate the how the 

DSPIN technology is implemented on an industrial flow. As a final point, the circuit 

is verified with real data.    

 

Key words: Network-on-Chip, physical implementation, guaranteed service, 

NoC, DSPIN, FAUST, bi-synchronous FIFO, Globally Asynchronous Locally 

Synchronous (GALS). 

 

English Title: Design and Implementation of a Network-on-Chip with 

Guaranteed Service. 
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Introduction 

Les avancées technologiques dans le domaine des circuits intégrés permettent 

d’introduire de plus en plus de transistors à l’intérieur d’une même surface de 

silicium. Dans les années 80, le nombre de transistors contenus dans un circuit 

intégré pouvait se compter par centaines. Désormais, les circuits intégrés les plus 

modernes contiennent plusieurs centaines de millions de transistors. Cette 

progression n’aurait pas été possible sans l’amélioration des procédés de fabrication 

et des outils de conception. Grâce à cette capacité d’intégration accrue, la réalisation 

de systèmes multiprocesseurs à l’intérieur d’un seul circuit intégré est désormais une 

réalité. Les avantages de ces type d’architectures sont multiples : grand nombre 

d’interconnexions (non limité par le nombre de plots du circuit intégré), 

communications intra-chip très rapides (par rapport aux communications inter-chip), 

réduction de la consommation (la capacité des condensateurs des plots est plus 

grande que celle des fils intra-chip), et coût de production réduit (l’intégration des 

composants dans un même circuit intégré réduit le prix total).  

Jusqu’à présent, les interconnexions des systèmes inter-chip ont été conditionnées 

par le nombre de plots des circuits intégrés. De ce fait, les systèmes d’interconnexions 

de type bus ont été un succès car ils permettent de multiplexer sur les mêmes nappes 

de fils plusieurs communications. Les systèmes d’interconnexions intra-chip 

présentent deux problèmes majeurs. D’une part, les bus de données ont une 

limitation de bande passante car ils partagent la même ressource avec tous les 

utilisateurs. D’autre part, ces types d’interconnexions sont de plus en plus complexes 

à implanter physiquement car elles requièrent de très longs fils d’interconnexion, ce 

qui s’oppose à l’augmentation des fréquences d’horloge. 

Les architectures de type micro-réseau sur puce (Network-on-Chip) offrent une 

bande passant largement supérieure aux bus étant donné que le système 

d’interconnexion est plus segmenté et que son nombre d’interconnexions est 
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supérieur. D’autre part, ils peuvent être conçus et implantés physiquement d’une 

manière plus simple que les bus d’interconnexion car les circuits intégrés peuvent 

être découpés en îles de communications indépendantes. Ce qui permet d’utiliser des 

techniques de conception de type Globalement Asynchrone, Localement Synchrone 

(GALS).  

Le micro-réseau SPIN (Scalable Programmable Integrated Network) développé 

au LIP6, est la première architecture de micro-réseau à commutation de paquets à 

avoir été publiée. Elle visait à résoudre le problème du goulot d'étranglement 

constitué par le bus système dans les architectures multiprocesseurs à mémoire 

partagée intégrées sur puce (MPSoC). Par la suite, un grand nombre d'architectures 

de type Network-on-Chip (NoC) ont été publiées ÆTHEREAL, Nostrum, ANOC, 

Mango, QNoC, entre autres. En particulier, les concepteurs de ces micro-réseaux 

insistent sur la nécessité d'introduire des garanties de latence et de bande passante 

dans les communications pour des applications temps-réel. 

Simultanément, l'implantation matérielle d’un micro-réseau SPIN à 32 ports chez 

STMicroelectronics a permis d’identifier les points faibles de cette architecture. Parmi 

les faiblesses de SPIN, nous trouvons que l'approche complètement synchrone n'est 

pas compatible avec les systèmes GALS, la topologie en arbre quaternaire élargi qui 

est peu modulaire, et finalement la réalisation par macro-cellule optimisée qui ne 

permet pas d’utiliser les bibliothèques de cellules précaractérisées fournies par le 

fondeur. Ceci nous conduit à définir l’architecture DSPIN (Distributed 

Programmable Integrated Network) capable de supporter des communications avec 

des garanties de service, synthétisable avec les cellules standard des fondeurs et 

compatible avec les architectures de type GALS.  

Ce manuscrit s’articule de la manière suivant :  

Le premier chapitre présente les trois principaux objectifs de notre travail : la 

conception d’un micro-réseau sur puce capable de supporter des communications 

avec des garanties de service, la conception des interfaces de communication entre 

systèmes qui ont des domaines d’horloge différents (phase et/ou fréquence) et les 

problèmes liés à l’implantation physique des micro-réseaux dans un flot de 

conception industriel. Simultanément, des questions ouvertes sont formulées pour 

mieux cibler les objectifs de ce manuscrit.  

Le deuxième chapitre expose l’état de l’art pour la garantie de service et de 

l’implantation physique (l’état de l’art des interfaces de communication se trouve 

dans l’annexe A). Plusieurs architectures de micro-réseaux sont analysées en termes 

de communications avec garantie de service et de leur implantation physique. Au 
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début de ce chapitre, l’architecture SPIN est détaillée pour permettre de comprendre 

l’origine de DSPIN et son évolution vers une architecture distribuée.  

L’introduction de la garantie de service dans l’architecture DSPIN est analysée 

dans le chapitre 3. Nous commençons par présenter une étude sur les garanties de 

service de type statistique avant de proposer une architecture utilisant deux canaux 

virtuels. L’architecture interne des modules de DSPIN (routeur et contrôleur 

d’interface réseau) est présentée de manière détaillée. L’allocation et l’acheminement 

des communications avec garantie de service sont analysées pour garantir une 

prédictibilité de ces communications en termes de latence et de bande passante. 

L’architecture DSPIN a été modélisée en SystemC et VHDL pour déterminer le seuil 

de saturation du réseau par simulation et confirmer les études analytiques sur la 

garantie de service. Finalement, l’architecture a été synthétisée, sa surface et sa 

fréquence maximale ont été caractérisées.  

Le chapitre 4 expose la solution proposée pour interfacer deux systèmes 

synchrones qui ont des signaux d’horloge indépendants. L’objectif est de concevoir 

une FIFO de petite taille avec un coût de surface faible et synthétisable avec des 

cellules standard (sans utiliser de cellules asynchrones). Premièrement, un nouvel 

algorithme d’encodage est proposé et analysé. Cet encodage s’avère utile pour 

synchroniser des pointeurs de position entre deux systèmes d’horloge différents. 

Deuxièmement, cet encodage est utilisé dans la conception d’une FIFO de type bi-

synchrone (deux interfaces synchrones contrôlées par deux horloges indépendantes). 

Nous présentons les schémas détaillés ainsi que diverses optimisations. Ces dernières 

permettent d’une part, d’améliorer l’utilisation de la FIFO et d’autre part, de réduire 

la latence de la FIFO quand les deux horloges, écriture et lecture ont la même 

fréquence mais une phase différente (mesochrone). La FIFO a été synthétisée en 

cellules standard pour caractériser sa surface et sa fréquence maximale en fonction 

du nombre de mots de la FIFO. Enfin, cette FIFO est comparée à d’autres FIFOs 

synthétisables. 

Dans le chapitre 5, nous présentons une implantation matérielle du micro-réseau 

DSPIN dans la plate-forme FAUST développée par le CEA-Léti. Cette plate-forme 

contient plusieurs unités de calcul interconnectées par un micro-réseau ANOC. Ce 

micro-réseau a été remplacé par DSPIN (le détail de ce remplacement se trouve dans 

l’annexe B). Toute la chaîne de conception, depuis la synthèse de l’architecture 

jusqu’au dessin des masques, est décrite en détail pour illustrer la façon dont la 

technologie DSPIN s’intègre dans un flot de conception industriel. Une fois 

l’implantation conclue, le circuit a été caractérisé en prenant en compte les capacités 
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et résistances. Ainsi, le circuit final est testé avec des données réelles. Ce chapitre se 

conclut par une comparaison systématique entre les réseaux DSPIN et ANOC 

concernant la surface du micro-réseau, la bande passante, la latence des paquets pour 

traverser le micro-réseau, la puissance consommée et la manière d’être programmé. 

Les conclusions de ce manuscrit sur les trois sujets abordés se trouvent dans le 

chapitre 6. 

L’annexe A est un résumé de l’état de l’art des problèmes de synchronisation 

entre systèmes qui n’ont pas le même domaine d’horloge. Des solutions 

synthétisables ou semi-synthétisables sont analysées et comparées. Les architectures 

analysées sont des FIFOs avec contrôle de flux.  

Les modifications introduites dans la plate-forme FAUST pour permettre 

l’intégration de DSPIN sont décrites en détail dans l’annexe B. 

Enfin, l’estimation de la consommation des architectures DSPIN et ANOC dans la 

plate-forme FAUST, est détaillée dans l’annexe C. 
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Chapter 1 

1 Problem Definition 

This chapter introduces the problems addressed by this thesis. The scope of the 

analysis is limited to the Network-on-Chip domain. In the first section, the main 

problems addressed in this thesis are classified in three groups. For each group, some 

questions are formulated in order to be answered on the state of the art chapter, and 

on the proposed solutions. 

A general introduction of the Network-on-Chip concepts is exposed in Section 

1.2. In sections 1.3, 1.4, and 1.5, the problems elucidated on section 1.1 are detailed 

and analyzed. 

1.1 Thesis motivation 

Increasing the system performance by scaling the technology and the clock 

frequency becomes more and more complex due to the lower scalability of the wire 

delays. New approaches such as Network-on-Chip (NoC) architectures and the 

Globally Asynchronous, Locally Synchronous (GALS) paradigm tries to solve the 

design bottleneck by partitioning the circuit in small synchronous islands while they 

communicate asynchronously. Each island can be clocked by independent clock 

frequency, while the communications between neighbor islands are carried out by 

the NoC. Moreover, the NoC approach attempts to solve the bandwidth bottleneck of 

a central bus by splitting the communications over a plurality of routers and links. 

On the other hand, the integration of many IPs into a single SoC requires 

handling a higher degree of predictability in terms of circuit performances. Thus, real 

time applications such as video, requires some sort of end-to-end guarantee traffic in 

order to achieve its required performances.  
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Finally, physical implementation of complex SoC with many IPs, memories, and a 

Network-on-Chip requires a simple and flexible implementation flow. Thus, a simple 

implementation complexity for the Network-on-Chip and the ability of partitioning 

the SoC simplifies the implementation time of complex circuits. 

The contributions of this thesis can be grouped in three different topics, the 

quality of service in the NoC, the synchronization issues between independent clock 

domains, and the physical implementation of a NoC with independent clock 

domains. For each topic, some questions are formulated to focus the goals of this 

thesis. Detailed description of each topic can be found on the rest of the chapter. 

1.1.1 Quality of Service 

The introduction of the quality on service into a Network-on-Chip requires some 

sort of end-to-end path reservation in order to guarantee the latency and the 

throughput of the guaranteed service packets. 

The questions addressed for this topic are: 

• Packet latency: Which are the guarantees obtained on the packet latency? 

Are they hard bounded? 

• Throughput: The throughput of the guaranteed service traffic is 

guaranteed? Is it hard bounded? 

• Overhead: Which is the area/resources overhead of the NoC when the 

guaranteed service are introduced? 

• Shared resources: What are the shared resources between best effort and 

guaranteed service traffic? 

• Path allocation: How the guaranteed service traffic is allocated? By 

hardware or by software? Which is the complexity of this allocation? 

• GALS: Is the NoC suited to the GALS approach? 

1.1.2 Synchronization 

The interface between two independent clock domains is vulnerable to a 

metastability failure. This topic analyzes the efficiency of the synchronization 

solutions on an NoC architecture. 

• Latency: Which is the latency of the interface? 

• Throughput: Is the interface able to deliver sustained 100% throughput? 

Which is the minimum FIFO depth to achieve 100% throughput? 

• Robustness: Is the interface robust to the metastability failure? 

• Process, temperature, and voltage variation: Is the interface robust to the 

process, temperature, and voltage variations? 
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• Portability and industrialization: Is the architecture suited to industrial 

implementation? 

• Testability: Is the design test-friendly? Which type of test? 

• Density: Which is the area of the interface? 

• Flexibility: Is the physical implementation constrained by the design 

floorplan? 

1.1.3 Physical Implementation 

The physical implementation of a complex SoC requires increasing efforts on the 

Back-End flow. Thus, architectures that simplify the implementation flow are suited 

for multi-million transistor circuits. This topic is focused on the implementation 

complexity of the NoC, the GALS, and the mix-time interfaces. 

• Soft macro: Is the NoC implemented as a hard or a soft macro? 

• Floorplanning: Which are the physical and timing constraints of the NoC 

on the chip floorplanning? 

• Industrialization: Is the NoC suited to be implemented on an industrial 

flow? 

• Portability: Does the architecture contain asynchronous or custom cells? 

• Clocking: How is implemented the clock-tree? 

• GALS: Is the NoC suited to the GALS approach? 

• Clock boundaries: How are implemented the clock boundaries? 

• Power: Is the NoC efficient in terms of power? 

• Long wires: How the long wires are implemented? 

• Predictability: Is the NoC predictable, before and after Back-End? 

1.2 Network-on-Chip Concepts 

In this section, basic Network-on-Chip concepts are explained. The type of 

network, the network topology, the routing algorithm, the switching technique and 

the packet format are analyzed. 

1.2.1 Packet Switching and Circuit Switching Networ ks 

Two types of networks can be classified, the packet switching and the circuit 

switching networks. The former uses packets to communicate with the destination 

while the latter uses circuits. In the packet switching network, the packets contain de 

routing information needed to route the packet over the network. On the circuit-
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switching network, an end-to-end circuit has to be established before any 

communication can happen. In a wormhole packet switching network, the packets are 

composed of flits. A flit is the smallest flow control unit handled by the network. The 

first flit of a packet is the head flit and the last flit is the tail. As soon as the head flit is 

received, the packet is routed to its destination. Moreover, the tail flit frees the router 

resources as soon it is routed. The main advantage and disadvantage between the 

packet switching and the circuit switching networks can be summarized in Table 1.1. 

Table 1.1 Packet switching vs. circuit switching 

Packet switching Circuit switching 

No circuit reservation Need to allocate an end-to-end circuit 

Packet contains the routing information 
(overhead) 

No routing information as a circuit is established 

Throughput depends on the network charge Throughput is guaranteed once the circuit is 
allocated 

Latency depends on the network charge Lower and predictable latency once the circuit is 
allocated 

Lower initial latency as no circuit has to be 
allocated 

Higher initial latency as the circuit has to be 
allocated 

Producer can send the information into the 
network even if the consumer is busy 

Producer can only send the information if the 
whole end-to-end circuit is free. Otherwise has to 
retry later 

Better network efficiency as when the packet is 
sent the resource is released automatically 

The circuit have to be released to allow other to 
use it 

Suited for best effort traffic  Suited for streaming and guaranteed service 
traffic 

Require to decode each packet to route it Require a circuit allocator to establish the circuit 

 

1.2.2 NoC Building Blocks 

The main blocks of a generic NoC are the routers, the network interface 

controllers, and the links. The routers are the switching units of the network, the 

network interface controllers behave as a bridge between the network and each local 

sub-system, and the links are the wires interconnecting them. Their principal task can 

be summarized: 

• Router: Is the heart of the network. Its task is to route the packets over the 

network. Therefore, the packets are routed from a router input ports to the 

adequate router output port. The packets are not normally modified by 

the router; they are just forwarded to the adequate output port. However, 

some routing algorithms as the source-routing algorithm can modify the 

packet header on each router. 
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• Links: They are the wires interconnecting routers and connecting network 

interfaces to routers. These wires have to be properly buffered to 

guarantees a reliably communication in terms of crosstalk and noise 

immunity. Moreover, as technology size shrinks, the wire resistance and 

inductance becomes more important, and the wire latency becomes not 

negligible. Hence, more buffers are required to guarantee a reliable 

communication. 

• Network Interface Controller (NIC): Their main tasks are protocol 

conversion and packet building. The NIC provides services at the 

transport layer on the ISO-OSI reference model, offering to the local sub-

system independency versus the network implementation.  

1.2.3 Topology 

The topology of a Network-on-Chip defines how the routers, links and network 

interface controllers are organized. The simplest topology is linear, where all the 

routers are connected inline as shown in Figure 1.1a. More complex topologies are 

ring, octagon, fat tree, 2D mesh topology, torus, and heterogeneous. Figure 1.1 shows 

some examples of regular topologies. The squares are the routing elements while the 

circles are the computing elements. The topology of the network conditions the 

implementation cost. The higher the number of connections (arity) per router, the 

higher the total bandwidth of the system, but also the higher the implementation cost 

of the router. Not all the topologies are good candidates for a silicon implementation 

of an NoC. The hypercube (n-cube when n>3), for example, is not suited as the two 

dimension nature of the actual circuits require long wire to implement a 3D structure 

i.e. increasing the implementation costs compared to a regular mesh topology. The 

selection of the topology of the network is a tradeoff between performance, 

complexity, and implementation cost. In [Bonon06] a comparison between the ring, 

the mesh, and the spidergon [Coppo04] topologies are analyzed in terms of diameter, 

scalability, and latency. A good choice for NoC is a regular topology with a simple 

routing algorithm.  
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Figure 1.1 Regular topology examples 

1.2.4 Routing Algorithm 

In a packet switching network, the routing algorithm defines how a packet is 

routed to its destination. Two major types can be depicted: deterministic and 

adaptive algorithms. In deterministic routing, all the packets of a source-destination 

pair will follow the same path (in-order delivery). On the other hand, adaptive 

algorithms can modify the routing path in function of a metric (congestion, failure of 

a link, target busy …). Hence, the packets of a source-destination pair can follow 

different paths and the packets can arrive in a different order to that in which they 

were sent (out-of-order delivery). Thus, the target requires a reordering buffer to 

reorder the received packet. Some studies showed that the performances of the NoC 

can be improved using adaptive routing, but the silicon area of these reordering 

buffers should not be neglected. Adaptive algorithms can reduce hotspot 

(congestion) situations and/or avoid unreliable nodes or links. However, 

deterministic algorithms are the best choice for uniform or regular traffic patterns. 

Moreover, the global area of the system is optimized.  

Even when an NoC is reliable, the routed packets can incur on failure situations. 

The most important causes of failure are: 

• Deadlock: Two or more packets cannot reach its destination, because they 

are waiting for the other to finish. However, neither of them finishes. 
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• Livelock: A packet cannot reach its destination because it enters a cyclic 

path. 

• Starvation: A packet cannot reach its destination because it does not have 

access to some resource while others have. 

Deadlock and livelock are potential problems in wormhole [Bot04], [Dally01]. An 

analysis of these issues and how they can be solved is discussed below. 

• Deadlock: Of the three issues summarized, deadlock is the most difficult 

to solve. It can be solved by two methods: deadlock prevention and 

deadlock recovery. The deadlock prevention is the most conservative. It 

guarantees no deadlock by construction, for example forbidding some 

turns on a 2D mesh topology as in the turn-model [Glass94]. Deadlock 

recovery techniques accept that in some situations the system can enter 

into deadlock situations. In that case, some special resources are used to 

break the dependences of the deadlock and recover a normal situation. 

Deadlock can also occur in a higher-level communication paradigm, for 

example, the request/response packets of a shared memory system can 

lead into deadlock situations if they are not treated as dependent traffic (a 

request and its response have a dependency). Basic solutions consist of 

splitting the request and the response into independent virtual channels 

or by splitting the network into two independent sub-networks, one for 

the requests and the other for the responses). 

• Livelock: The system enters in a livelock due to routing loops on the 

routing algorithm or due to adaptive algorithm as the deflection routing 

(also known as hot potato routing). These issues can be probabilistically 

avoided [Duato03] or circumvented by using minimal routing path. 

• Starvation: It is the simplest issue to solve. It is the consequence of unfair 

allocation policies of the resources. Its solution is to use a fair allocation 

policy.  

Popular deterministic deadlock-free algorithms on a 2D mesh topology are X-

first, Y-first, West-first, and Negative-first. All of them follow the premises of the 

turn-model to avoid the deadlock situations. The X-first algorithm, first routes the 

packets through the X direction until it reaches the corresponding X coordinate and 

then routes through the Y direction until its destination. The Y-first is similar to the 

X-first, but it first starts by the Y coordinate and then through the X. The West-first is 

similar to the last two but the packet is first sent to the west side. The Negative-first 
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has the particularity to send the packet first to a lower X coordinate or to a lower Y 

coordinate in function of the destination.  

1.2.5 Switching Algorithm 

The switching algorithm determines how the packets are forwarded between 

switches. The switches have input and output ports which can contain FIFOs. Those 

FIFOs are temporary storage for the packets. If the FIFOs are placed on the input 

ports, it is an input queuing switch, and if they are placed on the output ports, it is an 

output queuing switch. 

The most popular packet switching algorithms are: 

• Store-and-forward: In this switching algorithm, the packets are 

forwarded to the next router only when the whole packet has been 

received. It means that the routers must contain enough buffering space to 

receive the longest packet. Moreover, the latency of the packets depends 

on the length of the packets, as the packets are not forwarded until the 

end of packet is received. 

• Virtual cut-through: It is similar to the store-and-forward but the packet 

can be forwarded to the next router as soon as the packet header is 

received, limiting the packet latency and the required buffering space. 

• Wormhole: It is similar to the virtual cut-through but the packet is 

decomposed into trailing packets (flits), thus reducing the buffering space.  

Wormhole switching algorithm has lower latency and requires smaller buffering 

space than the others require. However, as a packet may occupy many intermediate 

switches at the same time, livelock and deadlock situations occur more often in 

wormhole than for the others. For the same reason, the network congestion (two 

packets try to access the same output port) is increased in wormhole switching 

algorithm as a stalled packet can congest many routers. An example of input queuing 

switch congestion is depicted in Figure 1.2. This phenomenon is amplified when the 

network speed is higher than the speed of the computing elements. In that case, the 

packet advances faster over the routers than the computing element could generate 

it. Thus, the packets became elongate, they occupy many routers, and they generate 

congestion on many routers. 
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Figure 1.2 Congestion on an input-queuing switch 

Virtual channel is a way to multiplex independent communications over the same 

physical links [Dally87]. This switching technique can be implemented on circuit 

switching or packet switching architectures. On circuit switching, the virtual channel 

can create virtual circuits by multiplexing the circuits on the links. The number of 

virtual channels that can be supported by the link depends on the number of buffers 

of the link [Miche06]. Two schemas have been used: a buffer per virtual channel 

(spatial distribution) or a buffer per link (temporal distribution). 

1.2.5.1 Virtual channel with a buffer per channel 
The virtual channels are spatially distributed on the switch thank to independent 

buffers. The channels are temporally multiplexed over the same link using time slots. 

The allocation policy of the physical link can be static (as round-robin) or dynamic. 

Static allocation guarantees a reserved bandwidth per virtual channel (example: 1 of 

N time slots is reserved to a virtual channel i) while dynamic allocation can maximize 

the allocation of the link (example: a virtual channel is allocated when there is data to 

transfer and there is enough space on destination buffer). Figure 1.3 shows an 

example where four virtual channels are multiplexed. 

 

Figure 1.3 Virtual channels with a buffer per channel 
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1.2.5.2 Virtual channel with a buffer per link 
It is possible to use just a buffer per link when the switching allocation and the 

virtual channel data are temporally multiplexed and synchronized. This is normally 

achieved by statically scheduling the data and the switching allocation. Thus, many 

virtual channels can share the same input port. Figure 1.4 shows an example where 

many virtual channels share the same input port. Independent traffic data has 

different color. 

 

Figure 1.4 Virtual channel with a buffer per link 

When the system is correctly synchronized and all the virtual traffics are 

temporally disjoin, there is no need to have local flow control mechanism. Therefore, 

an end-to-end flow control mechanism can be employed as a circuit-switching 

network. 

This methodology requires low buffering space and less multiplexors compared 

to the virtual channel with a buffer per channel. However, it requires a global 

synchronicity of the network and a global slot allocation of the virtual channels in 

order to archive high performances. 

1.2.6 Header Encoding 

As seen in the routing algorithm section, the packet carries the routing 

information to allow the router to forward the packets to the right direction. On a 

wormhole switching router, this information is stored in the first flit of the packet. 

Thus, the routing decision can be taken as soon as the first flit of the packet is 

received. The routing information can be the absolute address (address-based) of the 

destination or the routing path (source routing algorithm). The former, uses a fixed 

number of bits to encode all the possible absolute addresses in the network. The 

latter, uses a fixed number of bits to describe the successive hops between routers to 



Chapter 1 - Problem Definition  

15 

reach the destination. Figure 1.5 shows a possible header format for these algorithms. 

An analysis of their features is discussed below. 

• Address-based: On a mesh topology, the absolute address can be defined 

using N bits (Nx + Ny = Nbits), where Nx and Ny are the number of bits 

to encode the maximum X and Y coordinate respectively. The clear 

separation of the Nx and Ny bits allow a rapid decoding of the X and Y 

addresses. Therefore, a compact implementation of the routing algorithm 

is possible. For a network architecture containing 256 units (16,16), it is 

possible to define the addresses using 4bits on Nx and 4bits for Ny. 

Hence, the routing information occupies 8bits. Another less advantageous 

distribution could be (5, 52) topology which means 5 * 52 = 260 units. In 

this later case Nx requires 3 bits and Ny requires 6 bits, consequently N is 

9 bits. The length of the routing information grows logarithmically with 

the system size; on a 10x10 system, N requires 10 bits. 

 

Figure 1.5 First flit definition 

• Source routing: The packet contains the routing path. Its size depends on 

the maximum number of hops (H0 to Hn) and on the number of bits to 

encode each hop (H bits) as shown in Figure 1.5b. At each hop, the router 

has to decide using H bits to witch output port sends the packet. Once the 

hop is done, the routing information is shifted H bits. The H bits encode 

one of the possible output ports of the router. Thus, the router can use a 

look up table to determine the proper output port to route the packet. On 

a mesh topology where the routers have 5 ports (north, south, east, west, 

and local), H can be defined using 3 bits (000-North, 001-South, 010-East, 

011-West, and 100-Local). Alternatively, it can be defined using 2 bits in a 

more intelligent way; it is the case of ANOC NoC [Beigne05]. In this NoC, 

it is established that a packet cannot be routed to the same direction as it 

came i.e. a packet coming from west cannot be routed to the west port. 

Using this premise, the code to route the packet to the local port is the 

incoming port as shown in Figure 1.6. Assuming a mesh topology of Nx 

columns of Ny rows of routers (Nx,Ny), the minimum number of hops to 
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reach any destination is defined using the Manhattan distance of the two 

opposite vertices of the mesh (0,0) to (Nx-1,Ny-1). Its distance is (Nx-

1) + (Ny-1) + 1 = Nx+Ny-1 hops. Assuming Nx=Ny=5, the required number 

of hops is 9. Taking into account that each hop requires 2 bits, the routing 

path needs at least 2*9=18 bits. If the system contains (10,10) units, the 

routing path requires at least 19*2=38 bits. It is clear that the routing path 

needs more bits than the address-based when the number of routers 

increases (38 bits compared to 10 bits).  

 

Figure 1.6 Source routing of ANOC NoC 

Table 1.2 summarizes the advantage and disadvantages of these two routing 

algorithms.  

The main drawback of the Source routing is the lower scalability compared to the 

Address-based. When the routing bits do not fit into a flit size, some path extension has 

to be used to override this limitation. In the FAUST implementation using the ANOC 

NoC [Beigne05], two path-extensions modules were added to overcome this 

limitation. 

In order to use the path-extension modules, the routing path is encoded in the 

first and second flits of the packet. When the packet passes through a path-extension 

module, the first flit of the packet is erased. Thus, the packet is routed using the 

routing information on the second flit, which now is the first flit. With this technique, 

it is possible to extend the routing path as long as the packet length. Nevertheless, the 

system architect has to avoid hot spot situations into these path-extension modules 

when many packets run out of routing path. 
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Table 1.2 Advantage and disadvantage of absolute address and routing path 

Address-based Source routing 

Small overhead on the packet. Requires 10 bits 
on a 10 * 10 system 

Higher overhead. Requires at least 38 bits on a 
10*10 system. 

A 32bit address can define a 65536 * 65536 
system. It does not require address extensions 
for the current circuits. 

If the routing path excesses the flit data size 
(example 32bits) some routing extensions have to 
be done. Otherwise, with a flit size of 32bits the 
maximum system size is 8*9 = 72 units. 

Requires arithmetic operations on the router to 
decide the routing path. 

Fast decision on the router. Needs a look up table 
of 2^H entries. 

The producer of the packet does not need to 
know the routing path. 

Each producer has to know the routing path to its 
destinations to build the routing path. 

Better implementation for generic applications 
and multiprocessor systems. 

Better implementation on specific applications 
with fixed data flows. As each packet producer 
requires the routing path of its destination. 

Better implementation for homogenous systems 
with regular topologies. 

Better implementation for heterogeneous and non-
regular topologies. 

The routing algorithm on the routers manages 
the congestion of the links. 

The packet producer can deroute the packets to 
avoid congested links. 

 

In terms of programming model, Address-based is optimal for shared-memory 

architectures where the MSB bits of the address can be used to define the (X,Y) 

coordinated on a mesh topology. On the other hand, source routing requires knowing 

all the possible destinations to translate the address into the routing path. Therefore, 

a programmable Look up table is required. 

1.2.7 Router Functionalities 

The routers are the switching modules of the network. They are composed of 

input and output ports, FIFOs, multiplexers, and state-machines. An analysis of the 

routing steps on a wormhole packet switching, input queuing, and deterministic 

routing is discussed below: 

• The first flit of a packet arrives to the router through an input port. 

• The flits are stored into a FIFO. 

• The first flit of the packet is decoded using the routing algorithm to find 

the corresponding output port, and a request is sent to this output port. 

• The output port includes a state-machine that receives the request from 

the input ports. It allocates the output port to the chosen communication 

through a multiplexer. If several requests arrive at the same time, it 

arbitrates the requests to produce a fair allocation of the output port. 

• The flits starts to flow from the input FIFO to the output port. 

• The output port remains allocated until the end of the packet. 
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• The output port is desallocated when it receives the end of the packet. 

Thus, the output port can be used by other communications 

1.2.8 Network Interface Controller 

The network interface controller (NIC) is the only access to the network for a local 

subsystem. Usually, its architecture follows the ISO-OSI 7498 [ISO] reference model 

and it brings the transport layer of the network. This protocol layer guarantees the 

routing of the packet to its destination. Thereby, it hides all the 

communication/synchronization issues to the local subsystem. The NIC main tasks 

are protocol conversion and packet building. The protocol conversion allows a clear 

separation between computation and communication. At the producer side, it builds 

packets using the routing information, the flit flow-control bits and the data to be 

sent. At the consumer side, it restores the information as if the consumer was directly 

connected to the producer. More sophisticated network interfaces can manage error 

detection and correction, packet retransmission, interrupt handling signals, and 

multiple data flows.  

1.3 Quality of Service 

Some applications as the video and audio decoding require a constant and 

guaranteed data flow between the pair producer-consumer. For these applications, 

the traffic flow between the pair producer-consumer should have some guarantees 

on the latency, on the throughput, and on the latency jitter. Traditional packet 

switching networks do not offer these types of guarantees as all packets share the 

same resources. The quality of service (QoS) refers to a resource reservation 

mechanism where special packets do not share the resources with other packets. The 

special packets are called Guaranteed Service (GS) packets while the others are called 

Best Effort (BE) packets. 

Best Effort is the basic service of a network and it does not support any kind of 

QoS. Networks that just support BE service will try to satisfy all the communications 

at the same time. Therefore, the latency of the packets cannot be bounded because the 

network capacity can be exceeded. Figure 1.7 shows the probability distribution of 

the latency for a 10*10 network with different FIFO depths. Even when the FIFO is 

deep (22 words), the latency of the packet cannot be bounded. These kinds of 

networks are well suited for general-purpose applications without well-defined data-

flows. 
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Figure 1.7 Porbability distribution of the packet latency (clock cycles) in  
function of the FIFO depth 

The introduction of the QoS has been largely studied in wide-area networks; 

however, two major differences exist between on-chip and off-chip networks: 

• Dropping packets: Off-chip networks can drop packets due to buffer 

overflows, misrouting or router failure. The buffer overflow situation 

comes from the fact that the channels interconnecting the off-chip routers 

are very long and the packets are deeply pipelined. Packet dropping can 

be avoided in on-chip networks thanks to smaller inter-router wire delay 

and the utilization of flow control mechanisms. 

•  Cost elements: The most expensive element on the off-chip networks are 

the inter-router wires, while buffering memory is less expensive. Thus, to 

minimize the network cost, the number of wires per link will be reduced 

to the maximum while the less expensive elements will be dimensioned to 

optimize the wire utilization. On the on-chip networks, the memory area 

is tightly related to the circuit cost, while the number of wires between 

routers is not the costly element. Thus, the shared resources, wires and 

FIFOs, are treated in a different manner as the tradeoff between 

cost/performance depends on the type of network. 

The network bandwidth is bounded. Therefore, it is not always possible to satisfy 

all GS communications. A traffic contract has to be established for each GS traffic to 

avoid exceeding the network capacity. This contract establishes the maximum 

throughput, the maximum latency, the maximum jitter, and the duration of the 

transmission for each pair producer-consumer requiring a QoS. These parameters are 
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used by a network entity to allocate the required network resources to satisfy the GS 

request. This network entity can be a centralized processor or a distributed network 

allocator. 

In terms of type of QoS, we can define two major types of guarantees: 

• Hard is the strictest type of guarantee. It guarantees the maximum 

predictability of the network. The latency, throughput and jitter are 

bounded and well constrained. This kind of guarantees can be achieved 

granting the exclusiveness of some resources to the guaranteed traffic. 

• Soft is a less strict than the hard one. It guarantees some metrics (latency, 

throughput, and jitter) but it has some degree of unpredictability. This 

kind of guarantees can be achieved by mixing some exclusive and 

nonexclusive resources. 

1.4 Synchronization Issues 

In deep sub-micron processes, the largest parts of the delays are related to the 

wires. The ITRS [ITRS05] report details the evolution of the wire delay in function of 

the process node as shown on Figure 1.8. In multi-million gates System-on-Chip 

(SoC), achieving timing closure is difficult, as place & route tools have difficulty 

coping with long wires and balancing the clock tree.  

The Globally Asynchronous, Locally Synchronous (GALS) [Chapiro84] 

[Mutter99] approach attempts to solve this problem by partitioning the SoC into 

isolated synchronous islands that have frequency and phase clock independency. 

With this approach, the timing constraints of the SoC can be bounded to the 

isochronous limit of each island. In this case, the communications between islands 

should be carried out by mixed-timing interfaces that adapt the clock frequency and 

phase discrepancy. Such interfaces are not trivial [Ginosar03] since the 

synchronization failure (metastability) of the registers can corrupt the transferred 

data. The main issues on these mixed-timing interfaces and how to prevent it is 

discussed below.  
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Figure 1.8 Delay of metal1 and global wiring versus feature size [ITRS05] 

1.4.1 Metastability 

Metastability is the ability of a non-equilibrium state to persist for a long, 

theoretically unbounded, time. In electronics, this phenomenon can appear on the 

flip-flops since they are designed to have two logic states (1 and 0). However, 

between these two stable states it is possible to identify a metastable state as seen in 

Figure 1.9. It is possible to set the flip-flop on the metastable state if the input data 

changes between the setup-time and hold-time.  

 

Figure 1.9 Metastable state 

1.4.2 Metastability on Cross-Coupled Inverters 

Most flip-flops contain cross-coupled inverters that have the ability to retain 

data. These cross-coupled inverters constitute the memorizing capability of the flip-

flop, which decides the logical state of the flip-flop. Figure 1.10 shows a cross-

coupled inverters and the evolution of the output in function of the input signal. 

The output of a cross-coupled inverter tries to force a defined logic level 0 or 1. 

When the input signal is High the output is Low and vice versa. The feedback loop 

boosts the input port enforcing the cross-coupled inverts to define a clear output 

state 0 or 1. Hence, the input signal needs to be stronger than the top coupled 
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inverter; otherwise the output state will not change. In some circuits, the top 

inverter of Figure 1.10 is weaker than the bottom one. Therefore, the required input 

signal strength to switch the output can be lower. 

The cross-coupled inverters have a defined stable states of logic 0 and logic 1 

states (Vss and Vdd electric levels respectively). Furthermore, the output of the cross-

coupled inverters has a metastable state when the input = output = Vdd/2. 

 

Figure 1.10 Cross-coupled inverter and its output signal in function of its input 

When the inverters are not balanced, the conductance of the N transistor is 

higher/lower than the conductance of the P transistor, the metastable point is 

modified but not eliminated (Figure 1.11) [Tamir03]. The metastable point can be 

founded intersecting the red and the blue curves. These curves are the inverter 

transfer function of the top and bottom inverters.  
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than N transistor

c) N transistors stronger 

than P transistor  

Figure 1.11 Metastable point in function of the transistor aspect ratio 

The resolution time is the time it takes the cross-coupled inverter to leave the 

metastable state. The resolution time is minimized when the gain-bandwidth product 

of the cross-coupled inverters is maximized. Lee-Sup Kim and Robert W. Dutton 

analyze the metastability of the CMOS latches and flip-flops in [Kim90]. 



Chapter 1 - Problem Definition  

23 

1.4.3 Metastability on Flip-Flops 

Once defined the issues on the cross-coupled inverter, an analysis of the 

metastability issues on the flip-flop is discussed. Figure 1.12 shows a simplified 

architecture of a D flip-flop. This kind on flip-flop is massively used in digital 

synchronous circuits. The input data (D) is latched on the rising edge of the clock 

(CK) signal. 

 

Figure 1.12 Simplified view of a D flip-flop 

If the input signal D is Vdd/2 when the clock rising edge arrives, the flip-flop can 

became metastable. To prevent these situations, the setup-time and the hold-time of 

the flip-flop have to be respected. The time window defined by the setup-time and 

the hold-time of the flip-flop defines a time interval where the flip-flop response time 

is not guaranteed. If the input changes inside this time frame, the flip-flop will 

require more time to output a valid data. Figure 1.13 shows the degradation of the 

access time when the setup-time is violated. The yellow line is the input clock signal, 

the blue lines are the input data for different input delays, and the green lines are the 

obtained output data. The output delay of the flip-flop is perturbed due to a setup 

violation. The closest to the metastable point, the higher the output delay.  

 

Figure 1.13 Delay degradation after setup-time violation [Tamir03] 



 

24 

Figure 1.14 shows the D flip-flop output for different input delays. These delays 

have been chosen to illustrate the output waveform of the D flip-flop when it is near 

the metastable point. The output waveforms are finally resolved to Vss or Vdd. The 

longest output delay is obtained when the D flip-flop is near the metastable point. In 

this situation, the thermal noise can help to decide if the output data will be resolved 

to Vdd or Vss as the flip-flop is in an instable point. 

 

Figure 1.14 D flip flop output near the metastable point 

1.4.4 Metastability Resolution and Robustness 

The output delay of the flip-flop near the metastable point has been analyzed by 

Charles Dike and Eduard Burton on [Dike99] and represented by the histogram on 

Figure 1.15. 

 

Figure 1.15 Resolution time histogram 
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It is not possible to define a hard bound for the resolution time but a Mean Time 

Between Failure (MTBF) can be calculated with Equation (1) where: 

• T: Required resolution time. 

• τ: Settling time of the flip-flop. 

• W: Effective size in picoseconds of the metastability window at a normal 

propagation delay. 

• FC: Clock frequency. 

• FD: Frequency of data edges capable of generating metastability. 

 

Dc

T

FFW

e
MTBF

**

τ
=  (1) 

 

This equation calculates the theoretic time between two failures of the flip-flop in 

function of some design parameters. The settling time of the flip-flop depends on the 

internal architecture of the flip-flop. The required resolution time is the maximum time 

we allow the flip-flop to decide to a stable logic value. The longer the required 

resolution time, the higher the MTBF. Likewise, the lower the operating frequency, the 

higher the MTBF. 

A simple and safe method to maximize the MTBF is the two-flop synchronizer 

[Dike99][Kinni02][Dally98] as depicted in Figure 1.16. In this architecture, the first 

flip-flop samples the asynchronous data and resolves the metastability. The second 

flip-flop waits a full clock period before latching the synchronized data. Thereby, the 

intermediate signal X can take up to one clock cycle to stabilize before being latched. 

With this architecture, the required resolution time is maximized to one clock cycle 

without modifying the sampling clock frequency. In some special situations where 

the obtained MTBF is not robust enough, a three-flop synchronizer can be used. 

Thereby, the required resolution time is elongated to two clock cycles. 

 

Figure 1.16 Two-flop synchronizer 
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1.4.5 Common Errors 

This section is principally taken out from [Ginosar03] a reference paper for the 

designer on multi-synchronous interfaces. Here, some common errors are discussed 

and analyzed to identify the potential metastability issues on the synchronization of 

synchronous systems. 

1.4.5.1 One-flop synchronizer 
This architecture is a simplification of the two-flop synchronizer. The one-flop 

synchronizer eliminates the second flip-flop of the two-flop synchronizer. As seen in 

previous paragraph, the required resolution time of a two-flop synchronizer is one 

clock period. With a one-flop synchronizer, the required resolution time is no longer a 

full clock period as the combinational logic has some latency. Consequently, the 

resolution time of the one-flop synchronizer is reduced, because now there is some 

combinational logic between the first flip-flop and the next flip-flop. With one-flop 

synchronizer, the required resolution times is reduced to the slack (T-C) between the 

one-flop synchronizer and the next flip-flop. Hence, the MTBF decreases. 

 

Figure 1.17 Two-flop and one-flop synchronizers 

1.4.5.2 Parallel synchronizer 
This architecture tries to synchronize the data of a multi-bit word by using a two-

flop synchronizer per bit. Figure 1.18 shows a representation of this architecture. This 

scheme seams to be a correct synchronizer as all the data lines are synchronized and 

no combinational logic are inserted between the flip-flops. However, the 

synchronized data will not always be correct. If the input data changes near the 

metastable window, each two-flop synchronizer can end up doing something 

different: some can take the data before the rising edge, others can take the new data, 

and other may enter in metastable state and settle to 0 or 1. There is no way to 
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guarantee the coherency of the multi-bit data at the output. A coherent multi-bit data 

cannot be synchronized using a parallel synchronizer. 

n n

 

Figure 1.18 Parallel synchronizer 

1.4.5.3 Global reset synchronizer 
Most of the circuits share the same global reset signal to initialize the global 

circuit. However, as the circuit uses multi-frequency domains, the initialization 

cannot be successfully accomplished due to metastable situations of the registers. 

Firstly, the rising and falling edges of the reset signal have to be considered on a 

different manner because the critical issue on the reset signal is the falling edge, not 

the rising. At the reset rising edge all the flip-flops are forced to initialize its contents. 

The reset signal can remain active many clock cycles to guarantee the correct 

initialization of the whole system. Asynchronous-reset flip-flops initialize at the 

rising edge of the reset signal while the synchronous-reset flip-flops initialize when 

the reset signal is high and the rising edge of the clock signal arrives. Finally, the 

falling edge of the reset releases the system to its normal operation. If the falling edge 

of the reset signal comes near the rising edge of the clock signal, the flip-flop can lose 

the input data or became metastable. To avoid this situation, the release of the reset 

signal has to be synchronized with the local clock signal. Figure 1.19 shows a safe 

interface for the reset signal. The rising edge is directly propagated to the system 

while the falling edge is synchronized with a two-flop synchronizer. This system has 

two features: the falling-edge of the reset is well synchronized with the clock signal 

and the rising-edge of the reset is propagated asynchronously to the system through 

the OR gate. The latter feature allows activate the reset signal asynchronously though 

a huge system and disperses the dropping power of the initialization over a time 

window. Otherwise, if thousands of flip-flops have to be initialized at the rising edge 

of the clock, the circuit power lines may not be enough large to bring the required 

power consumption. 
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Figure 1.19 Global reset synchronizer 

1.4.6 Clock Relationship 

The clock relationship between two independent synchronous domains can help 

to simplify the interface. This relationship can be in terms of frequency and/or phase. 

The basic clock relationships between two systems are summarized below. 

• Synchronous: Both systems have the same clock frequency and phase. No 

special assumption has to be made to interface them. 

• Mesochronous: Both systems receive the same clock signal but a 

difference of phase (skew) exists. This skew is constant over the time. This 

is the case of an unbalanced clock tree distribution over a circuit. 

• Plesiochronous: Both systems receive a similar clock frequency but it is 

not possible to guarantee a constant difference of phase between them. 

This is the case where each clock signal is generated by independent 

oscillators or PLL tuned to the same clock frequency. 

• Rational: The clock frequency signal of one system is rational value of the 

clock frequency of the other system. In this case is possible to predict the 

rising edges of the clock signals and interface the system. 

• Asynchronous: There is not relationship between the clock signals of both 

systems. The clock signal is generated by independent sources. 

For each of these clock relationships, optimized solutions that minimize the 

latency and the area have been proposed. 

1.5 Physical Implementation Complexity 

In this section, some basic concepts related to the physical implementation are 

exposed. The Front-End and Back-End flows are introduced where its mains steps are 

detailed. Finally, the long wire delay issues are and the circuit power consumption 

are analyzed. 
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1.5.1 Hard, Firm and Soft Macros 

Macro is the abbreviation for a virtual component or IP core. These macros are 

designed to be reused and ported to different applications or process technologies. 

So, they are classified in terms of the degree of optimization for a particular 

fabrication process: 

• Hard macros are optimized for power, size or performance when mapped 

to specific chip technology, and usually delivered in GDS-II format. Being 

process-specific, hard macros have the advantage of having deterministic 

timing, area, and power-consumption characteristics. Its drawback is that 

they are process-specific and they are not portable to other process 

technology. Nevertheless, the circuit architecture is more protected than 

the soft and firm macros. The SRAM memories and processors such as the 

ARM [ARM] are examples of hard macros. 

• Firm macros are delivered as a gate netlist. They have been structurally 

optimized for performance, and use a specific semiconductor cell library. 

They are more flexible and portable than hard macros, yet more predictive 

on performance and area than soft macros. Protection risk of firm macro is 

similar to that of the soft macro. 

• Soft macros are delivered on synthesizable RTL, so they are more flexible 

than firm and hard macros and are not specific to a manufacturing 

process. Soft macros have the disadvantage of being somewhat 

unpredictable in terms of performance, timing, area, or power. 

Some considerations have to be made before implementing these kinds of macros. 

As the hard macros are not flexible in terms of shape and pin location, the 

floorplanning of the SoC have to take into account these parameters to avoid 

placement and routing congestion.  

1.5.2 Front-End and Back-End Flow 

The Front-End and Back-End flow differentiates the main chip design steps. The 

Front-End is the chip synthesis and verification while the Back-End is the chip layout 

for fabrication process.  

1.5.2.1 Font-End flow 
On the Front-End, the VHDL or Verilog RTL (Register Transfer Level) design is 

synthesized using a standard cell library. The synthesis is the implementation of the 

circuit with standard cells (gates) while the RTL is the functional description of the 
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circuit. The synthesis is performed using a timing constraints file (sdc), which defines 

the timing operating conditions of the circuit. 

Once the circuit is synthesized, a gate-level netlist is obtained. The timing 

constraints are finally verified using a timing check tool.  

1.5.2.2 Back-End flow 
The synthesized gate-level netlist and the timing constraints are the input files for 

the back-end. A simplified Back-End flow is depicted in Figure 1.20 
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Figure 1.20 Simplified Back-End flow 

• Design Import: It is the initial step and it is used to setup the environment 

with the correct technology libraries, load the gate-level netlist, load the 

timing constraints file (sdc), and configure the tool with the necessary 

information (buffers/inverters to be used, cells to be do not used, …) 

• Floorplanning: It is used to define the geometric limitations of the circuit 

(width/height), to place the input/output/power pins of the circuit, to 

define the power lines and stripes of the circuit, to define the location and 

orientation of the hard macros, to define the blocking regions of the 
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circuit, and to define the regions where the tool should place some 

modules of the circuit. 

• Placement: On this step, the tool places all the unplaced cells of the circuit 

and tries to optimize the placement for the timing constraints while 

respecting a targeted maximum density. The target density limits the 

placement density to avoid the wiring congestion of the circuit. Moreover, 

the tool tries to respect the regions defined on the floorplanning. Hence, 

all the cells of a module defined with a region are tried to be placed inside 

its region. 

• Scan Reorder: The scan chains are reordered to simplify the wiring length 

and so reduce the wiring congestion. 

• Trial Route: The circuit is routed with a simplified router to perform a 

first approximation of the routing complexity. 

• Optimization: The circuit is optimized on setup/hold time. Therefore, 

some cells are moved, others are resized, and long wires are buffered. 

• Clock Tree Synthesis: The clock signal distribution network (clock tree) is 

synthesized using a configuration script that defines the maximum 

insertion delay, the maximum skew, and other configuration parameters. 

• Route: The circuit is routed respecting the DRC rules and minimizing the 

signal integrity issues. 

• Extract RC: The resistance and capacitance of the circuit are extracted. 

• Timing Analysis: The timing analysis is analyzed using the RC extracted 

data and the timing constraints. The analysis can be performed for the 

setup or hold time. 

• Save GDSII, Netlist, SDF: The output files are generated. The GDSII is 

the layout database for the mask generation. The gate-level netlist of the 

implemented circuit after Back-End optimization is saved. The SDF file is 

the timing data used for back annotation simulations. 

1.5.3 Clock Tree Distribution and Balance 

The clock tree is the clock distribution network for a synchronous domain. In a 

SoC, thousands of synchronous flip-flops are clocked by the same clock signal. 

Hence, the clock signal has to be distributed and balanced to guarantee a maximum 

tolerable skew between any pair of flip-flops. The clock tree network is a collection of 

clock buffers and inverters interconnected in a tree manner. Moreover, all the 

elements on the clock tree network have to be properly balanced in terms of fan-in 



 

32 

and fan-out to respect the same rising and falling time. The input clock signal arrives 

to the root of the clock tree while the flip-flops are connected on the leaves. 

The clock tree network can be characterized in terms of insertion delay, 

maximum skew, and power consumption. The insertion delay is the time it takes an 

event to propagate from the root to the leaves of the clock tree. It depends principally 

on the number of intermediate buffers/inverters between the root and the leaves and 

the area covered by the tree. The maximum skew is the maximum difference on time 

between any pairs of leaves of the clock tree. The lower the skew, the higher 

complexity of the clock tree and the higher the power consumed. Mesochronous 

clock tree distributions are well suited for low power consumption and low area. On 

the other hand, a fully synchronous clock tree networks can consume from 15% to 

over 45% of the total system power [Qing00] [Chen99] [Chattop05].  

1.5.4 Long Link Communications 

The reduction of the features sizes enables the design of more complex circuits 

while preserving the same total chip area. In deep submicron technology the 

interconnect delays become a major issue. The delays of wires that span the chip will 

extend longer than the clock period. This phenomenon is the consequence of three 

phenomena: 

• Resistance and capacitance: The propagation delay due to the 

resistance*capacitance (RC) scales up on each technology node. The 

insertion of repeaters or the current-sensing signaling can be used to 

minimize these issues. 

• Inductance: The self and mutual inductance of the wires was neglected on 

the propagation delay model of the wires. From now on, this additional 

parameter has to be included on the propagation delay model in order to 

model the real propagation delay, especially for high clock frequencies. 

• Speed of electromagnetic wave: Assuming an operation clock frequency 

of 10GHz on CMOS 50nm [Benini02] and a relative permittivity εr of 2 to 3 

on the same technology node [ITRS2005], the propagation speed of an 

electromagnetic wave is v = (0.3/√εr). Thus, it is only possible to travel 17 

to 21 mm of circuit with one clock period.  

Two signaling techniques, voltage-sensing using repeaters and current-sensing, 

have been used in [Burel05] to characterize the wire delay of 90nm Intel process. 

Figure 1.21 shows the wire delay in function of the wire length. The width of the 

wires is two times the minimum width of the process. The current-sensing has better 
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propagation delay than the voltage-sensing. However, the power consumption of the 

current-sensing is higher than the voltage-sensing because the link consumes power 

even when the wires do not toggle. 

 

Figure 1.21 Wire delay vs. wire length on CMOS 90nm [Burel05] 

1.5.5 Power Aware Design 

According to the ITRS [ITRS05] prediction, the power consumed by the 

interconnect will be 50 times larger than the power consumed by the logic gates 

[Dally02].  

The power consumed by an electronic circuit can be split in two parts: 

• Leakage is undesired power consumption due to a quantum phenomenon 

where mobile charges tunnel through an insulating region. The leakage 

consumption has not any relationship with the circuit activity. It depends 

on the technology process, the transistor design, the operating voltage, 

and the temperature. 

• Dynamic is the power consumption due to the activity of the circuit. It can 

be divided into three types: 

o Switching is power consumption due to change and discharge of 

the load capacitance. 

o Internal is the power consumption dissipated inside the cell for its 

operation. 

o Glitch is the power consumption due to glitch transitions. 

The leakage power is somehow related with the cell performance. The speed 

improvement of a CMOS cell is directly related with the leakage power consumed by 

the cell. Standard cell vendors generally propose LP or GP standard cells. The LP is 
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the low power library while the GP is the general purpose library. However, the 

introduction of new materials as the High-k dielectric can reduce the leakage power 

while preserving similar performances. 

The clock tree distribution is responsible of 15% to 45% of the total power 

consumption of the circuit. All the buffers and inverters in the clock distribution 

network switches when the clock signal toggles. Therefore, clock-gating techniques 

are suited to cut down the power consumption of the clock tree, and cut down the 

internal flip-flop consumption. Moreover, the clock-gating cells should be placed as 

near as possible of the clock root pin to maximize the power saving.  

Another source of power consumption is the complexity of the clock tree. The 

higher the complexity in number of buffer and levels of the clock tree, the higher the 

power consumed. Consequently, the GALS paradigm is well suited to cut down with 

the clock-tree power consumption. 

A further source of power consumption is the unnecessary switching of wires, 

specially long and buffered wires. These wires should switch only when useful data 

is required, otherwise, all the buffering elements of the wire will switch and consume 

power. 
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Chapter 2 

2 State of the Art 

In this chapter, the state of the art on the Network-on-Chip architectures is 

analyzed. The range of the analysis is limited to the topics addressed by this thesis: 

guaranteed service (GS), synchronization issues, and physical implementation. 

Therefore, architectures that have neither guaranteed service nor been physically 

implemented are excluded from this state of the art. Moreover, synchronization 

architectures not implemented on any NoC, are analyzed in Appendix A. The 

selected NoC architectures are the following: 

• SPIN: Does not support GS traffic. A 32-port SPIN NoC has been 

physically implemented. 

• DSPIN(prior to this thesis): Designed by A. Greiner before the beginning 

of this thesis, it was the starting point for the thesis. The original 

architecture is detailed in order to identify the thesis contributions. 

• Æthereal: Architecture supporting GS over Time Division Multiplexing. 

• Nostrum: Architecture supporting GS by looping containers 

• ANOC: Asynchronous architecture supporting GS using virtual channels. 

Physically implemented in the FAUST chip. 

• QNoC: 4-channel router with quality of service NoC. 

• Mango: Asynchronous NoC supporting GS traffic over virtual channels. 

• Tera-scale: Multi-processor chip architecture containing a NoC. 
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2.1 SPIN 

The SPIN micro-network architecture was the first published [Guer00] attempt to 

solve the bandwidth bottleneck, when interconnecting a large number of IP cores in 

multi-processors SoC. SPIN stands for Scalable Programmable Integrated Network. It 

was developed by the Université Pierre et Marie Curie. 

2.1.1 Architecture 

Its architecture is composed of routers (RSPIN) and wrappers (VCI/SPIN and 

SPIN/VCI). VCI, which stands for Virtual Component Interface, is a SoC interface 

standard from VSI Alliance [VCI00]. SPIN network uses the fat-tree topology because 

it is, theoretically, the most cost-efficient topology for VLSI realizations [Leiser85] as 

shown in Figure 2.1. The routers are packet-based with a flit size of 36 bits. Adaptive 

routing algorithm and out-of-order delivery can be used to maximize the network 

bandwidth. Otherwise, deterministic and in-order delivery is used to avoid the 

reordering buffers on the output ports. 

 

Figure 2.1 SPIN topology 

Figure 2.2 shows the SPIN router. It is composed of 8 queues, 2 special queues, 

and a 10x10 partial crossbar. Special queues (Shared output buffers) are used when a 

packet cannot be routed due to output port congestion. In this case, the packet is 

temporarily stored into these queues to allow the others packets to be routed.  

Credit based mechanism is used on the wrappers to minimize the network 

congestion. Moreover, the wrappers have reorder buffers to rearrange the received 

packets. These buffers have to be properly dimensioned to minimize the circuit area. 
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Figure 2.2 SPIN router [Guerr00] 

2.1.2 Implementation 

A 32-port implementation of the SPIN NoC was done using CMOS 

STMicroelectronics 0.13 µm technology [Andria03][Andria06]. 

The implementation of the 32-port SPIN NoC was build using the ALLIANCE 

[ALLIAN] symbolic layout approach. ALLIANCE is a free suit of CAD tools 

designed by the University Pierre et Marie Curie.  

The design of the 32-port SPIN NoC was build using a hard macro approach. 

Each router was build and then assembled into a global hard macro. The SPIN router, 

containing 8 FIFOs, was area-optimized using a data path tool. The highly regular 

data path of the SPIN routers was implemented using the GENLIB tool (ALLIANCE 

data path tool) while the control logic was implemented using the Silicon Ensemble 

automatic place and route tool. Figure 2.3 shows the SPIN router layout. Each SPIN 

router has an area of 0.24 mm². 

 

Figure 2.3 SPIN router layout [Andria03] 

The assembling of 16 SPIN routers in a fat-tree manner composes the 32-port 

SPIN NoC. Figure 2.4 shows the 32-port SPIN NoC. Its area is 4.6 mm². The routers 

are interconnected through metal layers 4 to 6. 
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Figure 2.4 32-port SPIN NoC layout [Andria03] 

The 32-port SPIN NoC was implemented into the test chip showed in Figure 2.5. 

The chip was fabricated in STMicroelectronics on CMOS 0.13 µm. It contains traffic 

generators and analyzers to compute the SPIN NoC performance. This 

implementation was crucial to reveal the architecture and implementation 

limitations. The experience gained in this implementation helped to define the 

DSPIN NoC architecture. 

 

Figure 2.5 SPIN32 test chip layout [Andria06] 

2.1.3 Analysis 

The SPIN NoC does not have any support for Guaranteed Service traffic. 

Moreover, the physical implementation of the SPIN network showed several 

weaknesses and limitations that have been corrected in the DSPIN architecture. 

The 32-port SPIN NoC physical implementation was limited by many factors: 

• Flexibility: The design of the NoC as a hard macro limited the flexibility 

of the SoC. The centric NoC macrocell conditioned the design and 

placement of the SoC modules. 

• Timing closure: Due to the big surface of the SPIN macrocell, the SPIN 

test chip had many timing closure limitations. The clock trees were 
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complicated to balance between the macrocell pins and the test chip 

modules. 

• Tools limitations: The NoC was built from a unique hard macro cell, 

difficult to implement in an industrial flow because of its big size. CAD 

tools have limitations in terms of area of the hard macro and number of 

input/output pins. The 32-port SPIN macrocell had a 4.6 mm² area and 

more than 2000 input/output pins. 

• Portability: The portability of the NoC architecture requires redesigning 

the SPIN macrocell for each technology node as it is a hard macro cell. 

•  Scalability: The fat-tree topology increases linearly with the number of 

input/output ports; however, it increases in a stairs manner. Example, a 

32-port SPIN NoC requires 16 SPIN routers while à 16-port requires 16 

routers. 

2.2 DSPIN 

A first version of DSPIN architecture was designed by A. Greiner before the 

beginning of this thesis. However, this architecture was never published before the 

contributions of this thesis. We explain the origin of DSPIN in this chapter rather 

than on the next chapter where the thesis contributions are explained. 

2.2.1 Architecture 

The DSPIN architecture is the evolution of the SPIN architecture and it was 

designed to cope with the GALS paradigm. The main characteristics of the 

architecture can be summarized with: 

• Topology: 2D mesh 

• Routing algorithm: Deterministic X-First routing algorithm 

• Switching algorithm: Wormhole 

• No deadlock: Two independent sub-networks are used, one for the 

request packets and one for the response packets. 

• Clustered multiprocessor architecture: The architecture is suited to 

multiprocessor architectures organized in clusters when each cluster can 

contain one or many processors. 

• Distributed architecture: Each router has 5 modules placed on the sides 

(north, south, east, west, local) of the subsystem 
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• GALS compatible architecture: Each subsystem has its own clock 

frequency. The communications between routers are carried out by bi-

asynchronous FIFOs. 

• Synthesizable: DSPIN is synthesizable with standard cells. Neither 

custom cells nor asynchronous cells are used. 

Figure 2.6 shows the DSPIN cluster architecture and topology. A cluster is the 

building block of the DSPIN architecture. Each cluster contains two DSPIN routers, 

one network interface controller (NIC), one local interconnect, and some computing units 

(IP). In order to avoid deadlocks in request/responses traffic, DSPIN contains two 

fully separated sub-networks for requests and responses packets. Therefore, each 

cluster contains two routers, one for the requests and one for the responses packets. 

The NIC behaves as a bridge between the IPs and the network while the local 

interconnect router the traffic between IPs of the same cluster. Moreover, any 

communications between IPs of different clusters have to pass through the DSPIN 

routers. 

The topology of the network is organized as a two-dimension mesh of clusters as 

shown in Figure 2.6b. Each cluster is connected to the north, south, east and west 

neighbors by means of point-to-point links. The communication between IPs in 

different clusters is done by traveling through as many routers as necessary (more 

precisely N+1 routers, if N is the Manhattan distance between the communicating 

clusters).  

 

Figure 2.6 DSPIN cluster architecture and topology 

The physical links between routers are implemented with FIFOs (black arrows in 

Figure 2.6b). The mesh topology simplifies the routing algorithm, and strongly 

minimizes the silicon area of the switching hardware. There is no constraint on the 
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size or shape of clusters except that the mesh topology has to be respected, to 

guarantee the routing path between all the clusters. 

Each cluster has its own clock signal, which can be different in terms of frequency 

and phase from the neighbor clock signal. Moreover, the IPs and DSPIN routers on 

the cluster share the same clock signal. Therefore, the FIFOs interconnecting routers 

are asynchronous while the FIFOs interconnecting router-to-NIC are synchronous. 

Under these circumstances, the GALS approach can be used because each cluster is 

synchronous but asynchronous compared to its neighbor. Thereby, an independent 

clock-tree is synthesized per cluster.  

The DSPIN router is not a centralized macrocell: it is split in 5 separated modules 

(North, East, South, West & Local), that are physically distributed on the clusters 

borders (Figure 2.7). This feature, combined with the mesh topology allows us to 

classify the network wires in two classes: 

• Inter-cluster wires connecting modules of adjacent clusters. Example: the 

East module of cluster (Y,X) is connected to module West of cluster 

(Y,X+1). As those components can be made very close from each other, 

inter-cluster wires are short wires. 

• Intra-cluster wires connecting modules of the same cluster. Example: 

West module connects to North, South, East and Local modules in a tree 

manner. Those wires are the long wires, but the wire length is bounded by 

the physical area of a given synchronous domain, the cluster.  

These properties allow synthesizing, placing and routing each cluster as an 

independent module. Moreover, the design relies on standard synchronous design 

flow without custom cells. 
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Figure 2.7 DSPIN router architecture 
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DSPIN was originally designed to interconnect IPs using the VCI/OCP [VCI00] 

protocol. The network interface controller converted the VCI request/response 

packets format to DSPIN packet format. For this reason, the DSPIN packet format 

was designed specially for the VCI protocol. The flit size is 36 bits with a payload of 

32 bits. The flit control bits are Begin of Packet (BOP), End of Packet (EOP), Parity 

error (PAR), and Packet error (ERR) as shown in Figure 2.8. BOP is set on the head flit 

while EOP is set on the tail flit to identify the beginning and ending of a packet. The 

minimal packet length is one flit. The Parity error bit identifies an error at the network 

level; for example, a crosstalk error bits, or a soft error on the DSPIN router. The 

Packet error identifies an error on the VCI protocol without any relationship with the 

network; for example, a request to an address not mapped on the architecture, or a 

write operation to a read-only register. 

In order to router the packets on the network, the head flit includes the 

destination cluster address defined in absolute coordinates Y and X, encoded on 4 

bits each one, allowing a maximal 16 * 16 = 256 clusters topology. 

The switching hardware in each module (North, East, South, West & Local), is 

composed of one multiplexer controlled by one state machine (Figure 2.8b). Due to 

the X-first routing algorithm, the multiplexers for the East and West modules are 

reduced to simple (2 inputs to 1 output) multiplexers, while for the North, South, and 

Local they are longer (4 inputs to 1 output). This comes from the fact that the packets 

coming from North port can be routed to neither East nor West port.  

When the router receives the first flit of a packet, the destination field is analyzed 

and the flit is forwarded to the corresponding output port. As DSPIN uses wormhole 

routing, the rest of the packet is also forwarded to the same port until the tail flit.  
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Figure 2.8 DSPIN packet and west router module detail 
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2.2.2 Analysis 

This initial version of DSPIN can be used for best effort traffic. However, DSPIN 

does not support guaranteed service traffic because it does not have any resource 

reservation for guaranteed service traffic. The introduction of the guaranteed service 

traffic is detailed in Chapter 3. 

Regardless of the unavailability of the guaranteed service traffic, the architecture 

is simple and well suited to the GALS approach.  

The packet format does not follow the ISO-OSI reference model, as it uses control 

bits from the VCI protocol. These bits should be placed on the payload of the DSPIN 

packet rather than on the DSPIN packet format. The DSPIN packet format is 

modified on Chapter 3 in order to respect the ISO-OSI reference model. 

2.3 Æthereal 

Æthereal NoC is an NoC developed by Philips offering both Guaranteed Service 

and Best Effort traffic [Goos05][Radu05].  

2.3.1 Architecture 

The router uses a contention-free routing mechanism to send independent traffic 

on the same physical links. Therefore, a time-division multiplexing mechanism is 

used over the physical links to send independent traffics. On each router, a 

reconfigurable table is used to switch the GS traffic to the correct output while 

avoiding contention on the link. Every reconfigurable table T has S time slots (rows) 

and N output ports (columns). There is a logical notion of synchronicity, since all 

routers in the network are assumed to be in the same fixed-duration slot. Figure 2.9 

shows an example of contention-free routing. Packet A and B are routed without 

contention between router R1 and R2 because they use different timing slots. In the 

same way, packets A and C do not have contention in between routers R2 and R3. 

The reconfiguration of these tables are carried out by special packets sent over the BE 

network.  

The contention-free mechanism requires a synchronicity of all the network tables 

as well as no stalled packets over the network. In order to guarantee this last 

condition, Æthereal uses end-to-end credit-based mechanism. 
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Figure 2.9 Æthereal contention-free routing [Goos05] 

Æthereal NoC can be designed for a distributed or a centralized programming 

model. On the distributed programming model, special BE packets are sent to the 

router to request the allocation of a GS traffic. The router is able to decide if the GS 

packet can be routed or not. On the centralized programming model, the slot tables 

are located on the Network Interface and no longer on the router. Moreover, a 

centralized slot allocator decide which GS packets can be served by sending BE 

packets to the Network Interfaces in order to configure the timing slots. 

Consequently, the complexity of the router is moved to the NI.  

The BE packets are routed using round-robin arbitration, wormhole routing, 

input-queuing, and source routing. Figure 2.10 shows the Æthereal packet format. 

The flit size is three words of 32-bit and 2 control bits. The first word contains the 

routing information in 22 bits, the piggybacking credits on 5 bits, and the destination 

queue in 5 bits. Æthereal NoC uses credit-based flow control to minimize the 

network contention and avoid the deadlock situations. To minimize the credit traffic, 

the returned credits are sent using the response packets (piggybacking) over 5 bits. 

Thus, the maximum number of credits that can be sent at a time is 25 = 32. 

 

Figure 2.10 Æthereal packet format 
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Both traffics are multiplexed over the same resources to maximize the bandwidth 

utilization. The unused bandwidth (unreserved or reserved but not used) is 

employed by the BE traffic. The BE flits, having lower priority, can use a link only 

when there is no GS flit on the link. 

2.3.2 Implementation 

The design and implementation of the Æthereal NoC uses an automatic design 

flow (Figure 2.11) [Goos05b]. The flow is used to design the network topology, router 

arity, and table size. Moreover, the designed architecture can be fully simulated in 

SystemC and RTL VHDL. Thus, for a specific application it is possible to compute the 

packet latency, the interlocking issues, and the power consumption estimation. At the 

end of the flow, a RTL VHDL code is obtained for synthesis. 

 

Figure 2.11 Æthereal NoC design flow [Goos05b] 

In [Goos05], a 6-port Æthereal NoC implementation is detailed on CMOS 130nm 

technology. The router has 6 ports; however, just 4 of theme are used for inter-router 

connections. A distributed and a centralized programming architecture are described 

on the paper. Both of them are designed as a hard macro with dedicated hardware 

FIFOs for the BE and GS queues. Moreover, a dedicated hardware slot table is used 

on the distributed programming architecture for the congestion-free routing 

algorithm. These dedicated hardware devices are designed to minimize the router 

area. Figure 2.12 shows the distributed and centralized router architecture 
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implementation. The hardware dedicated FIFOs and slot table are depicted on the 

squares. Moreover, the distributed programming router architecture contains the 

Reconfiguration unit (on its left side). It is used to dynamically allocate and desallocate 

the GS traffic. 

 

Figure 2.12 Implementation of GS-BE Æthereal distributed and centralized  
programming router architecture [Goos05] 

Table 2.1 shows the area and frequency of the distributed and centralized 

programming router architecture [Goos05]. The area of the centralized architecture is 

smaller than the distributed version because neither Slot table nor Reconfiguration unit 

are used. 

Table 2.1 Distributed and centralized comparison 

 Area Frequency 

Distributed architecture 0.24 mm² 500 MHz 

Centralized architecture 0.13 mm² 500 MHz 

 

The Network Interfaces are designed using the Æthereal NoC flow. Its 

architecture contains custom-made hardware FIFOs to be area efficient. Moreover, 

clock boundaries are defined on each NI port to run at different clock frequencies 

while the NI-kernel work at the router frequency (500MHz on CMOS 0.13 µm). Its 

area is conditioned with the number of FIFOs, the FIFO depth, and the NI available 

services (multicast and narrowcast). 

The Æthereal NoC design flow was used to implement a MPEG codec SoC with 

16 IPs [Goos05b]. Four case studies were analyzed: fully automatic, naive mapping, 

simulation, and optimized. The naive mapping uses one IP per NI while the 

simulation implementation, oversized the FIFOs for the worst-case condition. Table 

2.2 summarizes the silicon area of the NI and router for these case studies. 

 



Chapter 2 - State of the Art 

47 

Table 2.2 Comparison of Æthereal router for MPEG SoC 

 Mesh Table 
slots 

NI area 

(mm²) 

Router area 

(mm²) 

Total area 

(mm²) 

Automatic 2x3 128 1.83 0.51 2.35 

Naive  3x6 128 2.17 2.32 4.49 

Simulation 2x3 128 4.61 0.51 5.13 

Optimized 3x1 8 1.51 0.35 1.86 

 

2.3.3 Analysis 

The contention-free routing mechanism is a coherent approach to route the GS 

without contention over the network. However, this mechanism requires two 

conditions: 

• Synchronicity: All the routing tables have to be synchronized. Otherwise, 

some flits will be stalled over the network thus blocking the other packets. 

In this situation, the routing mechanism is not able to guarantee a 

congestion-free situation. The design of a fully synchronous network is 

not a scalable solution due to the limitations on the clock tree distribution. 

Therefore, the authors propose waterfall clock distributions [Goos05] and 

a Synchronous Latency Insensitive Designs (SLID) [Ru06]. Under these 

circumstances, each router synchronizes every slot all its neighbors. Thus, 

all routers always remain in the same slot and the NoC run as fast as its 

slowest router.  

• Contention-free consumer: The contention-free routing mechanism 

requires a contention free consumer. Any consumer in the network should 

be able to consume all packets addressed to him. The authors propose to 

use an end-to-end credit-based flow control mechanism in order to 

guarantee this condition. Otherwise, the contention-free mechanism does 

not work properly. The end-to-end flow control requires deep FIFOs on 

the NI in order to deliver 100% throughput. Example, if the producer-

consumer path takes 20 clock cycles, the FIFO depth on the NI should 

have 2 * 20 = 40 words to guarantee 100% throughput.  

Taking into consideration these two aspects, the Æthereal contention-free routing 

mechanism is an efficient method to deliver guaranteed service traffic. The storage 

elements for BE and GS traffics are independents and different GS traffics do not 

share the same timing slots. Therefore, no contention situation occurs on the GS 

network. Moreover, the GS throughput is guaranteed. The more the timing slots 
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assigned to a GS communication, the higher the throughput. In terms of jitter latency, 

it is very low because it is constrained by forced synchronicity of the contention-free 

routing mechanism. 

The allocation of a GS communication channel is established like a circuit. The 

full end-to-end path has to be established before any GS communication packet can 

use it. Moreover, the configuration of routers/NI uses BE packets which can be 

delayed due to network congestion. Therefore, the allocation and desallocation of the 

GS channels can be highly impacted by the network congestion. This network 

characteristic can influence on the performance of an application if it often allocates 

and desallocates the GS traffics. 

In terms of GS traffic types, the congestion-free routing algorithm is extremely 

efficient for regular and deterministic traffic. This steams from the synchronicity of 

the whole architecture. However, when burst or non-regular GS traffic is used, the 

number of allocated slots for these traffics has to be oversized to overcome the worst-

case condition. Thus, the allocated bandwidth for other GS traffics is reduced. 

The Æthereal NoC design flow is explained in [Goos05b]. However, no detailed 

analysis of its physical implementation is showed. In [Bartels06] and [Steenh06], two 

design implementations are analyzed; however, their architectures are analyzed at 

VHDL RTL and SystemC. 

Æthereal NoC routers uses hardware optimized FIFOs and tables to be an area-

optimized design. However, these hardware devices become a constraint in the 

physical implementation, as they have to be placed and routed as a hard-macro 

(Figure 2.12).  

The Æthereal routers are designed as independent hard-macros and later placed 

and routed with the rest of the design [Goos05]. The design of a complex SoC, 

requires optimizing each Æthereal router, synthesizing router-by-router, placing and 

routing each Æthereal router, and finally assembling the SoC. This comes from the 

fact that the NoC design flow optimizes each Æthereal router (ports, FIFO depth, and 

routing slots) of the SoC. These optimizations are very time consuming in terms of 

Back-End implementation cost because each Æthereal router would require different 

hardware-dedicated devices. Moreover, each router has to be synthesized, 

floorplanned, placed and routed as an independent unit. Example, the design, 

implementation and verification of a 2*2 Æthereal NoC required 12 person months 

effort [Steenh06]. 

The NI detailed in [Radtu05] has independent clock domains for the IPs and the 

router. Therefore, it is possible to use independent clock frequencies on each IP. 
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However, the Æthereal routers require a clock synchronicity between all the routers 

of the network [Goos05]. The routers synchronize with their neighbor routers by 

means of the flow control signals. Therefore, the routers run as fast as the slowest 

router.  

 A waterfall clock distribution and synchronous latency-insensitive design is 

supposed to be used on the synchronization of the routers [Goos05] [Ru06]. 

However, these techniques can influence the efficiency of the congestion-free routing 

because the synchronicity of routers can be influenced by the process variation, 

temperature, voltage, and operation frequency. Example, when a router to router 

interface can not exchange data without metastability (out of the metastability 

window), an additional clock cycle have to be waited to guarantee the data 

correctness. Thus, the congestion-free routing algorithm has an additional penalty of 

one clock cycle and all the remaining communications have to be recalculated. 

The area of the router plus NI is too high for the target applications that we are 

considering. Its total area is about 2 mm² on CMOS 130 nm. Assuming an NoC 

implementation cost per cluster of 15% of the total area, the area of the cluster would 

be 13mm² while we are targeting clusters of 5 mm². 

2.4 Nostrum 

Nostrum is an NoC developed by the LECS (Laboratory of Electronics and 

Computer Science) at the Royal Institute of Technology in Sweden [NOSTR].  

2.4.1 Architecture 

The Nostrum NoC architecture follows a regular mesh topology containing 

switches and network interfaces. Two traffic classes are available, Best Effort (BE) and 

Guaranteed Bandwidth (GB). In the BE implementation, the packet transmission is 

handled by datagrams. The switching decisions are made locally in the switches on a 

dynamic/non-deterministic manner by means of the deflection routing algorithm. Its 

benefits are robustness against network link congestion and link failure. However, 

the BE packets may arrive in another order that they were sent; thus, the NI handles 

the ordering of packets and de-segmentation of messages. The BE packet size is one 

flit. 

The defection routing algorithm guarantees that no packet is stalled in the router, 

thus no intermediate buffer is required in the network. All packets in the switch are 

forwarded to an output port; even it is not the requested one. This phenomena 
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requires that the entire network is synchronized (all switches have the same clock 

frequency and switch at the same clock cycle). 

The GB traffic is handled using containers [Millbe04]. A container is a network 

packet that follows a predefined looping path as shown in Figure 2.13. They can 

transport the information of GB traffic; but if they do not transport any information, 

they continue to follow the predefined looping path. Thus, they contain an empty flag 

to identify if they transport or not data. 

 Figure 2.13 illustrates an example of a lopping container when a GB source 

transfers packets to its GB destination. When the empty container arrives to the 

switch 1 (the GB source), the GB source load the container with the GB traffic and 

sent it to the east switch (blue line). The container and its load is routed though the 

network following its predefined looping path. When it reaches the GB destination, 

the container is unloaded and it is sent back (red line) empty, possibly, with some 

new information loaded.  

 

Figure 2.13 Nostrum looping containers 

When looping containers are temporally multiplexed, the network is able to sent 

different GB traffics over the same link. Figure 2.14 shows an example of bandwidth 

sharing between two independent GB traffics. 

 

Figure 2.14 Nostrum bandwidth granularity 
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 The containers are launched on the start-up phase of the network when no BE 

packets are allowed to enter the network. The higher the bandwidth required, the 

higher the launched containers over the same loop.  

2.4.2 Analysis 

The looping containers method guarantees the bandwidth of the GB traffic; 

however, its implementation is not efficient: 

• Missed bandwidth: The empty containers cannot be used by the BE 

packets. Thus, the container bandwidth is lost when it is not used. 

Moreover, the bandwidth of the containers between destination to source 

path is always loosed if the destination module does not send back any 

data. 

• Burst packets: The loping containers are efficient for constant bit rate 

transmissions. However, under burst operations or variable bit rate, the 

number of containers has to be dimensioned on the worst-case condition, 

thus losing bandwidth. 

• Synchronicity: Routers have to be switched on the same clock cycle to 

guarantee the timing multiplexing of different GB traffics. Otherwise, it is 

possible that different GB traffics could not share the same link.  

• Deflection routing: Nostrum use the same resources for the BE and GS 

traffics. However, the BE traffic uses the deflection routing algorithm to 

avoid congestion situations. Therefore the BE packets have to be 

reordered on destination by reordering buffers which are high area 

consuming devices. 

In terms of throughput, the GB throughput depends on the number of containers 

following the same predefined path. The higher the number of containers, the higher 

the allocated throughput.  

The allocation of the containers has to be performed at the beginning, where no 

BE packet is in the network. The allocation of containers for different GB 

communications has to be synchronized in order to schedule the containers without 

collision. 
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2.5 ANOC 

ANOC stands for Asynchronous NoC and it is developed by the CEA-Léti. The 

NoC has been physically implemented in the FAUST chip, a stream-oriented multi-

application platform for 4G telecom. 

2.5.1 Architecture 

ANOC is a packet-based wormhole network-on-chip. Its router has five 

bidirectional ports to the North, South, East, West, and Local connections (Figure 

2.15). The interconnections between routers are bidirectional links using 

asynchronous send/accept handshake protocol. As the ANOC routers are 

asynchronous, the entire end-to-end path between the packet producer and the 

consumer is completely asynchronous. Just the local input and local output ports are 

synchronized to the subsystem clock frequency. Moreover, a four-phase Quasi Delay 

Insensitive (QDI) protocol is used on the network guaranteeing no metastability 

issues inside the router. Just the local input and output ports where synchronization 

to the local clock frequency is required are susceptible to metastability failure. These 

interfaces use special FIFOs to minimize the metastability failure. 
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Figure 2.15 ANOC node architecture 

The ANOC router does not impose a regular topology for the network. Irregular 

topologies can be implemented, as ANOC uses a source routing algorithm. This 

particularity allows a higher flexibility on the routing of the packets over the 

network. However, it requires complex configuration of the Network Interfaces 

Controllers and a higher packet overhead to carry the routing information. Packets 

are subdivided in 34-bit flits. The first flit carries the routing information on 18 bits. 
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Two bits encode each routing hop as shown in Figure 2.16. Hence, the routing path is 

limited to nine hops H0 to H8. However, a path extension mechanism is also 

proposed to extend the routing path [Beigne05]. These routing extension paths have 

been implemented on the FAUST platform and they are depicted as EXP modules on 

Figure 2.17. 

H0H1H2...H8

2 bits

34 bits

18 bits

First flit

Following flits

2 bits

 

Figure 2.16 ANOC packet 

The ANOC architecture provides two virtual channels per physical link (inter 

router wires). A low latency and high priority channel VC0 and a higher latency and 

low priority channel VC1. The VC0 channel is intended to be used on real-time 

applications while the low priority VC1 is used for best effort traffic. VC0 has higher 

priority than VC1 and can suspend the path of this last one. A VC1 packet can only 

be suspended by VC0 packets with higher priority. In that case, the suspended 

packet is stalled and stored in previous nodes.  

The allocation policy of the outputs ports is not equal for VC0 and VC1 channels. 

For the VC1 channel, it uses a "first arrived, first served” (FAFS) allocation policy, 

while for VC0 channel, it uses static arbitration (N,S,E,W,Res). These allocation 

policies are simple to design on asynchronous circuits and have faster execution time 

rather than a round-robin allocation policy. 

Each router is composed of 5 input controllers and 5 output controllers. Each input 

controller is connected to only 4 output controllers because back and forth on a same 

network link is not allowed by the communication protocol. The interconnections 

between input and output controllers are similar to those of a 5/5 crossbar. The input 

controller can store two flits per virtual channel and its flow control is credit-based. A 

packet can be sent over the virtual channel, only if the input controller has at least one 

free register.  

2.5.2 Implementation 

The ANOC was implemented on the FAUST demonstrator platform. FAUST, 

which stands for Flexible Architecture of Unified Systems for Telecom is a hardware 
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demonstration platform for the 4MORE mobile terminals. 4MORE [Kaiser04] is an 

IST program targeting 4G baseband modem chips. The FAUST project was initiated 

in 2003 for supporting multiple OFDM air interfaces in a single SoC. FAUST 

architecture is composed by processing units interconnected by a NoC. It also 

includes an ARM946ES in an AHB subsystem. The communication protocol between 

the functional units is carried out by message passing through the NoC. Each 

processing unit contains a programmable Network Interface Controller, which 

contains input and output FIFOs and regulates the traffic through the network. This 

regulation is carried out by credits to synchronize the producer to the consumer on a 

self-synchronized data pipeline manner. 

 

Figure 2.17 FAUST architecture 

The FAUST chip is a multi-application platform for 4G telecom. It can support 

OFDM-based applications such as 802.11a standard, MC-CDMA [Kaiser04][Berens05] 

and 3GPP-LTE protocols. All these applications share the same set of constraints, 

including real-time requirements, high throughput and low power consumption for 

battery-powered devices. 

The ANOC design has been implemented in the STMicroelectronics 130nm 

technology, using standard place-route tools (EncounterTM from Cadence).  

For the ANOC router, a hard-macro approach was defined in order to re-use the 

ANOC router all over the FAUST top floor-plan. This choice allows proper placing of 

the ANOC router port signal pins (North, East, South, West, Unit). The ANOC router 

contains robust QDI 4-phase/4-rail asynchronous logic [Beigne05], which is 

implemented using standard-cells and specific C-elements from the TAL library 
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[Mauri03]. Once the ANOC router hard macro was available, the standard abstract 

and gds files were generated. For the GALS interfaces implementation, a soft-macro 

approach was defined. 

For top-level, the complete floor-planning was done in order to place all the hard-

macros: ANOC routers, SRAM memories, ARM946 core (Figure 2.18). The place & 

route was done hierarchically with five distinct partitions using Encounter tool. The 

timing analysis and optimization of the NoC links was possible using a pseudo-

synchronous timing model of the ANOC router. For GALS interfaces, timing 

optimization is more difficult due to mix-timing constraints of these interfaces 

[Beigne06]. 

 

Figure 2.18 FAUST floor-plan with ANOC 

Due to the GALS approach on the chip design, the clock-tree of the chip was 

constituted of 27 independent clock trees: one distinct clock tree per synchronous IP 

unit. The 27 clock-trees were then generated one-by-one by the tool. 

2.5.3 Analysis 

The ANOC router uses the virtual channel approach to combine the Best Effort 

and the Guaranteed Service traffics. Thus, guarantees in terms of latency and 

bandwidth can be achieved as ANOC uses: 

• Independent storage elements for BE and GS traffic classes.  
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• Credit-based end-to-end flow control to avoid blocking the virtual 

channels. 

• Priority allocation policy for the VC0 channel. 

However, the arbitration policy between virtual channels is restrictive because “a 

low priority packet can be suspended by higher priority packets”. It means that the 

low priority packets can be blocked as long as a high priority packet uses the virtual 

channel. This condition can incur in a starvation situation where the low priority 

packet cannot reach its destination because it is always suspended by a high priority 

packet. Moreover, this condition can become a deadlock situation when a high 

priority packet cannot be served until a low priority packet has finished to be 

received, this last one suspended by the high priority one. An example of this 

phenomenon is depicted in Figure 3.5 and explained in Chapter 3. This limitation is 

overcome when an end-to-end credit-based flow control Network Interface 

Controller [Cler05] is used. With this mechanism, a high priority packet has always 

enough FIFO space to enter into the destination FIFO, thus, preventing a low priority 

packet to be blocked indefinitely. 

The ANOC architecture is fully asynchronous and requires special libraries to be 

implemented. These libraries are not currently available in industrial flows; thus, 

limiting the portability of the design. 

In terms of testability, the asynchronous circuits are very difficult to test due to 

the causality of the circuit signals. They require exhaustive test to verify the 

correctness of the circuit. 

In terms of physical implementation, the ANOC router has been physically 

implemented as a hard-macro. Thus, the flexibility of the circuit floorplan is reduced 

because the router itself became an additional constraint in the floorplanning of the 

circuit. Moreover, the inter-router communication uses 4-phase/4-rail QDI. Thus, 

hard-macro has more than 900 input/output ports to be connected to other routers. 

The ANOC router throughput depends on the optimized physical 

implementation of the circuits. The inter-router links are implemented by wires and 

buffers; no intermediate pipeline module is implemented. Thus, the long wire delays 

dramatically penalize the router throughput. This comes from the fact that a 4-phase 

QDI asynchronous transaction is performed after 4-phase transaction. Consequently, 

the critical path in-between two ANOC routers cross four times the long wires 

between routers. 
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A detailed comparison after physical implementation between the ANOC and 

DSPIN NoC in terms of router area, latency, throughput, and power consumption is 

analyzed in Chapter 5. 

2.6 QNoC 

QNoC stands for Quality of Service Network-on-Chip and it is developed on the 

Electrical Engineering Department, at the Israel Institute of Technology.  

2.6.1 Architecture 

The network architecture is based on a grid topology that can be irregular. The 

routing algorithm is XY and YX, therefore the network traffic is distributed non-

uniformly over the mesh links, but each link bandwidth can be adjusted to its 

expected load. The links bandwidth can be modifying by sizing the number of data 

wires or modifying the link frequency [Bolotin04].  

The router has five ports and uses wormhole routing algorithm. The inter-router 

communication uses credit-base flow control. These credits are sent using specific 

wires to the neighbor router. The links use handshake interfaces and can be adapted 

for asynchronous interfaces. 

In order to support different classes of QoS for different kinds of on-chip traffic, 

QNoC has four types of service levels (SL). A service level is a traffic class with a 

common QoS. For example, consider the following four different SLs: Signaling 

(urgent short packets that have the highest priority), Real-Time (guaranteed 

bandwidth and latency to streamed audio and video), Read/Write (short memory and 

register accesses), and Block-Transfer (long messages such as DMA transfers) [Guz07]. 

The service level priorities are ranked with Signaling having the highest priority, 

Real-Time being second, RD/WR third and Block-Transfer ranked last. 

Figure 2.19 shows the QNoC router architecture. Each input port is connected to 4 

queues (one per service level) through a demultiplexer. A crossbar interconnects the 

input ports to the output ports. The CRT (Current Routing Table) and CSIP 

(Currently Serviced Input Port) modules control crossbar allocation. The output ports 

are composed of four one-flit storage elements (for each SL), credit counters (NBS), 

and a control module. This last module receives the neighbor routers credits, updates 

the NBS counters, and controls the allocation of the output port. 

The current state of round-robin scheduling is stored in the Currently Serviced 

Input Port number (CSIP) table for each service level at each output port. This 
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number is advanced when transmission of a complete packet is finished or if there is 

nothing to transmit from a particular input port and service level. This scheduling 

discipline implies that a particular flit gets transmitted on an output port as long as 

there is buffer space available on the next router and there is no packet with a higher 

priority pending for that particular output port. Once a higher priority packet 

appears on one of the input ports, transmission of the current packet is preempted 

and the higher priority packet gets through. Transmission of the lower priority 

packet is resumed only after all higher priority packets are serviced [Bolotin04]. 

 

Figure 2.19 QNoC router architecture [Bolotin04] 

A flit is transferred from the output router port to its neighbor router input port 

when the input router port has at least one free place (of the required SL). This 

mechanism is carried out by the credit-base flow control. The input queues require at 

least a depth of four flits in order to maximize the throughput. This number is 

calculated using the cycle type of the router [Bolotin03]: 

1. One clock cycle is required for transmitting the flit. 

2. One clock cycle is required for latching incoming flit and routing decision 

in the router 

3. One clock cycle is required for the transmission delay of credit-buffer 

information from the next router. 

4. One clock cycle is required for latching the credit-buffer information in the 

scheduling logic of the output port. 

The QNoC router has been implemented in two manners, asynchronous cells and 

synthesized on synchronous 0.35µm standard cells [Dobkin05]. The asynchronous 
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implementation introduces naturally the asynchronous communication between 

routers while the synchronous has to guarantee the correct operation without 

metastability. Two different architectures are analyzed, one with just one SL and 8-bit 

flits, and another with four SL and 10-bit flits. Table 2.3 summarizes the results. 

Table 2.3 Comparison results of QNoC implementation [Dobkin05] 

Synchronous Router Asynchronous Router 
Parameter 

1-SL 4-SL 1-SL 4-SL 
Units 

Cell Area 0.210 0.960 0.093 0.470 mm² 

Number of FFs / Latches 195 880 130 620  

Min Latency (Input to Output) 3.3 (1) 3.7 (1) 7.6 / 3.9 13.0 / 9.2 ns (CLKs) 

Data Cycle 13.2 (4) 14.8 (4) 18.0 / 11.9 13.3 / 13.3 ns (CLKs) 

Max Data Rate 75.8 67.6 55.5 / 84.0 75.2 / 75.2 Mflits/s 

Max Clock Frequency 303.0 270.2   MHz 

 

2.6.2 Analysis 

The QNoC architecture has four independent channels multiplexed over the 

inter-router wires. These channels can be used for urgent messages or guaranteed 

service communications. The multiplexing of these channels follows a virtual channel 

approach with an independent buffer per channel. The channels scheduling is not 

static as it depends on the channels priority. The main weakness of this architecture 

is that a low priority communication can be stalled by a higher priority channel and 

only resumed after all higher priority packets are serviced. This condition can induce 

starvation situations of the low priority channels when the higher priority 

communication does not grant the channel. 

The proposed architecture is designed as a macro cell router; no distributed 

implementation is possible as the internal crossbar is complex. The crossbar switch 

interconnecting the input ports to the output ports requires five independent 

crossbars of 4-input 4-output, one crossbar per SL. Therefore, these crossbars can 

induce wire congestion on the design of the router. 

The synthesis of the QNoC architecture on standard cells showed a compact and 

fast implementation of the router. However, the maximum throughput of the router 

(Max data rate) is 4 times lower than the maximum clock frequency. Therefore, the 

architecture is not balanced in term of clock frequency and throughput. Under these 

circumstances, the power consumption of the clock tree will be higher than the 

power consumption of the router itself (see Chapter 5 and Appendix C for further 
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details). An optimized architecture should have a throughput equal to the clock 

frequency (1 flit per clock cycle). Consequently, the clock frequency can be lowered 

as much as possible and achieve similar performances as QNoC while the clock tree 

power consumption is reduced. 

2.7 MANGO 

MANGO is the NoC developed at the Technical University of Denmark (DUT). 

MANGO stands for Message-passing Asynchronous Network-on-Chip providing 

Guaranteed services through OCP interfaces. The architecture supports Best Effort 

and Guaranteed Service traffic over a virtual channel approach. 

2.7.1 Architecture 

MANGO is an asynchronous NoC architecture where the routers are the nodes of 

a 2D mesh. A router has five ports where one is a local port. The router consists of a 

BE router, a GS router output buffers, and link arbiters (Figure 2.20). 

 

Figure 2.20 MANGO router [Bjerre05a] 

The BE router implements a source routing scheme. The first flit contains the 

routing information. The two MSB bits of the first flit indicates one of the four output 

ports. When the packet is routed, the packet header (first flit) is rotated two bits, 

positioning the header bits for the next hop. With 32-bit flits, a packet can make a 

total of 15 hops [Bjerre05a]. Packets have variable length a control bit is used to 

indicate the last flit. The interface used to program the GS connections is 

implemented as an extension of the local port. Figure 2.21 shows the internal 

architecture of the BE router.  
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Figure 2.21 MANGO BE router [Bjerre05a] 

The GS router is implemented as a non-blocking switching module. Each output 

port has seven GS communications and one BE communication. The GS 

communications are multiplexed using the virtual channel with a buffer per channel 

approach. These virtual channels are allocated as a circuit switching. Special BE 

packets are used to allocate and desallocate the GS virtual channels on the routers. 

Thus, GS channels behave as a circuit switching and GS packets do not need to carry 

the routing information. Figure 2.22 shows the BE router integrated into the GS 

router, using a subset of the VCs.  

 

Figure 2.22 MANGO: BE router integrated into the GS router [Bjerre05a] 

MANGO use flow control signaling for each VC between routers. Thus, end-to-

end flow control signaling is not needed. The flow control is implemented using 

share-based VC control [Bjerre04]. When a new flit of VCi has been transferred by an 

output port, the share box i (Figure 2.22) become locked, not allowing further flits to 

pass. The flit passes across the output port, the inter-router wires, the input port, the 

switching module, and arrives to the unshared boxe i. The unshared box implements a 

latch, into which the flit is accepted. When the flit in turn leaves the unshared box, a 
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unlock control wire toggle. This unlock control wire arrives to share box i, admitting 

another flit into the output port. 

A 33-bit MANGO router using 0.13µm CMOS technology from 

STMicroelectronics has been implemented. The performance in netlist simulations 

using worst-case timing parameters was 420 Mflits/s. The estimated area is 0.277 mm² 

[Bjerre05c]. 

2.7.2 Analysis 

MANGO is an asynchronous NoC designed for message-passing programming 

model. Its architecture supports seven GS communications and one BE 

communication per output port. The GS router uses the virtual channel with a buffer 

per channel approach. The GS communications are allocated using a circuit switching 

approach. Firstly, the VC are reserved by BE packets. Secondly, the GS can use the 

reserved path. Finally, the VC is desallocated using BE packets. Therefore, no 

collision can exist between GS communications. In terms of VC multiplexing, a fair 

allocation policy is implemented for each output port. Moreover, the BE and GS 

traffics are completely split by different VCs. Consequently, it is possible to define 

hard constraints on the latency and on the through of the GS communications 

[Bjerre05b]. 

The architecture is suited to GALS as the router and the links are designed using 

asynchronous logic. The IP cores are connected to the MANGO router through a 

network adapter (NA) which performs synchronization between the clocked IP and 

the clockless network. 

In terms of bandwidth, the MANGO router cannot deliver burst transactions 

because the share-based VC approach limits it. Initially, the bandwidth is limited by 

the fair allocation policy of the link arbiter (Figure 2.22). However, if just one GS 

communication is used, the link arbiter can always be allocated to the same VC. In this 

situation, the bandwidth of the GS communication is no longer limited by the 

allocation policy. It is limited by the cycle-time of share-based VC approach, which is a 

round trip between share box, inter-router wires (long wires), GS switching module, 

unshared box, inter-router wires (long wires), and back to the share box. Consequently, 

the maximum bandwidth of a GS communication is the inverse of this cycle-time. 

For deep submicron technology, where the long wire delays became 

predominant, the pipelining of the inter-router wires (the long wires) does not solve 

the bandwidth limitation in MANGO. This comes from the fact that the cycle time of 
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share_box-to-unshared_box is not modified, because the flit flow-control mechanism is 

between routers, not a link level. 

Finally, the area of the architecture is too expensive because it requires many 

multiplexers while the buffering memory per channel is low. The architecture 

requires more than 40 multiplexers of 4-input to 1-output. 

2.8 Intel Tera-scale  

Intel unveils in [Vang07] an 80-tile processor architecture organized as 10x8 2D 

mesh and interconnected by an NoC. The circuit contains 100 Million transistors on 

CMOS 65nm and has been tested up to 5.1-GHz. 

2.8.1 Architecture 

Each tile contains a processor element (PE) and a router as shown in Figure 2.23. 

The PE is a VLIW processor containing two independent fully-pipelined single-

precision floating-point multiply-accumulator (FPMAC) with 3KB of instruction 

memory (IMEM) and 2KB of data memory (DMEM). Detailed description of FPMAC 

can be found in [Vang06]. 

 

Figure 2.23 Tera-scale die micrograph [Vang07] 

The router is a 5-port wormhole-switch with two logical lanes (virtual channels) 

for death-lock free routing, and a fully non-blocking crossbar switch with a total 

bandwidth of 80GB/s. The FIFO depth of each queue is 16 flits, and each queue has 

an arbiter and a flow control logic (Figure 2.24). The router uses 5-stages pipeline 

with two-stage round-robin arbitration scheme.  
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Figure 2.24 Tera-scale router [Vang07b] 

The inter-router links are 39-bit unidirectional point-to-point links. Packets are 

subdivided into flits, each flit consisting of 32-bit data and 6-bit control signals 

(Figure 2.25). The packet header allows a 10-hop source routing path, where each hop 

is encoded in 3 bits. A chained headers (CH) bit in the packet header provides 

support for larger number of hops. Flow control and buffer management between 

routers are debit-based using almost-full bits, which the receiver queue signals via 

two flow control bits (FC), when its buffer reaches a specific threshold. 

 

Figure 2.25 Tera-scale packet format [Vang07b] 

The Tera-scale router architecture, which is described in [Vang07b][Vang05], was 

adapted from an off-chip network router described in [Wilso01]. Its architecture was 

simplified with dual edge-triggered flip-flops and a reduced number of logical lanes. 

Therefore, its area is 0.34mm² in 65nm technology. 

The circuit uses a global mesochronous clocking. Each tile is synchronous while 

the communications between the tiles are mesochronous. The on-chip PLL output is 

distributed on a differential manner over horizontal and vertical spines on M7 and 

M8. An opamp at each tile converts the differential clock to a single-edge clock with 

50% duty cycle as shown in Figure 2.26. Therefore, the intra-tile clock skew is 4ps 
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while the inter-tile clock skew can be around 200ps. The global clock distribution 

power at 4GHz, 1.2V supply is 2.2W. This clocking scheme dropped the typical clock 

distribution power from the typical 30% of the socket power to roughly 10% of the 

total socket power [Baut07]. 

 

Figure 2.26 Tera-scale clock distribution [Vang07] 

Mesochronous links are interconnected using clock-phase insensitive 

communications (MSINT). The MSINT architecture is a 4-word deep circular FIFO 

built using latches capturing data on both edges. This type of interface is analyzed in 

the Appendix A. Figure 2.27 shows the FIFO architecture and its timing diagram. A 

strobe signal (Tx_clk) is delayed using a programmable delay line in order to latch 

the data on the data-latches. A synchronizer circuit set the latency between the FIFO 

write and read pointers to 1-2 clock cycles based on the phase of the arriving strobe 

signal with respect to the local clock signal. A more aggressive low-latency setting 

reduces the synchronization penalty by one clock cycle. 

 

Figure 2.27 Tera-scale mesochronous interface [Vang07b] 
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2.8.2 Analysis  

The Tera-scale router is a simplified and optimized version of an off-chip network 

router able to be clocked up to 5.1 GHz. The router contains two virtual channels, one 

for the request and another for the response packets. No guaranteed service traffic is 

detailed. 

The router uses source routing algorithm, thus the network interface controllers 

(Router Interface Block RIB in Figure 2.23) have to be programmed in order to route 

the packets over the network. Moreover, the architecture is message-passing oriented 

due to the source-routing algorithm. 

The physical implementation is custom, as the circuit requires sizing all the 

transistors of the design to achieve the required performances. Thus, no standard cell 

implementation is possible. Moreover, the router takes 0.34mm² in CMOS 65nm, 

which is several times bigger than targeted architecture of this thesis. 

The Tera-scale mesochronous links (MSINT) uses a synchronous latency-

insensitive design. This architecture is suited to interface mesochronous links. The 

latency of these interfaces has to be accounted for the packet router latency. Thus, the 

packet latency is 6-7 clock cycles (5 from the pipelined router and 1-2 from the 

MSINT). In terms of area, the MSINT interface can be estimated to 0.0112µm² from 

the die micrograph of Figure 2.23.  

2.9 Conclusion 

In this chapter, we have analyzed the most significant published Network-on-

Chip architectures. The Æthereal, Nostrum, ANOC, QNoC, and MANGO 

architectures have guaranteed service traffic, and the SPIN, ANOC and Tera-scale 

architectures have been physically implemented on silicon. 

The experience gained in the physical implementation of the 32 ports SPIN 

network was precious to define a new architecture, well suited to the Globally 

Asynchronous, Locally Synchronous (GALS) paradigm. The SPIN architecture was 

not suitable to be physically implemented with commercial tools. Therefore, we will 

target a fully synthesizable architecture using synchronous standard cells only, 

without either asynchronous or custom cells. 

Asynchronous NoC seams to become popular as ANOC, QNoC, and MANGO 

have been designed following an asynchronous approach. However, the lack of 

commercial tools and the complexity to synthesize, verify, and test the implemented 
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circuit are strong limitations to the introduction of these architectures in commercial 

products. 

In terms of number of traffic classes, the complexity of the router increases 

rapidly with the number of channels. The QNoC and MANGO architectures support 

4 and 8 different traffic classes respectively. We believe that the actual requirement 

for guaranteed service traffic is no higher than two traffic classes: best effort and 

guaranteed service. Therefore, we prefer to improve the throughput of the router by 

increasing the FIFO depth rather than increasing the number of channels. From this 

point of view, the ANOC router is a good tradeoff as it implements two traffic 

classes. 

The multiplexing of the traffic classes should be fair without starvation situations. 

The QNoC and ANOC architectures have a fix priority, thus provoking starvation on 

the low priority channels. 

The allocation and reallocation of the GS communications should not require to 

program the complete network, as the Æthereal (distributed version) or MANGO 

NoCs. The allocation of the GS channels should be easy to modify dynamically. 

In order to design a SoC compatible with the GALS approach, the NoC 

architecture should not require a global synchronicity. The Nostrum and Æthereal 

NoCs requires some sort of global synchronicity. This synchronicity constrains the 

Back-End implementation. We believe that a mesochronous clock distribution and a 

flow control at link level is a good tradeoff between global synchronicity and Back-

End effort.  

In terms of routing algorithm, we prefer an address-based algorithm rather than a 

source routing algorithm. The motivation is double. Firstly, the Network Interface 

Controller is simpler because the destination address can be used easily derived from 

the routing address. Secondly, the source routing limits the scalability, as it requires a 

path extension mechanism when the routing path does not fit into a single flit. 

 In terms of implementation strategy, we believe that a synchronous standard cell 

implementation flow with neither asynchronous nor custom cells is more suited and 

flexible for an industrial product. Optimized architectures such as the Tera-scale 

network, are suited to high performance computing but not for handheld or mobile 

phones. Its power consumption and its silicon area are too excessive for these 

applications. 

In order to simplify the Back-End and to improve the portability, we believe that 

a soft macro implementation is preferable to the hard macro approach used by 

Æthereal and ANOC. 
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Chapter 3 

3 Guaranteed Service 

This chapter describes the implementation of the guaranteed service in the DSPIN 

architecture. The chapter starts with a statistical approach. As expected, this solution 

cannot guarantee a strictly bounded latency. Consequently, a virtual channels 

implementation was proposed and analyzed in order to obtain guaranteed service. 

The solution proposed is analyzed in terms of performance and implementation cost. 

The contributions of this thesis to the DSPIN architecture were not limited to the 

implementation of the guaranteed service traffic. Some additional improvements 

were performed on the initial DSPIN architecture and they are summarized in this 

chapter. 

The DSPIN architecture was simulated in SystemC and VHDL RTL in order to 

obtain the saturation threshold and to verify the hard constraints obtained on the 

guaranteed service packets. Moreover, a simulation platform was analyzed in order 

to characterize the performance of the network in function of the FIFO depths and 

the packet length. 

Finally, the DSPIN architecture was synthesized and its performances are 

analyzed in terms of area and maximum clock frequency. 

3.1 Statistical Guaranteed Service 

This section describes a first study were the DSPIN architecture presented in the 

State of the Art chapter was used to route packets with two levels of priority, without 

using independent hardware resources.  



 

70 

3.1.1 Priority Allocation 

In this implementation, the DSPIN architecture was modified to take into account 

a priority allocation of the priority packets. This work was started by Nicolas 

Guillermin (intern at The University of Pierre et Marie Curie) and later improved in 

this thesis.  

In order to differentiate the priority packets from the normal ones, the DSPIN 

packet incorporated a priority flag on the first flit of the packet. The allocation 

priority of output ports was modified in order to allocate more often the priority 

packets than the normal ones. Moreover, the modified allocation priority was 

designed to guarantee no starvation situations. Thus, the normal packets have at least 

1 chance in N to be granted. Consequently, the priority packets can flow on the 

network with higher priority than the normal ones. However, a priority packet cannot 

suspend a normal packet that is being served. 

We simulated a 4x4-network to analyze the performances of the implementation. 

In order to simulate a request-response network, each node of the network contains a 

packet initiator (which chooses randomly its destination cluster) and a packet target. 

12 of the nodes use normal traffic and the other 4 uses priority traffic. The offered load 

of the normal traffic is 80% while the offered load of the priority ones is 5%. The 

offered load is the ratio between the number of injected flits and the total number of 

cycles. Thus, the priority packets will try to flow on a saturated network. Figure 3.1 

shows the probability distribution of the packet latency for the priority packets when 

the network uses the priority allocation (blue line) and when the priority allocation is 

disabled (green line).  

 

Figure 3.1 Probability distribution of the packet latency on an overloaded network 
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The priority allocation reduces the average latency of the priority packets from 75 

to 65 clock cycles. However, the probability distribution, even when the priority 

allocation is enabled, shows a latency over 220 clock cycles for some packets (3 times 

higher than the average), which is not suited for real time applications.  

In order to simulate complex SoC where the number of IP is higher than 32, a 

new platform of 10x10 clusters was built. This platform uses new traffic generators 

and targets, which send packets to the others clusters using non-uniform random 

distribution. This feature simulates the locality of actual embedded applications: a 

cluster communicates more often with its near neighbors rather than with its far 

neighbors. As example, Figure 3.2 shows the distribution of the destination cluster 

for the cluster (3,3). Brown color means frequent destination while blue color means 

infrequent destination. The cluster (3,3) is depicted in blue as the destination cluster 

cannot be the source cluster. The packets addressed to the same cluster are treated 

locally. Moreover, the length of the packets is a non-uniform value between 1 and 

16 flits. 

 

Figure 3.2 Distribution of the packet destination  

Figure 3.3 shows the probability of the distribution of the packets latency of 

cluster (1,4) under two simulation conditions (priority and normal) and under two 

offered loads (20% and 30%). The improvement on the latency when the packets are 

sent in a priority way is notable. However, the latency of the priority and the normal 

packets is drastically reduced by reducing their offered load. However, at 20% 

offered load, the improvement of the priority packets latency is not enough to 

guarantee hard bounds on the latency. 



 

72 

 

Figure 3.3 Probability distribution of the packet latency for 20% and 30% offered load 

The priority allocation is a simple and low cost way to improve the latency of 

some priority packets. However, the guarantees in terms of latency are very soft 

(sadistically). 

3.1.2 Priority Allocation with Suspended Low Priori ty Packets 

This implementation is an improvement of the previous algorithm. The 

improvement is the ability to suspend a low priority packet to grant the resource to a 

high priority packet. A low priority packet can only be suspended by a high priority 

packet while a high priority packet cannot be suspended by neither low nor high 

priority packets. The allocation algorithm is more complex because it has to manage 

the priority conditions and a suspend state. Figure 3.4 shows the suspend mechanism 

where a high priority packet (red) temporally suspends a low priority packet (green).  

 

Figure 3.4 Suspend mechanism 

The suspend algorithm is an inexpensive way to improve the latency of high 

priority packets. However, the suspend algorithm has some limitations and can 

induce deadlock situations.  
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• Same destination: A low priority packet should not be suspended by a high 

priority packet if both have the same destination cluster. Otherwise, the 

Network Interface Controller should be able to handle two interleaved 

packets. Consequently, the packets cannot be treated as an atomic 

transaction and the NIC becomes more complex. 

• Deadlock situations: The combination of two factors can generate 

deadlock situation: Firstly, the low priority packets are stalled until the end 

of the high priority packet. Secondly, the packets cannot be interleaved by 

the IP. Example (Figure 3.5): a low priority packet (A) that is suspended by 

a high priority (B) one. The high priority packet (B) is waiting the end of a 

low priority packet (D) with the same destination cluster. However, the low 

priority packet (D) is also suspended by a high priority packet (C) that has 

the same destination of the first low priority packet (A). Therefore, a 

deadlock situation is generated, as the IP cannot interleave the packets. 

 

Figure 3.5 Deadlock on priority algorithm with suspended packets 

Taking into consideration all these factors, we simulated a 10x10 platform of the 

previous implementation and avoided the deadlock situations. Figure 3.6 shows the 

probability distribution of the packet latency under two simulated offered loads (10% 

and 20%).  

The latency of the high priority packets was improved. However, the reduction of 

the offered load on the network had higher impact on the reduction of the packet 

latency. The latency guarantees obtained with this algorithm are very soft, very 

similar when compared with the previous algorithm. In terms of complexity, the 

algorithm is not too complex; however, it is not deadlock free. 
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Figure 3.6 Probability distribution of the packet latency with the suspended mode 

3.1.3 Statistical Guaranteed Service 

We presented two implementation techniques to improve the latency of the 

priority packets. These algorithms obtain soft guarantees on the latency while its 

implementation is not very costly. However, the network load has higher influence 

on the latency of the packets rather than its traffic type. Consequently, it is better to 

control the accepted load of the low priority traffic rather than to arbitrate the traffic 

priorities inside the network. 

Moreover, the suspend algorithm is not suited due to its deadlock situations and 

the implementation complexity of the Network Interface Controller. In order to avoid 

the deadlock situations without a complex NIC, the low priority packets should not be 

completely stalled until the end of the high priority packets. Consequently, we 

decided to investigate a virtual channel approach to implement the guaranteed 

service traffic. 

3.2 DSPIN Architecture with Guaranteed Service 

As seen in previous paragraph, the statistical guaranteed service traffic does not 

meet the bounded latency guarantees addressed by real time applications. In order to 

provide Guaranteed Service traffic in the DSPIN architecture we use the Virtual 

Channel (VC) technique with a buffer per virtual channel. Thus, logically 

independent channels share the same physical channel. The advantage of this 

technique compared to the priority allocation of the previous section, is a full 

separation treatment of the traffic classes. Thus, when one traffic class is blocked the 
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other is neither suspended nor blocked. Consequently, the deadlocks situations of the 

priority allocation with suspend low priority packet (analyzed in previous section) can be 

avoided.  

The main advantages of the virtual channels technique is a low area overhead per 

additional virtual channel and a reduced wire congestion of the long wires. This 

stems from the fact that the traffic classes are multiplexed over the same long wires. 

Moreover, we chose the VC technique with a buffer per virtual channel and not the 

VC with a buffer per link in order to avoid the need of a full network synchronicity 

(see Chapter 1) and minimize the complexity of the NIC and router. 

We decided to use two virtual channels per router port. Thus, two traffic classes 

can be classified, Best Effort (BE) and Guaranteed Service (GS) packets. Fort both 

traffic classes, the router use the same routing and switching algorithm, and the same 

packet format. A traffic is considered GS traffic because it is sent on a GS port, 

otherwise it is a BE traffic. Moreover, a GS traffic enters the network through a GS 

input port, travels the network over GS FIFOs and exits the network through a GS 

output ports, vice versa for the BE traffic. The GS and BE traffic share the VC links 

but not the storage elements.  

3.2.1 DSPIN Router 

The virtual channel implementation has been largely used in wide-area networks 

to multiplex different traffic classes over the expensive resources, which are the inter-

router wires (Figure 3.7a). In DSPIN architecture, the costliest resources are actually 

the intra-cluster long wires. Therefore, the virtual channel is implemented inside the 

router and not between routers (Figure 3.7b). The virtual channel interconnects the 

modules of a DSPIN router. Thus, the inter-cluster communications use point-to-

point physical links while the intra-cluster communications use the virtual channel. 

The advantage of this technique is that the virtual channel is embedded inside the 

cluster, which is an isochronous island. Therefore, the timing closure effort is 

simplified, and the cluster can be implemented as a synchronous stand-alone entity 

and finally assembled with other clusters. The uncertainty of the inter-cluster wires is 

low because these wires can be very short as the clusters can be placed side by side 

and the router modules of different clusters can be aligned. 
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Figure 3.7 Virtual channel implementation 

The implementation of the Virtual Channel requires independent storage 

elements for independent traffic classes. Therefore, independent FIFOs are used per 

GS and BE traffic. Figure 3.8 shows the DSPIN architecture and the GS and BE FIFOs. 

Compared to the initial DSPIN architecture (see Chapter 1), the number of FIFOs is 

doubled while preserving the same number of long links, because over these links 

both traffic classes are multiplexed. 
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Figure 3.8 DSPIN router architecture 

3.2.1.1 DSPIN router modules 
The DSPIN router contains four modules placed on the North, South, East, and 

West sides of the cluster, and a Local module placed inside the cluster. Each module 

contains two bi-synchronous FIFOs, two address decoders, three multiplexers, and 

three state machines as seen in Figure 3.9. A module can be decomposed into two 

submodules the sender and the receiver, top and bottom submodules on Figure 3.9 
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respectively. On both submodules, the BE and GS interfaces are split. A packet enters 

the router through an input port of a receiver submodule, it is routed between the 

submodules, and it exits the router through its corresponding output port of a sender 

submodule. The receiver submodule treats the packets as follows:  

• The BE and GS packets arrive through the BE and GS input ports. 

• The packet flits are stored into bi-synchronous FIFOs. 

• The packets are decoded using independent packet decoders. If the 

begin_of_packet bit is set on the flit, the destination address is analyzed 

using the routing algorithm. Thus, a request signal (Req) is sent to the 

corresponding sender submodule to request the packet transmission. 

Independent request signals are sent for each sender submodule and for 

each channel (BE and GS).  

• The TDM state machine controls the allocation of the in multiplexer, 

which multiplexes the BE or GS flits over the virtual channel. The detail 

description of the TDM state machine is described hereinafter. 

• The virtual channel wires contain the FIFO flit data, a valid data bit, and a 

TDM bit. This last bit identifies the traffic class (BE or GS). 

• When the data is correctly transferred, the sender submodule responds 

with an acknowledge signal (Ack), which is used to dequeue data from 

the corresponding bi-synchronous FIFO.  

The sender submodule treats the request from the receiver submodules following 

the next steps: 

• Two state machines (BE and GS) treat the request received from the sender 

submodule. The BE state machine on submodule i, only treats the BE 

request which are addressed to submodule i, and vice versa for the GS 

state machine. 

• The BE and GS state machines control the allocation of the output ports. 

The output ports can be allocated to one of the virtual channels or can be 

invalidated (no_allocated state) when no data is routed. The detailed 

description these state machines is described hereinafter. 

• The allocation algorithm works as follows: 

o If the state machine is in the no_allocated state and a new request 

arrives, the output port is then allocated to satisfy the request. 

o If the state machine is allocated to treat a request and a second 

request arrives, the second request waits until the end of the first 
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one to be satisfied. In case of multiple waiting requests, a round 

robin allocation policy is used to satisfy equally the requests.  

o The end of a request is detected with the reception of a flit with the 

end_of_packet bit asserted. Therefore, the state machine toggles to a 

waiting request or to the no_allocated state if none is waiting. 

• When a data is transferred to an output port, an acknowledge signal (Ack) 

is sent to the corresponding receiver submodule. 

 

 

Figure 3.9 West module router detail 

3.2.1.2 TDM state machine 
The TDM state machine guarantees, by construction, that both traffic classes have 

access to the Virtual Channel even when a traffic class is blocked. The TDM is 

implemented as a Moore state machine. The simplest allocation policy is round robin, 

where each traffic class has a guaranteed 50% of the bandwidth (Figure 3.10a). It can 

be modified in order to give more guaranteed routing slots to the GS traffic (Figure 

3.10b). The round robin algorithm guarantees equality between the BE and GS traffic 

while the modified algorithm, gives up to N times more guaranteed slots to GS traffic 

than to the BE traffic. 
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Figure 3.10 TDM state machine 

Both algorithms are starvation free with maximized throughput. The throughput 

of the VC is maximized because when no BE traffic requires the VC, the state 

machine remains allocated to the GS traffic. Thus, all the VC slots are allocated to the 

GS traffic. The same phenomenon occur with the BE traffic when no GS traffic 

requires the VC. 

3.2.1.3 Allocation state machines 
The BE and GS state machines are identical. They are Moore state machines with 

round robin allocation policy to guarantee no starvation situations. Figure 3.11 shows 

the BE/GS state machine on the North module. This state machine has four allocated 

states (South, East, West, and Local), and a no_allocated state. When the state machine 

is in an allocated state (Allocated_to_East for example), the output port is allocated to 

the corresponding virtual channel (East virtual channel for example). When the state 

machine is on the no_alloacted state, the output port is invalidated as no packet is 

routed. This state is used to invalidate the output data and to reduce the power 

consumption of the router (see the clock gating section in Chapter 5 for further 

details) when no packet is routed. 
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Figure 3.11 BE/GS state machine on the North module 

When the state machine is allocated to one of the virtual channels (South for 

example) it remains allocated to that channel until the reception of the End_of_Packet 

(EoP). Then, the state machine changes its state using the round robin allocation 

policy. If no request is pending, the state machine switches to the no_allocated state.  

The BE/GS state machines for the East and West modules are easier because the 

X-first routing algorithm does not allow a packet traveling on the Y coordinate to be 

routed to the X coordinate. For example, the packets coming from North module can 

be routed to neither East nor West modules. Therefore, the BE/GS state machines on 

the East and West modules have just two allocated states and a no_allocated state. 

3.2.1.4 Routing Guaranteed Service Packets 
The DSPIN architecture before this thesis used the X-first routing algorithm to 

route the packets over the network. The same routing algorithm was used for both 

request and response networks. However, the guaranteed service traffic requires 

modifying the routing algorithm of the response-packets to maximize the utilization 

of the network. This phenomenon is depicted in Figure 3.12. A-to-A’ and B-to-B’ are 

two independent GS communication and their paths do not conflict. However, the 

responses to theirs requests (A’-to-A and B’-to-B) conflict. To avoid packet conflicts 

on the response network, the response network use the Y-First routing algorithm 

(Figure 3.12b). Consequently, non-conflicting guaranteed service request-packets will 

always have non-conflicting response-packets. DSPIN uses X-First routing algorithm 

on the request routers and Y-First routing algorithm on the response routers. 
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Figure 3.12 Request and response path analysis 

3.2.2 DSPIN Network Interface Controller 

The DSPIN Network Interface Controller interconnects the request and response 

routers to the local sub-system. The NIC provides services at the transport layer on 

the ISO-OSI reference model, offering to the local sub-system independency versus 

the network implementation. The actual implementation is compatible with the 

VCI/OCP [VCI00] protocol, but it can be easily adapted to any shared memory and 

transaction-based protocol. 

Transaction-based protocols are composed of initiator IPs and target IPs. Initiator 

IPs issue request packets while target IPs return responses. The DSPIN NIC being a 

bi-directional bridge, behaves as an initiator and as a target as shown in Figure 3.13a. 

DSPIN NIC is also suited for hierarchical architectures as the one in Figure 3.13b. A 

local interconnect between the NIC and the IP can be used to split the intra-cluster 

communications from the inter-cluster communications. 

 

Figure 3.13 Network Interface Controller 
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The main tasks of the NIC are protocol conversion and packet building. The 

VCI/OCP protocol of the IP is implemented on the IP ports of the NIC while the 

Network ports of the NIC implements the DSPIN protocol. The protocol conversion 

algorithm differs for the IP initiator and IP target ports: 

• Initiator IP ports: The IPs connected on the initiator ports send requests 

and receive the responses to their requests. 

o Send a request: The request packets are analyzed to identify the 

destination address and packet control signals. The destination 

address is translated to the DSPIN packet destination (Y,X). This 

can be directly done by taking the MSB bits of the IP packet 

address or by translating these MSB bits with a Look Up Table 

(LUT). The latter case gives more flexibility on the mapping 

addresses. Moreover, the packet control signals are analyzed in 

order to minimize the DSPIN packet length. For example, burst 

write requests packets with consecutive addresses are compressed 

by sending the beginning address and incrementing it on the 

destination NIC.  

o Receive a response to a request: The response packet to a request 

can be a read data, an acknowledge packet, or a fail packet. In case 

of read data, the IP data protocol is restored with the read data. An 

acknowledge packet can be the acknowledge response to a write 

request while a fail response can be an unmapped send request or 

a wrong operation request. 

• Target IP ports: The IPs connected to target ports receive requests from 

the initiator IPs and send responses to these requests.  

o  Receive a request: The protocol conversion restores to the IP the 

same information sent by the initiator IP. If the packet addresses 

were compressed due to burst write requests, they are restored 

using the beginning address and an incremental counter. 

o Send a response to a request: The response to a request can be the 

read data, acknowledge to a request or a fail request. In case of 

data, it is directly converted to a DSPIN packet. Acknowledge and 

fail requests are compressed in order to reduce the DSPIN packet 

length as they do not contain data bits. 

Depending on management of the guaranteed service traffic by the IPs, two 

implementations of the NIC were designed for independent and mixed packet 
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treatment. On the one hand, when independent GS and BE IPs are used, a double 

channel NIC is designed. On the other hand, if the same IPs manage BE and GS 

traffic, a simple channel NIC is proposed.  

3.2.2.1 Double channel Network Interface Controller 
Double channel NIC have independent IP ports for the BE and GS channels. 

Hence, the BE and GS packets do not share the same interface (Figure 3.14). Thus, no 

deadlock situations exist on the NIC as BE and GS packets can continue to flow even 

when one of the traffics is blocked. 

 

Figure 3.14 Double channel Network Interface Controller 

3.2.2.2 Simple channel Network Interface Controller 
A simple channel NIC combines the BE and GS packets on the same IP port of the 

NIC. Therefore, the IPs have to manage BE and GS packets. In order to differentiate 

the BE packets from the GS ones, two solutions are proposed: a flag-bit on the IP 

protocol or an identification by the destination address. For the latter, the destination 

address is analyzed to identify the packet type (BE or GS). This differentiation is 

performed using a Look Up Table (LUT-GS) which is implemented on the NIC, as 

shown in Figure 3.15.  

3.2.3 Globally Asynchronous Locally Synchronous 

In order to follow the GALS approach each cluster can have its own clock 

frequency without any frequency/phase relationship between its neighbors. In the 

DSPIN architecture before this thesis, the cluster clock frequency was used to clock 

the DSPIN router. Under these circumstances, a cluster clocked with a low clock 
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frequency will reduce the throughput of the network and increase the end-to-end 

path latency.  

In order to split the cluster clock from the router clock, the DSPIN routers are 

clocked with an independent clock frequency (CLK_noc). Therefore, the latency of 

the packets is now independent from the cluster’s clock frequency. 
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Figure 3.15 Single channel Network Interface Controller 

In terms of clock distribution, a fully synchronous NoC is contradictory to the 

GALS approach. Therefore, we decided to distribute a mesochronous clock signal 

over the circuit, which is less complex to build, and less power consuming than a 

fully synchronous clock distribution. Consequently, all the routers are clocked with 

the same clock frequency but a clock skew can exist between neighbor routers. 

The mesochronous communications between neighbor routers are carried out by 

bi-synchronous FIFOs (in mesochronous mode) [Miro07b]. To avoid the metastability 

issues, these FIFOs require that clock rising edges of the producer and consumer 

clock sides are not too close from each other (see Chapter 4 for further details). In 

order to separate the clock rising edges, we decided to invert the clock signals 

between neighbor routers as shown in Figure 3.16. Thus, the rising edges of the clock 

signals are 180° out of phase. Moreover, the FIFO continues to be operational even 

when the phase shifts between ±90° due to clock skew of the mesochronous clock 

tree. The methodology involve adding a clock inverter on the (Y,X) router where X+Y 

is an even number (Figure 3.16). Thus, neighbor routers have inverted clock signals. 

Chapter 5 details the physical implementation methodology of these mesochronous 

clock trees. 
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Figure 3.16. Inverted clocks signals on DSPIN routers 

The communications between the router and the NIC are asynchronous because 

the subsystems can use independent clock frequencies. Theses communications are 

carried out by bi-synchronous FIFOs (in the asynchronous mode). Compared to the 

previous bi-synchronous FIFOs, these FIFOs can interface mesochronous and 

asynchronous communications, but with a higher latency (see Chapter 4 for further 

details). 

3.2.4 Predictability 

Predictability is one of the major issues in the design of a real time application. 

DSPIN guarantees, by construction, the predictability of the guaranteed service 

packets in terms of latency and throughput.  

3.2.4.1 Guaranteed service path allocator 
We have described until now how to handle two separated traffics on the same 

switching hardware. In order to guarantee an upper bound for the latency, and a 

lower bound for the throughput in the GS sub-network, we must guarantee that 

collisions in the GS sub-network will never happen (i.e. two different GS 

communication channels using the same path will not be simultaneously allocated). 

This requires some sort of end-to-end resource reservation (circuit switching). 

Following the Amdahl law, we do not want to pay hardware for un-frequent cases, 

and the end-to-end GS channel allocator is not implemented in hardware. For most 

embedded applications, the communication scheme is well known, and the system 

designer can statically allocate the required (non conflicting) GS channels. If static 

allocation is not possible, a GS channel allocator is implemented as a software task 

that will manage a global table of all existing GS paths, and perform dynamic 

allocation as required by the embedded software application. 
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3.2.4.2 Guaranteed service packet latency 
The latency of the guaranteed service traffic is deterministic when no collision 

exists in the GS sub-network. In this section, we compute the upper bound of the GS 

packet latency under these circumstances. 

On the one hand, the latency of the DSPIN router is predictable. Because, the 

DSPIN mesochronous clock distribution makes the network latency independent 

from the clock frequencies of the clusters. 

On the other hand, no conflict between BE and GS packets exists inside the 

network, because the BE and GS traffics are routed independently, thanks to the 

virtual channel implementation. 

• DSPIN uses independent virtual channels for best effort and guaranteed 

service traffics. 

• Independent storage FIFOs are used for each virtual channel. The BE and 

GS packets share only the inter-cluster wires. 

• The NIC has independent ports for best effort and guaranteed service 

packets. 

• DSPIN uses round robin state machines without starvation situations. 

• The TDM state machine guarantees no starvation situations and a 

maximum waiting time of one clock cycle before allocating a new 

guaranteed service packet. 

Both the router predictability and the traffic independency make the routed 

traffic predictable. Taking into consideration the latency of the bi-synchronous FIFO 

(see Chapter 4 for further details), it is possible to compute the end-to-end path 

latency of the network. The bi-synchronous FIFO latency is 1.5 clock cycles in 

mesochronous mode and 2.5 clock cycles in asynchronous mode. 

The packet latency is the end-to-end delay between the time a packet header 

enters into the network and the time it exits the network, assuming no contention. 

This path can be decomposed in three parts: First, Intermediate, and Last latencies. 

The First latency is the time it takes the packet to cross the first router. The Last 

latency is the time it takes the packet to cross the last router and the FIFOs on the 

NIC. The Intermediate latency is the time it takes the packet to cross an intermediate 

router between the first and the last router as shown in Figure 3.17. The latency of the 

state machines and FIFOs is expressed in function of the clock cycle (T). The first and 

last latency crosses a bi-synchronous latency with asynchronous mode, while the 

intermediate latency crosses a bi-synchronous FIFO in mesochronous mode. Thus, 

the intermediate latency is lower than the one of the first and last latencies. The BE, 
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GS, and TDM are Moore state machine with a latency of one clock cycle. In a general 

case, the packet latency is not elongated by the TDM state machine latency because 

its response time is hidden by the GS and BE state machines latency (as TDM and 

BE/GS are concurrent state machines). However, the TDM state machine can elongate 

the packet latency when the router has finished to serve a GS packet, no BE packet 

was waiting, and a GS and a BE packet arrive into the router at the same time. In this 

case, the GS packet has to wait one clock cycle. This phenomenon, which is rare, is 

due to the fair allocation of the TDM state machine.  
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Figure 3.17 First, intermediate, and last router latency 

Table 3.1 shows the packet latency on DSPIN network. In order to compute the 

hard bounds for the latency (maximum and minimum), the TDM state machine 

latency is considered. As an example, the total latency to cross 5 routers in a typical 

condition is (3.5 + 2.5*3 + 5)*T = 16 clock cycles (T). Its maximum latency is (4.5 + 3.5*3 

+ 6)*T = 21 clock cycles. 

Table 3.1 Packet latency on DSPIN router 

 Minimum (typical) latency Maximum latency 

First latency 3.5 * T 4.5 * T 

Intermediate latency 2.5 * T 3.5 * T 

Last router + FIFO 5.0 * T 6.0 * T 

 

3.2.4.3 Guaranteed service throughput 
The guaranteed throughput in DSPIN network is obtained thanks to a fair 

allocation policy of the TDM state machine. This state machine multiplexes the BE 

and GS traffics over the virtual channel. Thus, the bandwidth of the virtual channel is 

shared between BE and GS traffic. The maximum bandwidth of the virtual channel is 
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one flit per clock cycle. Assuming the round robin TDM state machine of Figure 

3.10a, the bandwidth is equally shared between BE and GS. Therefore, the 

guaranteed throughput per GS traffic is 50% (one flit every two clock cycles). With 

the modified state machine of Figure 3.10b, the number of slots for the GS traffic can 

be increased to 75% of the total bandwidth (3 slots for GS and 1 for BE).  

These GS bandwidths are guaranteed even if the BE sub-network is saturated. In 

case of not BE traffic using the same virtual channel, the TDM state machine allocates 

all the VC slots to the GS traffic. Thus, the GS traffic can potentially achieve 100% of 

the total bandwidth. 

3.3 DSPIN summary 

This section intends to summarize the DSPIN architecture, and report the 

contribution of this thesis [Miro06]. Some improvements on the DSPIN architecture 

are not covered by the guaranteed service section and they are mentioned in the next 

list. The lines marked with � are a contribution of this thesis, the others have not 

been changed. 

• DSPIN is a packet-based network on chip. 

• 2D mesh topology. 

� Flit size is generic. The flit contains two control bits (BOP and EOP). The 

routing address is contained in the first flit (8 bits) as shown in Figure 

3.18). The Error and Parity bits have been removed from the flit control 

bits. They can be sent on the payload bits of the flit if necessary.  

� Deterministic routing algorithm. The request routers use X-First while the 

response routers use the Y-First routing algorithm. 

• DSPIN has best effort traffic. 

� DSPIN has guaranteed service traffic. Hard bounds for the latency and the 

throughput can be guaranteed. 

� DSPIN router has two versions, one with Best Effort (BE) and one with 

Best Effort and Guaranteed Service (BE + GS). 

• DSPIN can be used for shared memory applications. It requires one router 

for request packets and one router for response packets. 

� DSPIN can be used for message-passing implementation. Just one router 

per subsystem is needed. 

• GALS compatible architecture. 
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� All the routers use the same clock frequency, but a clock skew can exist 

between routers (mesochronous). Neighbor routers have inverted clock 

signal to simplify the mesochronous interface. 

� The subsystems can use an independent clock frequency and 

communicate asynchronously to the network. 

• DSPIN architecture is distributed in 5 modules which are placed on the 

sides of the cluster. 

� DSPIN is synthesizable with standard cells. Neither custom cells nor 

asynchronous cells are used.  

� A power reduction mechanism is implemented using clock gating. 

 

Figure 3.18 DSPIN packet format 

3.4 Experimental Results 

In this section, the DSPIN architecture is implemented on a simulation platform 

to verify the hard bounds of packet latency and the guaranteed throughput for the 

GS traffic. Moreover, a simulation platform is used to obtain the saturation threshold 

of the BE sub-network and to dimension the FIFO depth to maximize the network 

performance while preserving a small area. Finally, the DSPIN router is synthesized 

and its area and maximum frequency are analyzed. 

3.4.1 Implementation Models 

The DSPIN simulation models are part of the SoCLib [SOCLIB] project, which is 

an open platform for modeling and simulating multi-processors systems. The 

simulating environment is SystemC and the simulating levels are CABA (Cycle 

Accurate, Bit Accurate) and TLM/T (Transaction Level Modeling with Time). 

DSPIN was implemented using SystemC at CABA level and later ported to 

VHDL RTL for synthesis. Both implementation models are compatible and can be 

exchanged in a SystemC/VHDL cosimulation environment. Thus, the simulation of a 

huge system can be accelerated by replacing the VHDL model with the SystemC 

model. 
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3.4.2 Simulating 

A simulation platform was designed to evaluate the system performances. This 

simulation platform has a 10x10-cluster topology with separate request and response 

networks. The depth of the BE and GS FIFOs are 8 and 4 flits respectively. Each 

cluster contains one BE initiator, one BE target, one GS target, and one optional GS 

initiator. The average packet latency is measured as the average number of cycles for 

a round trip from an initiator to a target, and back to the same initiator. For each 

initiator, the offered load is the ratio between the number of injected flits and the 

total number of clock cycles. The BE traffic has a uniform random distribution (each 

BE initiator randomly sends packets to all BE targets). The packet length is a random 

value between 1 and 16 flits. If we plot the average latency versus the BE offered load 

(Figure 3.19), we see a saturation threshold of 25% for the BE traffic (blue line) while 

the latency of the GS communications (green and read lines) are not modified. In case 

of saturation, part of the BE offered load is not accepted by the network, but the GS 

traffic is clearly not impacted by the BE traffic. The latency and throughput of the GS 

traffic have been analyzed. For example, the latency of the network for the roundtrip 

between cluster (8,9) and cluster (5,3) is deterministic and equal to 62 cycles.  

 

Figure 3.19 BE and GS latency in fucntion BE offered load 

The throughput of each GS channel is guaranteed up to 50%, due to the round-

robin allocation of the TDM slots. Figure 3.20 shows the GS latency in function of 

the GS offered load for a saturated and non-saturated BE sub-network. The 

throughput of the GS traffic is guaranteed up to 50%, even when the BE sub-

network is saturated. On a 500MHz implementation, each GS channel has a 

guaranteed bandwidth of 8 Gbps. 
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Figure 3.20 GS latency in function of GS offered load 

The performances of the BE packets are determined principally by four factors: 

the FIFO depth, the packet length, the number of routers between the sender and the 

receiver, and the network load. The impacts of these parameters are analyzed in the 

next section. 

3.4.3 FIFO Dimensioning 

The FIFO depth of the DSPIN router modifies the performance of the network. 

The BE throughput is highly impacted by the FIFO depth while the GS throughput is 

less impacted due inexistent routing congestion. Assuming that the end-to-end GS 

path is reserved to a unique GS traffic, a FIFO able to deliver at least 50% throughput 

is a good candidate for the GS FIFOs because the reserved bandwidth of GS channel 

is 50%. The bi-synchronous FIFO as described in Chapter 4, delivers 50% throughput 

with 4 words depth on the mesochronous mode and 5 words depth on the 

asynchronous mode. Therefore, a GS FIFO depth of 4 words is selected. 

The optimal depth of the BE FIFOs depends on the application. A simulation of 

the network traffic can help to define an optimum tradeoff between network 

performance and router area. We simulated a platform of 5x5 clusters to analyze the 

influence of the packet length and the network charge in function of the BE FIFO 

depth. A traffic generator is placed on each cluster. It is possible to configure the 

offered load and packet size while the packet destination is randomly selected. 

Figure 3.21 shows the saturation threshold in function of the BE FIFO depth for 

different packet lengths. For BE FIFO depth between 4 and 10 words, the saturation 

threshold is correlated to the BE FIFO depth.  
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Figure 3.21 Saturation threshold in function of BE FIFO depth 

Figure 3.22 shows the saturation threshold in function of the BE FIFO depth for 

deep FIFOs. The correlation of the BE FIFO depth with the saturation threshold is less 

noticeable for FIFO depths higher than 10 words. Over that depth, the packet length 

becomes the limiting factor. Thus, the congestion becomes more important when the 

packet length increased. Furthermore, it is possible to obtain a saturation threshold 

near 50% when the packet length is no longer than 10 flits and the FIFO depth is at 

least 32 words. 
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Figure 3.22 Saturation threshold in function of BE FIFO depth (up to 32 words) 

Figure 3.23 shows the saturation threshold in function of the packet length. If the 

BE FIFO depth is higher than 5 words, a packet throughput of around 30% can be 
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obtained even for long packets (256 flits). FIFO depth of less than 6 words can be 

used only with small packet length, otherwise the saturation threshold decreases 

rapidly. This comes from the fact that bi-synchronous FIFO depth of 4-5 words suffer 

from flow-control latency penalties (see Chapter 4 for further details) 
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Figure 3.23 Saturation threshold in function of the packet length 

Figure 3.24 shows the saturation threshold in function of the packet length 

between 1 and 16 words. Under these circumstances, the saturation threshold is not 

influenced by the packet length. The FIFO depth is the limiting factor of the 

saturation threshold. 
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Figure 3.24 Saturation threshold in function of the packet length 
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The saturation threshold expresses the maximum accepted load of the network. 

However, the offered load on a real application is no higher than 20%. Therefore, the 

FIFO dimensioning can be analyzed in terms of packet latency at 20% offered load 

rather than on the saturation threshold. Figure 3.25 shows the mean packet latency 

(round trip) in function of the BE FIFO depth at 20% offered load. Under these 

conditions, a 7 words depth for the BE FIFO and a packet length shorter than 10 

words is a good tradeoff between FIFO depth, packet latency, and router area. Hence, 

the mean latency for a 5x5-cluster network is 38 clock cycles. Higher BE FIFO depths 

do not reduce the packet latency but increases the router area. However, higher 

packet length increases the packet latency due to higher router congestion. 
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Figure 3.25 Mean packet latency in function of the FIFO depth at 20% offered load 

3.4.4 Synthesis and Performance Estimation 

The area evaluation of the DSPIN network was done for a 90 nm CMOS process. 

As all DSPIN components are synthesizable, we have computed the silicon area for 

the FIFOs and the routers using the STMicroelectronics GPLVT CMOS 90nm 

standard cell library. Moreover, the clock gating technique was used for power 

reduction. Table 3.2 shows the Synopsys area after synthesis of one router and the 

associated FIFOs: 5 BE FIFOs and 5 GS FIFOs for a clock frequency of 500 MHz. The 

depth of the BE and GS FIFOs are 7 and 4 flits respectively, and the flit size is 34 bits. 

The long wires of the router were constrained with 200ps of propagating time to 

simulate its physical implementation. 75% of the total DSPIN area belongs to the 

FIFOs; hence, the importance to optimize its performances. 
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Table 3.2 DSPIN area estimation (500 MHz) 

Bloc Area 

5 BE FIFOs of 7x34 bits 0.0270 mm² 

5 GS FIFOs of 4x34 bits 0.0156 mm² 

Router without FIFOs 0.0147 mm² 

Total router area 0.0573 mm² 

 

As a mater of comparison between a DSPIN router with GS and a DSPIN router 

without GS, the area of a DSPIN router without GS is 0.040 mm². Therefore, the 

overhead of the GS in the DSPIN architecture is +43%, while now DSPIN has doubled 

the number of channels. 

The router was synthesized for several clock frequencies to obtain a tradeoff 

between performance and area cost. Table 3.3 shows the DSPIN router area in 

function of the synthesized clock frequency. It is possible to synthesize the router to 

833 MHz; however, its area increases by 37% over the lowest area (at 500 MHz). 

Table 3.3 DSPIN router area in function of the clock frequency 

Operating frequency DSPIN area 

500 MHz 0.057 mm² 

666 MHz 0.067 mm² 

833 MHz 0.078 mm² 

3.5 Conclusion 

The main objective of this chapter was the definition and implementation of a 

guaranteed service mechanism in the DSPIN architecture. Two different techniques 

have been studied, a statistical approach and the virtual channel. The statistical 

approach improved the latency of high priority packet by modifying the allocation 

priority of the router. However, the performances of this algorithm were not 

satisfying because the latency of the priority packet could not be hard bounded, as 

the latency of the high priority packets was highly influenced by the low priority 

network traffic. These results pushed us to implement the guaranteed service traffic 

using the virtual channel approach. This technique offers a good tradeoff because the 

most costly network resources are shared between the virtual channels. 

We demonstrated that the virtual channel approach (generally used to multiplex 

several logical channels on the physical link between routers), can be applied to the 
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router itself. Two traffic classes are used, guaranteed service and best effort. The 

latency and the throughput of the GS traffic can be strictly bounded. 

The DSPIN NoC is suited to the GALS approach. The DSPIN routers use a 

mesochronous clocking approach to distribute the same clock frequency to all the 

routers while each cluster can have its own clock frequency. This mesochronous 

clocking distribution allows the network to be predictable and reduces the power 

consumption (compared to a fully synchronous clock distribution). 

DSPIN architecture is synthesizable with standard cells only, without either 

asynchronous or custom cells. The router itself is distributed in five modules placed 

on the borders of the cluster. The long wires of the DSPIN router are the intra-cluster 

wires while the wires interconnecting two routers are short. Thus, the timing closure 

is simplified, since the long wires are confined inside the isochronous island, the 

cluster. 

A simulation platform demonstrated the efficiency of the guaranteed service 

communications. It has also been used to analyze the saturation threshold of the 

network. Moreover, the influence of the FIFO depth and the packet length has been 

characterized in order to maximize the network performances and reduce the 

latency. We showed that a BE FIFO depths of 7 words and packet length not longer 

that 10 words is a good tradeoff between packet latency, packet payload, and 

implementation cost. 

Finally, the DSPIN router architecture has been synthesized on CMOS 90nm 

process. The silicon area is 0.057mm² at 500MHz clock frequency with 7 and 4 words 

per BE and GS FIFO respectively. The area overhead of the guaranteed service is 43%, 

while now DSPIN has doubled the number of channels. 
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Chapter 4 

4 Synchronization 

This chapter describes the bi-synchronous FIFO, which is capable to interface 

synchronous systems working with different clock signals (frequency and/or phase). 

Its interfaces are synchronous and its architecture is scalable and synthesizable in 

synchronous standard cells. The metastability situations and its latency are analyzed. 

Its throughput, maximum frequency, and area are evaluated in function of the FIFO 

depth.  

The bi-synchronous FIFO uses a new encoding algorithm to simplify the 

synchronization of the write and read pointer. This algorithm is first detailed to 

introduce later the bi-synchronous FIFO architecture. The chapter summarizes with a 

comparison of this work with state-of-the-art architectures. 

4.1 Bubble Encoding 

In this section, a novel-encoding algorithm based on a token ring is demonstrated 

to be useful on the synchronization of pointers between two independent clock 

domains.  

4.1.1 Token Ring 

A token ring is a succession of nodes interconnected in a circular manner that 

contain tokens. It can be described with N registers (with enable signal) 

interconnected as a cyclic shift-register. Figure 4.1 shows an example of a token ring 

with 5 registers. 
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Figure 4.1 Token ring 

If the enable signal is true, the content of the register is shifted (register i is shifted 

to register i+1, an register N-1 to register 0) at the rising edge of the clock, otherwise 

the register maintains the data. A token is represented by the logic state 1 of the 

register.  

A token ring with one token can be seen as a state-machine with N states. The 

position of the token defines the state of the state-machine. It is also possible to define 

a state-machine with N states when the token ring contains two consecutives tokens, 

the state of the state-machine can be defined, for example, as the position of the first 

one.  

4.1.2 Synchronizing the Token 

Since the position of the tokens defines the state of the state-machine, it can be 

synchronized to interface two clock domains. To synchronize the state of the state-

machine, a parallel synchronizer (two registers per bit) can be used, as shown in 

Figure 4.2. 
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Figure 4.2 Synchronization of a token ring 

However, as described in Chapter 2, the parallel synchronizer does not guarantee 

the correctness of the result in the case of a single token. The Figure 4.3 shows an 

example of synchronization. Solution A, B, C and D are all the possible solutions 
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when the metastability changes the register content. Solution A and B are correct 

synchronized since the token is well determined. Solution C is exploitable using 

some logic but Solution D is useless due to absence of information. In this later case, 

the position cannot be correctly extracted and the consumer side should wait a full 

clock cycle to attempt to obtain a useful data. 
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N

E
N

E
N

 

Figure 4.3 Possible solution in the synchronization of a token ring containing one token 

To solve this issue, we propose to use two consecutive tokens (bubble encoding) 

in the token ring. As the metastability affects the changing registers, the use of two 

consecutive tokens prevents some registers from changing. Assuming that registers i 

and i+1 have the tokens, if the token ring shifts, register i+2 gets a token, register i 

loses its token, and register i+1 does not change (it shifts its token and gets a token). 

In terms of logic value, register i and i+2 change its logic state but register i+1 remains 

unchanged. The Figure 4.4 shows an example of synchronization. For example, we 

can define the position of the detected token by the position of the first logic 1 after a 

logic 0 (starting from the left). In this case, all solutions A, B, C, and D are correct 

because the token can be well defined; it is always possible to detect a transition 

between 0 and 1. This encoding algorithm does not avoid the metastability on the 

synchronizer. It just guarantees that the position of the token will be detected under 

any possible circumstance. 

The token ring and the bubble encoding presented in this section are used on the 

definition of the state-machines of the bi-synchronous FIFO and will be detailed in 

next section. 



 

100 

E
N

E
N

E
N

E
N

E
N

 

Figure 4.4 Possible solution in the synchronization of a token ring  
containing two successive tokens 

4.2 Bi-Synchronous FIFO 

This section presents the architecture of the bi-synchronous FIFO 

[Miro07b][Miro08]. The goal of this FIFO is to interface two synchronous systems 

having different clock signals (frequency and/or phase). The challenge of this 

architecture is to hide all synchronization issues while respecting the FIFO protocol 

on each interface. Furthermore, this architecture must be scalable and synthesizable 

in a synchronous standard-flow without using custom cells. 
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Figure 4.5 Bi-Synchronous FIFO architecture 

As shown in  

Figure 4.5, five modules compose the bi-synchronous FIFO architecture: Write 

pointer, Read pointer, Data buffer, Full detector, and Empty detector. The Write and 

Read pointers indicate the position to be written and to be read in the Data buffer, the 
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Data buffer contains the buffered data of the FIFO, and the Full and Empty detectors 

signal the fullness and the emptiness of the FIFO. 

To better understand the bi-synchronous FIFO, its interfaces and protocol are 

detailed. 

4.2.1 Bi-Synchronous FIFO Interface and Protocol 

The bi-synchronous FIFO has a sender and a receiver interface. As shown in 

Table 4.1, each interface has its own clock signal, Clk_write for the sender and 

Clk_read for the receiver. 

The FIFO protocol is synchronous; all input and output signals in the sender and 

receiver interfaces are synchronous to their clock signal Clk_write and Clk_read, 

respectively. 

Table 4.1 Sender and receiver interface signals 

 Signal Description 

Data_write Data to be written into the FIFO 

Write Input signal requesting a write into the FIFO 

Full Output signal indicating the fullness of the FIFO S
en

de
r 

in
te

rf
ac

e 

Clk_write Sender clock signal 

Data_read Output data from the FIFO 

Read Input signal requesting a read in the FIFO 

Empty Output signal indicating the emptiness of the FIFO 

R
ec

ei
ve

r 
in

te
rf

ac
e 

Clk_read Receiver clock signal 

 

The queuing and dequeuing of data elements in the FIFO follows a fully 

synchronous protocol. The Data_write is queued into the FIFO, if and only if, the 

Write signal is true and the Full signal is false at the rising edge of Clk_write. 

Symmetrically, data is dequeued to Data_read, if and only if, the Read signal is true 

and the Empty signal is false at the rising edge of Clk_read. 

The clear partitioning of the sender and receiver interfaces into synchronous and 

independent interfaces simplifies the timing constrains analysis for all the modules 

connected to the FIFO ports. 

4.2.2 Write and Read Pointers 

The Write and Read pointers are implemented using the described token rings 

with the bubble-encoding algorithm. The position of the tokens determines the 

position of the pointer. The position of the Write_pointer is defined by the position of 

the register containing the first token (starting from the left) as shown in Figure 4.6a. 
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Likewise, the position of the Read_pointer is defined by the position of the register 

after the second token (starting from the left). The Full and Empty detectors exploit 

this particular definition of the pointers and will be explained hereinafter. 

The Write_pointer shifts right when the FIFO is not full and the Write signal is 

true. Likewise, the Read_pointer shifts right when the FIFO is not empty and the Read 

signal is true. 

As the write and read interfaces belong to different clock domains, the token 

rings are clocked by their clock signal, Clk_write and Clk_read respectively. 
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Figure 4.6 Write and Read pointer position definition and Full and Empty  
conditions in terms of tokens position 

4.2.3 Data Buffer 

The Data buffer module is the storage unit of the FIFO. Its interfaces are: 

Data_write, Data_read, Write_pointer, Read_pointer, and Clk_write. It is composed of a 

collection of data-registers, AND gates, and tri-state buffers as shown in Figure 4.7. 
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Figure 4.7 Write pointer, Read pointer, and Data buffer detail 
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The input data, Data_write, is stored into the data-register pointed by the 

Write_pointer at the rising edge of Clk_write. AND gates recode the Write_pointer into 

a one-hot encoding which controls the enable signals of the data-registers. Likewise, 

the Read_pointer is recoded into one-hot encoding which controls the tri-state buffer 

on each data-register. Finally, the Data_read signal collects the outputs of the tri-state 

buffers. It is also possible to replace the tri-state buffers with multiplexers to simplify 

the Design for Test (DfT) of the FIFO. 

The width and number of data-registers determine the width and the depth of the 

FIFO. The depth also determines the range of the Write and Read pointers. 

4.2.4 Full Detector 

The Full detector computes the Full signal using the Write_pointer and 

Read_pointer contents. No status register is used as in the J. Jex et al. [Jex97] or 

Chelcea-Nowick [Chelcea04] solutions. The Full detector requires N two-input AND 

gates, one N-input OR gate, and one synchronizer, where N is the FIFO depth (Figure 

4.8).  
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Figure 4.8 Full detector detail 

The detector computes the logic AND operation between the Write and Read 

pointer bits and then collects it with an OR gate, obtaining logic value 1 if the FIFO is 

Full or quasi-Full (cases c, d, e in Figure 4.6). If 1, ==∃ RiWii  then the output of the 

OR gate is asserted, meaning that the FIFO is going to be full. The obtained value is 

finally synchronized to the Clk_write clock domain into Full_s signal.  

Since the synchronization has a latency of one clock cycle and the synchronization 

of the OR output signal can potentially be metastable, the detector has to anticipate 

the detection of the Full condition. For this reason, the output of the OR gate detects 

the Full and the two quasi-Full conditions.  
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The Full detector in Figure 4.8 could be optimized since the synchronization 

latency inhibits, in some cases, the FIFO from being completely filled. For example, if 

the FIFO is in the situation of Figure 4.6c, and the sender does not write any other 

data, the Full_s will be asserted even if the FIFO is not filled completely. 

An improved Full detector implementation would be more complex (as the 

Empty detector), and would therefore require greater chip area. However, a non-

optimal Full detector does not penalize the throughput of the FIFO as much as a non-

optimal Empty detector. For example, assuming an optimal Empty detector and a 

non-optimal Full detector, the Full condition occurs when the receiver is not able to 

consume all the data. In this case, even with a non-optimal Full detector, the receiver 

limits the throughput of the FIFO. Therefore, design effort and chip area should be 

devoted to improving the performance of the Empty detector. 

Even when using a non-optimized Full detector, a low cost Full detector 

optimization can improve its performance. Figure 4.9 shows an additional module 

connected to the Full_s signal, which improves the Full detector. The module's 

operation is as follows: if the writer was not writing before asserting the Full_s signal, 

the Full signal is delayed one clock cycle, giving a second chance to the writer to fill 

completely the FIFO. 

Clk_write

Write

Full_s
Full

 

Figure 4.9 Full detector optimizer 

4.2.5 Empty Detector 

The implementation of the Empty detector is similar to the Full detector because 

both use the Write and Read pointers. As seen in the previous paragraph, the Full 

detector has to anticipate the detection of the Full condition to avoid FIFO overflow. 

As the Empty detector performance is correlated to the FIFO throughput, its 

detection has to be optimized, and no anticipation detector should be used.  

Figure 4.10 shows the Empty detector for a five word FIFO. Firstly, the 

Write_pointer is synchronized with the read clock into the Synchronized_Write_pointer 

(SW) using a parallel synchronizer. Next, the Read_pointer is recoded into the 
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AND_Read_pointer (AR) using two-input AND gates, reused from the Data_buffer 

module. The output of AR is a one-hot encoded version of the Read_pointer. Finally, 

the Empty condition is detected comparing the SW and AR values using three-input 

AND gates. As the metastability can perturb some bits of the SW (as seen on Figure 

4.4), each pair of consecutive bits is compared to find a transition between 0 and 1. 

Their analysis is as follows, if the values of SWi = 0 and SWi+1 = 1 that means that the 

SW pointer is on position i+1. Furthermore, when ARi = 1 that means that the AR 

pointer is on position i+1 (Figure 4.10). 
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Figure 4.10 Empty detector detail 

The FIFO is considered empty (see Figure 4.6a) when the Write_pointer points the 

same position of the Read_pointer. This can be detected when SWi=0, SWi+1=1 and 

ARi=1 for any i. These comparisons are computed by means of the three-input AND 

gates. Finally, a N-input OR gate collects all the values of the three-input AND gates 

to generate the Empty signal. This N-input OR gate and the one on the Full detector 

can be decomposed with log2N levels of two-input OR gates. 

The latency introduced by the synchronization of the Write_pointer cannot corrupt 

the FIFO, because a change in this pointer cannot underflow/overflow the FIFO, it 

just introduces latency into the detector. 

The advantage of the bubble-encoding algorithm in this detector relies on the 

guaranteed detection of the Write_pointer position. 
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4.2.6 Mesochronous Adaptation 

The FIFO architecture was originally designed to interface two fully independent 

clock domains. However, it can be adapted to interface mesochronous clock domains 

where the sender and the receiver have the same clock frequency but different phase. 

The difference of phase can be constant or slowly varying and this predictability can 

be used to avoid the metastability situations [Mu01] [Mesga04].  
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Figure 4.11 Mesochronous adaptation 

The proposed adaptation lowers the FIFO latency by reducing the number of 

registers on the synchronizer module. The two rows of registers on the synchronizer 

can be reduced to a single row of registers as shown in Figure 4.11b. The remaining 

row of registers is clocked using a delayed version of the read clock. This delay must 

be chosen to exchange the data without metastable situations (Figure 4.11a). The 

delay can be a programmable delay, or any other metastability-free solution, as for 

example the Chakraborty-Greenstreet [Chakra03] architecture allowing the FIFO to 

work also on plesiochronous (small difference of frequency) clocks. Likewise, if the 

write and read clock are out of phase by 180º (clock-inverter), no programmable 

delay is needed because, by-construction, the communication is free of metastability. 

Figure 4.12 shows this construction where a clock inverter is added and the clock 

signals are delayed by an unknown delay. Under these circumstances and assuming 

that the registers are very close (zero wire delay), the communication is free of 

metastability, if only if, the setup_time, hold_time, and access_time are respected. Thus, 

the interface is free of metastability also if the difference of phase varies under the 

metastability free window. 
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Figure 4.12 Metastability free window with inverted clock signals 

This mesochronous adaptation of the bi-synchronous FIFO is simple and allows 

switching between mesochronous and asynchronous modes. This adaptation is 

interesting in the design of a multi-million gate SoC in deep sub-micron technology, 

where the delay of long wires can drastically vary with temperature, voltage, and 

process. In such a system, the mesochronous clock distribution could fluctuate to an 

undesirable metastable situation, making the FIFO data useless. By switching the bi-

synchronous FIFO into the asynchronous mode, robustness against metastability is 

improved, preventing the SoC from requiring redesign. 

4.3 Simulation and Analysis 

Both synthesizable VHDL models and cycle accurate SystemC models of the bi-

synchronous FIFO have been designed. We have simulated the bi-synchronous FIFO 

to characterize its latency, throughput, frequency, and area. 

4.3.1 Latency Analysis 

As the sender and the receiver have different clock signals, the latency of the 

FIFO depends on the relation between these two signals. 

The latency of the FIFO can be decomposed in two parts: the state machine 

latency and the synchronization latency. As the state-machines are designed using 

Moore automates, its latency is one clock cycle. Two registers compose the 

synchronizers and its latency is ΔT plus one clock cycle. Where ΔT is the difference, 

in time, between the rising edges of sender and receiver clock. As this difference is 

between zero and one Clk_read clock cycle, the latency of the bi-synchronous FIFO is 

between two and three Clk_read clock cycles. Figure 4.13 shows the detail of the 

latency. Sync_1 and Sync_2 are the synchronization registers. The latency of the bi-

synchronous FIFO is equivalent to the latency of the J. Jex et al. [Jex97] solution. This 
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latency can be lower, but the robustness to the metastability would be penalized 

[Dike99] [Ginosar03]. 
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Figure 4.13 Latency analysis 

When the bi-synchronous FIFO is adapted to a mesochronous clock distribution, 

the latency of the FIFO is reduced, because a single register replaces the two-register 

synchronizer. In addition, the ΔT is constant as the difference of phase is constant. In 

that case, the latency of the FIFO is one clock cycle plus ΔT, as shown in Figure 4.14. 
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Figure 4.14 Latency analysis with mesochronous adaptation 

4.3.2 Throughput Analysis 

The throughput of the bi-synchronous FIFO was analyzed as a function of the 

FIFO depth. As the synchronizers add latency, the flow control is impacted by the 

FIFO depth. In case of deep FIFO, the synchronizers do not decrease the FIFO 

throughput since the buffered data compensate the latency of the flow control. Table 

4.2 shows the minimum FIFO depth for 50% and 100% throughput for the 

asynchronous and mesochronous. For FIFO depth of 6 or above, the synchronization 
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latency has no influence on the flow control and the FIFO is able to deliver one word 

per cycle (100% throughput) even on asynchronous clock relation. For the 

asynchronous analysis, the write and read clock signals frequencies are similar, 

otherwise it is not possible to obtain 100% throughput. 

Table 4.2 Minimum FIFO depth in function of the clock relation and required throughput 

 Minimum depth for 
50 % throughput 

Minimum depth for 
100 % throughput 

Asynchronous 5 6 

Mesochronous 4 5 

 

4.3.3 Area and Frequency Estimation 

The area and frequency estimation of the FIFO was computed once synthesized 

on CMOS 90nm GPLVT STMicroelectronics standard cells. Different FIFO depths are 

used to illustrate the scalability of the architecture and its performances in terms of 

maximum frequency. To minimize the power consumption, a clock gating technique 

is used. Two architectures were synthesized, one with the tri-state buffers and 

another with multiplexers.  

Table 4.3 shows the area and frequency estimation of a 32-bit bi-synchronous 

FIFO in function of the FIFO depth. Note that the maximum frequency of the write 

clock is greater than the one of the read clock. The limitation of the read clock is due 

to the Empty detector. 

The architecture with tri-state buffers has greater area than the one with 

multiplexers, while the maximum clock frequency of the read part with tri-states is 

greater than the one with multiplexers, since the multiplexers are decoded in a log2N 

manner rather than in parallel. 

Table 4.3 Area and frequency in function of FIFO depth 

Type 
FIFO 

Depth 
Area 

(µm²) 

Max. Write 
Freq. (MHz) 

Max. Read Freq. 
(MHz) 

4 3304 2000 1110 

8 6581 2000 1000 

M
u

x 

16 13384 2000 769 

4 4082 2000 1428 

8 8032 2000 1250 

T
ri

-s
ta

te
 

16 16101 2000 1110 
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4.3.4 Comparison with other Existing Designs 

This architecture has been compared with similar architectures to analyze its area 

and latency. As its architecture is synthesizable with standard cells, the comparison 

with the others is performed with synthesizable architectures. 

The selected architectures are a register-based Gray FIFO and the J. Jex et al. 

[Jex97] FIFO. The register-based Gray FIFO uses the Gray-code to implement the Full 

and Empty detectors. The write and read pointers are coded on natural binary code. 

The pointers are converted to Gray-code, synchronized, reconverted to natural binary 

code, and finally compared to compute the Full and Empty signals. On the other 

hand, the J. Jex et al. FIFO uses one-hot coding algorithm for the write and read 

pointer. A status register computes the filled cells of the FIFO. The status register bits 

are set by the write side and reset by the read side. A parallel synchronizer and a 

combinational logic compute the Empty signal. Likewise, a combinational logic and a 

two-flop synchronizer compute the Full signal. Appendix A contains detailed 

information of both architectures. 

The three architectures where modeled using VHDL RTL. Optimized 

implementations of the FIFOs were performed for 4, 8 and 16 words depth. The word 

size was fixed to 32 bits. All the architectures were synthesized using the same CMOS 

90nm GPLVT STMicroelectronics standard cells library and using the same timing 

constraints file. A clock-gating technique was applied but no tri-state buffers were 

used. Table 4.4 shows the estimated area and the area overhead percentage of these 

architectures compared to the proposed solution.  

Table 4.4 Area and overhead comparison between other existing designs 

FIFO 

Depth 

This 
Design 

µµµµm2 

Register-based 

Gray FIFO 

µµµµm2 (%) 

J. Jex et al. [Jex97] 

µµµµm2 (%) 

4 3304 5113 (+54%) 3364 (+1.8%) 

8 6581 9702 (+47%) 6858 (+4.2%) 

16 13384 20364 (+52%) 14362 (+7.3%) 

 

The register-based Gray FIFO has a 50% bigger area than the proposed 

architecture. Even if the number of synchronizers is lower than our architecture, the 

Gray code algorithm adds complexity to the Full and Empty detectors.  

The J. Jex et al. [Jex97] architecture has similar complexity as ours, but its area 

increases more than ours when the FIFO depth increases. Moreover, its Full detector 
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is not optimized and suffers the same problem of the non-optimized Full detector 

presented in Figure 4.8. Furthermore, the J. Jex et al. FIFO requires a FIFO depth of at 

least 14 words to archive 100% throughput while ours requires just 6. 

In terms of FIFO latency, all three have the same latency, 2-3 clock cycles, since all 

of them use Moore state-machines and two flip-flops synchronizers. 

4.4 Conclusion 

A new bi-synchronous FIFO architecture has been implemented and analyzed. It 

is well suited to interface different systems working with independent frequency 

and/or phase clock signals. It uses a novel encoding algorithm combined with an 

astute definition of the FIFO pointers that avoids the utilization of status registers. 

The write and read pointers are directly combined to obtain the Full and Empty 

signals.  

Both read and write interfaces are fully synchronous. Moreover, its architecture is 

synthesized using a synchronous standard cell design flow. None of its modules 

requires custom cells. 

A simple mesochronous adaptation is proposed which reduces the latency of the 

FIFO. Its latency is 2-3 clock cycles in asynchronous mode, and 1-2 clock cycles in 

mesochronous mode. 

The FIFO throughput depends on the FIFO depth. Throughput is 100% when the 

FIFO depth is six or above. 

Using CMOS 90nm GPLVT STMicroelectronics standard cells, we have 

synthesized and analyzed the FIFO area and maximum frequency for different FIFO 

depths. Two architectures are analyzed, one with tri-state buffers and another with 

multiplexers. A 32-bit bi-synchronous FIFO with eight words depth requires 6581µm² 

and its maximum clock frequency is 1GHz. 

The comparison with previous synthesizable asynchronous FIFOs shows a better 

integration density for the same data latency. 

The bubble encoding and the architecture of bi-synchronous FIFO have been 

patented by STMicroelectronics [Miro07b][Miro08]. 
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Chapter 5 

5 DSPIN Physical Implementation 

In this chapter, we present a physical implementation of the DSPIN architecture 

on the stream-oriented FAUST platform developed by CEA-Léti. The details of this 

platform can be found in Chapter 2. The network-on-chip of FAUST (ANOC) is 

replaced by the DSPIN NoC. The main goal of this experiment is to prove that the 

DSPIN architecture can be easily integrated in an industrial design flow using 

commercial tools for physical synthesis. The details of this migration are in 

Appendix B. 

Section 5.1 describes the Front-End implementation of the DSPIN network-on-

chip in the Faust platform. The Back-End implementation including detailed 

floorplanning and clock distribution is described in Section 5.2. In Section 5.3, the 

implementation is validated with back-annotation simulations and the DSPIN 

performances are extracted. Finally, in Section 5.4, a comparison between ANOC and 

DSPIN designs in a 130nm technology is carried out in terms of area, throughput, 

packet latency, power consumption, and programmability. 

5.1 Front-End Implementation 

DSPIN architecture have been designed to be synthesizable on standard cells and 

easily implemented on a synchronous digital flow. Moreover, its architecture is 

optimized in terms of critical path and power consumption. 

5.1.1 DSPIN Critical Paths Analysis 

The critical path of DSPIN is designed to maximize the clock frequency without 

having to pipeline the long wires. The flits of the packets are only stored on the input 
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FIFOs; there is no register between two FIFOs. Moreover, there are no register-to-

register paths doing a round trip over the long wires. Thereby, the influence of the 

long wires delay is minimized to just one-way path. Figure 5.1 shows the wire paths 

between the west input FIFOs to the FIFOs of the east neighbor router. 

 

Figure 5.1 Paths between west input FIFOs to FIFOs on the east neighbor router 

The analysis of the critical path after synthesis shows that the critical path starts 

on the detection of the Empty condition on the west FIFO, crosses the long wires 

through the wire Write arriving on the East module, passes through a multiplexer, 

arrives to one of the FIFOs, and controls the Write-pointer (WP) of this FIFO.  

5.1.2 GALS Implementation 

The DSPIN router-to-router links are mesochronous as a GALS implementation is 

used. Towards that end, the clock signals of neighbor routers have to be inverted for 

the correct operation of the mesochronous FIFO. With the clock signal distribution 

showed on Figure 5.2, neighbor routers have inverted clock phase. Therefore, the 

routers placed on the black boxes of Figure 5.2 have a clock inverter while those 

placed on white ones have a clock buffer. These cells have to be preserved during the 

synthesis of the circuit; otherwise, the tool eliminates them. Hence, a 

set_dont_touch_network statement is used on the clock signals. 
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Figure 5.2 DSPIN clock phase for the FAUST implementation 

For the asynchronous interfaces like router-to-subsystem, the bi-synchronous 

FIFO interfaces, by construction, the asynchronous interfaces. A set_false_path 

statement has to be declared between the two clocks domains. 

5.1.3 Clock Gating 

A first physical implementation of DSPIN without clock gating helped to validate 

the back-end flow. This implementation was successfully accomplished but the 

power consumption was not satisfying. Without clock gating, 86% of the DSPIN 

router power is consumed by the registers. Moreover, the clock tree of a DSPIN 

router consumes as much power as the router itself. Consequently, the clock-gating 

technique was used on a second physical implementation to overcome this limitation. 

With the clock gating, it is possible to save power on the router itself and on its 

clock trees. Moreover, the clock gating helps to reduce the area of the bi-synchronous 

FIFOs. The area of a 34-bit data register with a write-enable input is higher than a 34-

bit data register controlled by a clock-gating cell. Consequently, the area of the 

DSPIN router is reduced by 10-15% when the clock gating is used.  

The introduction of the clock gating technique in the DSPIN architecture has been 

modulated to maximize the power saved without reducing its performances. A naïve 

implementation of the clock gating in the DSPIN would reduce the maximum clock 

frequency because the enable signal of the clock-gating would pass through the long 

wires and would elongate the critical path. In order to avoid an elongated critical 

path, two methods are used. Firstly, not all the registers are gated. Secondly, the 

enable signal of the clock-gating cells is generated locally, thus it does not cross the 

long wires. The detail of the clock-gating enable signal is detailed hereinafter. 

A DSPIN router contains 2630 register and 90% of them are FIFO data registers. 

Therefore, we have chosen to clock-gate the FIFO data registers and not all the 

registers of the system, hence, the power saving is maximized without modifying to 

much the router architecture.  
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In order to generate the clock-gate enable signal near the FIFO registers, the FIFO 

architecture is modulated and a new Wake_up signal is generated. The design of the 

bi-synchronous FIFO brings naturally the introduction of the clock gating on the data 

registers because all the registers are controlled by write-enable signals. However, 

some modifications have been introduced not to elongate the critical paths when it is 

used on the DSPIN router. The FIFO Write signal controls the validity of the input 

data and this signal is on the DSPIN critical path. Thus, a special signal called 

Wake_up is created to control the write-enable signal of the data registers without any 

relationship with the FIFO Write signal. Therefore, a FIFO data register is clocked, if 

only if, the write_pointer is pointing it and the Wake_up signal is asserted. The FIFO 

Write signal only modifies the write_pointer, it does not affect the clock-gating cell. 

Hence, the DSPIN critical path is not elongated and all the data registers are clock-

gated. 

In order to avoid crossing the DSPIN long wires to control the Wake_up signal, 

this signal is generated locally. The Wake_up signal is generated on the BE and GS 

state-machines, which are on the neighbor router module (Figure 5.3). The Wake_up 

signal is asserted when the output port, of the neighbor router, is allocated to a 

virtual channel. Moreover, this signal is generated near the FIFO, thus the wire 

delays can be neglected, and it does not affect the critical path. The Wake_up signal is 

asserted as long as the output port is allocated to a virtual channel, even when no flit 

is been transferred.  

 

Figure 5.3 Wake_up signal definition 
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5.1.4 Reset Signal 

As the system follows the GALS paradigm, all the long distance signals must be 

considered as asynchronous. The Reset signal is distributed along the entire circuit 

and properly buffered to guarantee a maximum transition time. However, this signal 

has to be resynchronized to guarantee a clear state after reset. Therefore, each DSPIN 

router has a reset synchronizer as the one showed in Figure 1.19. 

5.1.5 Functional Validation 

The application selected to validate the architecture is a SISO-MC-CDMA data-

streaming application called Matrice [Berens05]. It consists in transmitting and 

receiving frames using OFDM and CDMA techniques, with a data rates up to 100 

Mbits/s. We focused on the Matrice receiver (RX) partition, which requires 10 IP-

blocks from the complete FAUST platform. For this application, the NoC interconnect 

support an aggregated throughput up to 10.6 Gbits/s to maintain the real-time 

constraints imposed by the OFDM frame rate. An OFDM frame must be processed in 

less than 650µs. A detailed description of the frame composition and decoding 

method can be found in [Berens05].  

 

Figure 5.4 FAUST simulation 

Once the DSPIN architecture is adapted for the FAUST platform (see Appendix 

B), a global VHDL RTL simulation is performed to verify the correctness of the 

architecture. This simulation is performed using real OFDM data values. Thus, the 
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correct demodulation of successive OFDM frames is completed and used to 

dimension the FIFO depth of the DSPIN routers (see Appendix B). Figure 5.4 shows 

the blocks RAM1, SYNC and ROTOR while demodulating two OFDM frames. The 

SYNC module detects the beginning of an OFDM frame and sends some packets to 

synchronize the OFDM demodulation module. 

5.1.6 Synthesizing FAUST 

Complex SoCs, as the FAUST circuit, are designed to be partitioned and 

synthesized as independent modules. Each module can be synthesized separately, 

and then finally assembled without running a RTL synthesis on the top level. The 

synthesis of the DSPIN routers follows the same methodology. Each DSPIN routers is 

synthesized separately as the router function depends on the router coordinates 

(Y0,X0). 

5.1.6.1 Synthesizing the DSPIN routers 
The VHDL RTL code of the DSPIN router is generic. The FIFO depths, the (Y0,X0) 

coordinates, and flit size can be modified by the template parameters. On the FAUST 

chip, all the DSPIN routers use the same FIFO depth and same flit size, just the (Y,X) 

position is modified.  

The synthesis tool requires a timing-constrains file to properly optimize the 

design. As the routers is synthesized as an independent module, the input and 

output pins of the DSPIN router are properly characterized in terms of timing slack 

using the set_input_delay and set_output_delay statements. Moreover, the long wires 

delays are also considered by setting a propagation delay of 300ps over these wires. 

Towards that end, the set_max_delay statement is used.  

CMOS 130nm technology with low-power cell libraries, low Vt transistors are 

used to synthesize the DSPIN routers. Nonetheless, the synthesis is successful up to 

333MHz, which is enough for the FAUST application. The router footprint after 

synthesis is 0.150mm² and 0.134mm² for the non-clock-gating and the clock-gating 

implementation. 

5.1.6.2 Synthesizing the top circuit with DSPIN 
Once all the modules and routers are synthesized, the top-cell is obtained by 

assembling the gate-level netlist files of the modules; no RTL code is synthesized on 

the top. Towards that end, all the gate-level files are loaded into the synthesis tool 

and linked together. Moreover, the timing-constraints file of each module is also load 
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into the tool to generate a global timing constraints file. Finally, the correctness of the 

netlist is verified using a static timing analysis tool. 

5.2 Back-End Implementation 

In this section, the Back-End implementation of the DSPIN architecture in the 

FAUST platform is described. The floorplanning of the DSPIN router modules is 

detailed as well as the FAUST modules. In order to compare the ANOC with the 

DSPIN implementations, both implementations have the same chip area and use the 

same 130nm CMOS technology. The clock distribution network for the 

mesochronous DSPIN clock is built using a simple implementation method. Finally, 

the mesochronous and asynchronous communications are constrained and 

implemented, using timing constraint statements. 

5.2.1 Floorplanning 

Complex SoCs as the FAUST circuit use hard macro cells. These devices, 

(memory banks, processors…) are designed as stand-alone devices and are finally 

imported into the SoC. The performances of these hard macro cells are optimized, but 

they introduce constraints related to by their shape, their area, and the wire levels 

used. The floorplanning design of a SoC requires considering these constraints and 

adapting the rest of the circuit to meet the circuit performances. 

The implementation using a GALS approach requires to physically partition the 

SoC into independent areas. This partitioning is done using regions. A region is a 

floorplanning delimiter that conditions all the cells of a module to be placed inside 

the defined area. However, the region does not define an exclusive area, because cells 

of other modules can be placed inside this area. The floorplanning using regions 

gives the designer the flexibility to place the DSPIN router modules on the borders of 

the clusters. Thus, the DSPIN routers are floorplanned taking into consideration the 

cluster dimension and obstructions (memory banks, processor). DSPIN routers use 

five regions, one for each DSPIN module (North, South, East, West, and Local). 

Figure 5.5 shows the FAUST floor-plan with DSPIN routers. The clusters are 

delimited by the big colored rectangles while the small filled rectangles are the 

DSPIN modules. The N, S, E, W, and L filled boxes denote the North, South, East, 

West, and Local DSPIN modules respectively. The DSPIN modules color is the same 

as the cluster color to identify the router of the cluster. 
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To minimize the inter-router wires, the DSPIN North, South, East, and West 

modules have to be placed in front of the neighbor router modules (East module is 

placed near the West module of its neighbor router …).  

The DSPIN Local module can be placed in any place inside the cluster area. We 

have successfully tried various positions: on the center of the cluster and on the 

cluster sides. Nevertheless, a central position is not suitable due to higher wire 

congestion between the router and the local subsystem. In order to reduce this wire 

congestion, the Local modules placed on the center have larger region area, thus 

reducing the placement density. The DSPIN local module can be placed where the 

designer consider to be more efficient. 

In principle, the DSPIN routers placed on the circuit SoC sides should not have 

useless ports. For example, the bottom-left SoC router should only have the North, 

East, and Local ports. For this first implementation, all the routers where synthesized 

with all the ports even if they do not use them. In an industrial version of the DSPIN, 

the routers placed on the SoC sides will not contain useless ports thus reducing the 

circuit area. 

 

Figure 5.5 FAUST floor-plan with DSPIN 
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The top left red box and the bottom red box are unused regions of the circuit. On 

the original FAUST chip, these regions are occupied by the RAC and DART hard 

macro devices respectively. However, these modules are not used by the OFDM 

modulation/demodulation application and they are not implemented. Nevertheless, 

their areas are reserved to implement the FAUST circuit with DSPIN using the same 

area constraints as the original FAUST circuit. 

5.2.2 DSPIN Clock Tree 

On the Front-End phase, we have added a buffer or an inverter on the clock input 

of each DSPIN router. These buffers/inverters are used to support the clock tree 

synthesis following the GALS approach. The construction of the DSPIN clock tree 

follows four steps (Figure 5.6): 

1. The buffer/inverter on the clock input pin of each DSPIN router is 

manually placed in the middle of the area occupied by the cluster. This 

placement is done with the floorplanning tool. Thus, the wires of the each 

DSPIN router clock tree are as short as possible. 

2. A clock tree is synthesized for each DSPIN router. The starting point of 

the clock-tree is the buffer/inverter on the clock input pin of the router. 

Therefore, the Clock_root_pin variable is set to identify the starting point, 

the root pin, of the clock-tree. Each clock tree is synthesized with 5% 

skew target.  

3. Once these clock trees synthesized, each clock tree is characterized with its 

input delay, its skew, and its input capacitance. Therefore, the Macromodel 

of the clock tree is extracted for the next step. 

4. Finally, a top clock tree is synthesized to balance the clock trees of all the 

DSPIN routers. Following the GALS approach, the top clock tree is 

balanced with a 30% skew while the leaves have a 5% skew. To avoid 

modifying the skew of the bottom clock trees, it is mandatory to preserve 

integrally the bottom clock trees. Therefore, the root pins of the bottom 

trees are tagged with the PreservePin tag. Hence, the clock-tree synthesis 

tool can only balance the top clock tree and does not modify the cells 

beyond the pin tagged with the PreservePin statement. The Macromodel 

obtained in previous step is used to characterize the bottom clock trees 

because they are hidden by the PreservePin statement. At the end of the 

synthesis, the top clock tree is balanced with 30% skew while the bottom 
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has 5% skew. As a result, the communications between routers are 

mesochronous. 

After synthesis, each bottom clock tree contains from 210 to 307 buffers/inverters, 

depending on the area covered by the DSPIN router. The higher the area covered, the 

higher the balancing effort, and the higher the number of buffers/inverters required. 

As example, the router on position (1,2) requires 307 buffers/inverters as its area is 

the highest of all of them. 

Router (1,0) Router (1,1) Router (1,2)

5% skew

within the router

180° phase shift and

30% skew between routers

4
th
Step

30% skew

(top tree)

2
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Added on 

Front-End

Clk_NoC

 

Figure 5.6 DSPIN clock tree 

The top clock tree contains 69 buffers/inverters and its skew is around 1000ps. Its 

skew is 30% for a clock period of 3.4ns. The targeting skew before synthesizing was 

40% and a maximum transition time of 450ps. The obtained clock tree has 30% skew 

(instead of 40%) and a maximum transition time of 430ps. 

The clock-gating cells have been accepted by the clock tree tool. Moreover, to 

maximize the power saving of the clock-gating technique, these cells have to be as 

close as possible of the clock root pin. Hence, the power saving is achieved on the 

sequential cells and on the clock tree buffers. Therefore, the clock-tree synthesizing 

tool was properly configured to move these cells. In SoC Encounter, this option is 

called PadBufAfterGate, which means, that the padding buffer cells are placed after 

the clock-gating cell instead of before. 
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5.2.3 Mesochronous and Asynchronous Links 

The communication between neighbors routers are mesochronous as the clock 

tree is not equilibrated between routers. Moreover, the communications between 

routers and subsystems are fully asynchronous because they use different clock 

frequencies. The bi-synchronous FIFO, interfaces the mesochronous/asynchronous 

interfaces without complex back-end flow. Just a timing constraints file has to be 

properly set to guarantee a correct tool implementation. 

• For the asynchronous interfaces, the set_false_path condition is set 

between the clock signals of different clock frequency. Hence, the tool 

understands the asynchronous nature of this kind of interfaces. 

Otherwise, the tool tries unsuccessfully to synchronize non-synchronous 

interfaces while the synchronization is done by the bi-synchronous FIFO. 

Figure 5.7 shows the declaration of the set_false_path condition between a 

router and the network interface. 

• For the mesochronous interfaces, a set_multi_cycle_path condition is 

added on the output ports of the FIFO data registers. This condition 

informs the tool that the content of the FIFO data registers are not written 

and read on the same clock cycle. The writing and later reading of bi-

synchronous FIFO data register is delayed by the synchronization latency. 

Hence, the data is stable when it is read, the timing paths are simplified 

and the tool can easily interface the mesochronous interface. Figure 5.8 

shows the declaration of the set_multicycle_path between the 

mesochronous communication of two routers. 

 

Figure 5.7 Timing constraints for asynchronous interface  
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Figure 5.8 Timing constraints for mesochronous interface  

5.3 Implementation Validation and Parameter Extract ion 

In this section, the physical implementation is firstly analyzed with detailed static 

timing analysis tool in order to estimate the maximum clock frequency. Later, the 

gate-level netlist is simulated with the back-annotation RC delays. A real-data 

simulation application is used to validate the correctness of the netlist. Finally, the 

power consumption of the DSPIN NoC is estimated using a back-annotated 

simulation of the real application.  

5.3.1 Maximum Operating Frequency 

Once the Back-End flow is fully developed, the gate-level netlist and the timing 

file sdf is extracted. The static timing analysis with detailed RC parasites is used to 

determine the maximum operation frequency of the circuit. 

Both implementations are analyzed, the one without clock-gating and the one 

with clock-gating. Table 5.1 presents the maximum operating frequency for the 

DSPIN NoC and for the FAUST sub-system IPs. Worst-case conditions analysis is 

used. The clock-gating implementation obtain better performances due to simplified 

critical path and lower area, thus reducing the wire congestion. 

Table 5.1 Maximum operating frequency on worst-case conditions 

 Maximum DSPIN 
frequency 

Maximum FAUST IP 
frequency 

Without clock-gating 274 MHz 157 MHz 

With clock-gating 289 MHz 157 MHz 
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5.3.2 Back Annotation Simulation 

The gate-level netlist and the timing file sdf are used to simulate with ModelSim 

the whole circuit with the back-annotation information. Thereby, the circuit is 

functionally verified with the real application data. This kind of simulations is very 

accurate as the wire/gate delays are taken into account on the simulation. Therefore, 

the simulation executes slowly and requires powerful machines. 

Both implementations, with and without clock-gating, are successfully simulated 

and validated for a full ODFM frame demodulation. The circuit is tested with 

different clock frequencies to verify the correct operation of the mesochronous and 

asynchronous interfaces, and GALS approach. Towards that end, the simulator is 

properly configured to avoid detecting non-desirable setup time and hold time 

violations. These false violations came from three sources: 

• Synchronizers: The main task of the synchronizers on the bi-synchronous 

FIFO is to interface independent frequency/phase clock domains even on a 

setup or hold time violation.  

• Reset synchronization: On each DSPIN router, a Reset synchronizer was 

added to guarantee a clear reset signal. The reset signal is proper 

resynchronized. 

• Invalid data: Writing data on the FIFO when it is empty can induce a 

setup or hold violation on the read side. However, this violation should 

not be ignored, as the read data is invalid.  

For these three sources of violations, a tcheck_set statement is used to avoid 

detecting them and stopping the simulation. This statement disconnects timing 

checks on the indicated device. 

5.3.3 Power Consumption Analysis 

The power consumption is analyzed with the PrimePower tool. The real activity 

of the circuit is used on the power analysis to maximize the accuracy of the results. 

Therefore, a back-annotation simulation of the circuit is performed on the gate-level 

netlist of the circuit to extract the switching activity of the DSPIN routers. The 

simulation performs a full OFDM frame demodulation. The simulation of 1500µs 

takes 3 days on a 64-bit Opteron 2.2GHz 8GB RAM, and generates a stimuli file of 

32-GBytes. 

In order to estimate the real power consumption of the circuit, the back-annotated 

RC parties are extracted for typical operating conditions. The DSPIN routers and 

clock-trees power consumption are extracted for both implementations the one 
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without clock-gating and the one with clock-gating. The detailed power consumption 

of both implementations can be found in Appendix C. 

5.3.3.1 Without clock-gating 
For the physical implementation without clock gating, the power consumption of 

the router do not depends so much on the router activity. The power consumption 

per router is 9mW at 149MHz and 14 mW at 274MHz. The registers consume about 

86% of the total power. On the other hand, the clock tree distribution per router 

consumes 7.6mW at 149MHz.  

The total power consumption of the DSPIN routers and the mesochronous clock 

tree is 317 mW at 149 MHz (the NIC power consumption is not included). These 

results motivate us to implement a clock gating technique.  

5.3.3.2 With clock-gating 
With the clock-gating technique, the power consumption of the router is reduced. 

Table 5.2 summarizes the power consumption of an inactive router, a medium active 

router, and the highest active router in the implemented platform for two clock 

frequencies 149 MHz and 289 MHz. The clock-gating technique reduces the power 

consumption of the DSPIN routers by 67% at 149 MHz. 

Table 5.2 Power consumption of DSPIN router 

 149 MHz 289 MHz 

Inactive router 2.06 mW 3.72 mW 

Medium active router 3.00 mW 4.93 mW 

Highest active router 4.23 mW 6.40 mW 

 

The power consumption of the two FIFOs contained in the NIC is extracted for 

149MHz and 289MHz. Table 5.3 resumes the power consumption of the FIFOs in the 

NIC in function of the activity of the NIC. 

Table 5.3 Power consumption of FIFOs in the NIC 

 149 MHz 289 MHz 

Inactive NIC 0.24 mW 0.46 mW 

Medium active NIC 0.52 mW 0.74 mW 

Highest active NIC 0.91 mW 1.33 mW 
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Table 5.4 shows the clock-tree power consumption for two clock frequencies. The 

Top clock tree corresponds to the mesochronous clock tree, while the Bottom clock tree 

corresponds to the synchronous DSPIN route clock tree.  

Table 5.4 DSPIN clock-tree power consumption with clock-gating 

 Power consumption 
at 149 MHz 

Power consumption 
at 289 MHz 

Top clock tree 1.23 mW 2.39 mW 

Bottom clock tree 47.70 mW 92.30 mW 

Total 48.93 mW 94.69 mW 

 

Table 5.5 shows the total power consumption with clock-gating for 149 MHz and 

289 MHz when the read OFDM demodulation application is simulated. Around 50% 

of the total power consumed is consumed by the clock-tree. Comparing with the non 

clock-gating implementation, this implementation saves 67% of power consumption 

at 149 MHz. 

Table 5.5 Total power consumption with clock-gating 

 Power consumption 
at 149 MHz 

Power consumption 
at 289 MHz 

DSPIN routers 54.25 mW 92.17 mW 

FIFOs on NIC 9.96 mW 14.92 mW 

Clock tree 48.93 mW 94.69 mW 

Total (all routers) 113.14 mW 201.78 mW 

Total (per router) 5.65 mW 10.08 mW 

 

5.3.3.3 Summary 
The utilization of the clock gating technique allows to reduce drastically (67%) the 

power consumption of the DSPIN architecture while improving its maximum clock 

frequency (from 274 MHz to 289 MHz). The power optimization of the FIFOs in the 

NIC is also achieved. Its power consumption is reduced from 0.91 mW to 0.24 mW 

when in idle state. 

On the other hand, the power consumption of the clock tree is still high, even 

when the clock gating technique reduces it by 67%. The clock-tree power 

consumption is as high as the DSPIN router one. This is the consequence of a circuit 

highly dominated by registers. The DSPIN router just forwards the data between 

input and output ports; it does not perform combinational operations with the data. 
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5.4 DSPIN versus ANOC Comparison 

The initial FAUST implementation was originally build around a fully 

asynchronous network-on-chip called ANOC, and designed by CEA-Léti. This NoC 

is replaced by the multi-synchronous DSPIN NoC while preserving the same chip 

area and pad-ring. In this section, the physical implementation of DSPIN and ANOC 

are compared in terms of area, throughput, packet latency, power consumption, and 

programmability. 

5.4.1 Area 

The ANOC router was implemented as a hard macro. Its area is 0.21mm² with a 

cell density of 95%. The GALS_interface module was implemented as a soft macro and 

its area is computed assuming 95% of cell density. On the other hand, DSPIN is 

implemented as a soft macro and no area is reserved for the router (a 95% integration 

density is assumed). Just some regions are defined to condition the placement tool. 

Taking into consideration that the DSPIN router requires a clock tree while ANOC 

does not, the area comparison is done on the total area including the clock tree. The 

DSPIN router area after place and route is 0.153mm² while its clock-tree area is 

0.0015mm². Assuming 95% of cell density, the DSPIN router area is 0.161mm² while 

the clock-tree area is 0.0016mm². Table 5.6 summarizes the area comparison between 

ANOC and DSPIN NoCs. The total DSPIN area is 33% smaller than the ANOC area.  

Table 5.6 Area comparison between ANOC and DSPIN NoCs 

 ANOC router DSPIN router 

Router 0.211 mm²  0.161 mm²  

Interface GALS 0.070 mm²  0.024 mm²  

Clock tree 0.000 mm² 0.0016 mm² 

Total 0.281 mm² 0.187 mm² 

 

5.4.2 Throughput 

The throughput on the ANOC router depends on the fabrication process, on the 

voltage applied, and on the temperature condition. For worst-case analysis at 1.08V, 

and 105°C, the throughput of ANOC is 160Mflit/s. In nominal process conditions, its 

throughput is 220Mflit/s. However, it has not been verified on the real FAUST circuit 

because the Synchronous-to-Asynchronous and Asynchronous-to-Synchronous 

interfaces limit the measure to 160Mflit/s. In principle, the asynchronous circuits have 
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the advantage to auto-adapt their performances to the process, temperature, and 

voltage of the circuit. In contrast, synchronous circuits have their clock frequency 

limited to the worst-case process to guarantee their operation for any fabrication 

process variation, any temperature condition, and a voltage range.  

The DSPIN router throughput depends exclusively on its operation frequency. Its 

throughput is one flit per clock cycle (1Mflits/s for a clock frequency of 1MHz). The 

maximum operating frequency for the DSPIN router on worst-case analysis is 

289MHz and 408MHz on nominal-case. Consequently, the DSPIN throughput is 

289Mflit/s in worst-case and 408Mflit/s in nominal-case. 

In terms of critical path analysis, the ANOC critical path crosses four times the 

long wires in between ANOC routers while DSPIN crosses just one time. This comes 

from the fact that ANOC uses a 4-phase QDI asynchronous protocol. Thus, the long 

wire delay has four times higher influence on the ANOC router rather than on the 

DSPIN router. Consequently, on deep submicron technologies where the 

interconnect delays will be higher than the gate delays, a multi-synchronous 

architecture as DSPIN would have higher packet throughput than an asynchronous 

one as ANOC. Fortunately, pipeline stages can be inserted on the long wires in order 

to cope with these delays, despite of the added latency.  

Table 5.7 shows the throughput comparison between the ANOC and DSPIN 

routers. On a real implementation, ANOC will operate on its nominal conditions 

220Mflit/s while the DSPIN router should be clocked not far away from the worst-

case condition 289MHz to improve the fabrication yield. 

Table 5.7 Throughput comparison between ANOC and DSPIN routers 

 ANOC DSPIN 

Throughput on worst-
case conditions 

~ 160Mflit/s ≤ 289Mflit/s 

Throughput on nominal 
conditions 

~ 220Mflit/s ≤ 408Mflit/s 

 

5.4.3 Packet Latency 

As seen on the DSPIN router section (Chapter 3), the routing latency is 

decomposed in three stages: first, intermediate and last router. This decomposition 

can be used to analyze the latency of any communication path. 

The latency of the ANOC router depends on the fabrication process, on the 

voltage applied, and on the temperature condition. Real values have been measured 
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on the real implementation of the FAUST circuit. The computation of the 

intermediate latency is not conditioned by the operating clock frequencies of the 

subsystem. Its latency is 6.8ns on the real circuit. However, the latency of the first and 

the last router are conditioned by synchronous-to-asynchronous and asynchronous-

to synchronous interfaces on the subsystems. Unfortunately, the first and last router 

latencies could not be measured separately.  

DSPIN router latency depends exclusively on the router and subsystem operation 

frequencies. Its detailed calculation can be found in Chapter 3. Table 5.8 details the 

latency comparison for two clock frequencies 150MHz and 250MHz. For the analysis, 

the clock frequency on the ANOC router means the clock frequency of the subsystem. 

While the clock frequency on the DSPIN router means the clock frequency for the 

DSPIN router and subsystem. The intermediate router latency on the ANOC router is 

lower than the DSPIN one. This comes from the fact that the DSPIN router 

resynchronizes the data packets on each hop. To obtain the same intermediate router 

latency, the DSPIN router should be clocked at least 367MHz. Moreover, the first and 

last router latency is better optimized on the DSPIN side. 

Table 5.8 Latency comparison between ANOC and DSPIN routers 

F = 150 MHz F = 250 MHz 
  

ANOC DSPIN ANOC DSPIN 

Intermediate router latency 6.80 ns 16.66 ns 6.80 ns 10.00 ns 

First and last router latency 60.00 ns 56.66 ns 47.00 ns 34.00 ns 

 

Table 5.9 shows the latency of the ANOC and DSPIN router for 5 and 9 hops 

path. It is clear that the ANOC router have lower latency than the DSPIN router for 

low clock frequencies, but the latencies are quit similar when the clock frequency 

increases. 

Table 5.9 Latency analysis for 5 and 9 hops path 

F = 150 MHz F = 250 MHz 
  

ANOC DSPIN ANOC DSPIN 

Latency for 5 hops path 80.00 ns 106.66 ns 68.00 ns 64.00 ns 

Latency for 9 hops path 106.66 ns 173.30 ns 96.00 ns 104.00 ns 
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5.4.4 Power Consumption 

The ANOC router was implemented using STMicroelectronics standard cells and 

the TAL library [Maurin03]. Low power cells with High Vt (low leakage and low 

speed) and Low Vt (high leakage and high speed) were used to satisfy the required 

performances. Thus, the leakage power on the ANOC router cannot be neglected. 

Appendix C details the power consumption estimation per router on the ANOC 

estimation.  

The power consumption comparison between the DSPIN and ANOC network-on 

chip is performed for 15 of the 20 FAUST routers because the other 5 are not used on 

the OFDM demodulation application and were not estimated on the ANOC 

implementation. 

For ANOC, the power consumption of the 15 active routers is 31.04 mW where its 

leakage is 5.1 mW (0.37mW per router). The total power consumption of the 15 

GALS_interface modules (see Appendix B) is 24.40 mW where its leakage is 3.6 mW. 

For DSPIN, the power consumption of the 15 active routers, FIFOs and clock-trees 

are computed using the Appendix C results. Table 5.10 shows the detailed power 

consumption (router, FIFO, and clock-tree) for the ANOC and DSPIN. 

Table 5.10 ANOC and DSPIN power consumption 

 
ANOC 

DSPIN 
(149MHz) 

DSPIN 
(289MHz) 

Routers power 31.04 mW 43.38 mW 72.75 mW 

FIFOs on GALS interf. 24.40 mW 8.40 mW 12.14 mW 

Clock-tree power 0.00 mW 36.69 mW 71.01 mW 

Total (for 15 routers) 55.44 mW 88.47 mW 155.90 mW 

Total (per router) 3.69 mW 5.89 mW 10.39 mW 

 

The power consumption of the ANOC router is lower than the one of DSPIN. 

This comes from the fact that the DSPIN uses larger FIFOs (7 words depth compared 

to 2 words depth on ANOC). On the other hand, the GALS_interface module on 

ANOC consumes higher than the DSPIN one, because the ANOC module contains 4 

FIFOs while the DSPIN module contains just 2. Moreover, ANOC uses 4-phase 

handshake protocol on the FIFOs that is higher power consuming than a 

synchronous approach. 
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In terms of total power consuming, ANOC is less power consuming than DSPIN, 

even at 149 MHz. The power consuming of DSPIN increases almost linearly with the 

clock frequency. Moreover, 50% of the total power consumption of DSPIN is due to 

the clock-tree network. Thus, in a future version of DSPIN, a power management 

unit should clock-gate the full DSPIN router clock-tree when it is not active. 

5.4.5 Programmability 

From a programmability point of view, the address-based routing algorithm is 

more versatile than the source routing algorithm. Address-based routing algorithm 

can be easily implemented on stream-oriented and shared-memory architectures as 

demonstrated on the implementation of DSPIN in a stream-oriented platform.  

On the other hand, source routing algorithm is not suited to shared-memory 

architectures because the network interface controller has to know all the possible 

packet destinations in order to route the packets. Consequently, the NIC becomes 

complex because it requires to store all the routing paths managed by the IP; thus, 

being difficult to reprogram dynamically. Moreover, when the routing path does not 

fit into the packet header (first flit), a path extension mechanism has be used; thus, 

increasing the NIC complexity.  

Source routing algorithm is suited for stream-oriented architecture where 

communication graph is known and can be analyzed before mapping the application. 

Thus, it is possible to avoid congested links by choosing the routing path of some 

communication. In case of dynamic reallocation of new communications, it is 

required to know all the current communication paths in order to avoid the 

congested links. Therefore, a global path allocator should decide the best routing 

path for the new communications.  

Generic architectures, where the task graph can be modified dynamically or the 

number of communications per IP is not limited to a reduced number, should be 

implemented on address-based routing algorithm. Firstly, the address-base can use 

the destination address of the packet to translate the address into the routing address 

without programming the NIC. Secondly, no path extension mechanism is required 

as the address-based routing is more compact than the source-routing algorithm. 
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5.5 Conclusion 

A physical implementation of the DSPIN network-on-chip on the generic, stream-

oriented, FAUST platform has been presented. The multi-million gates FAUST chip 

using DSPIN has been physically implemented up to mask layout to demonstrate the 

easily implementation of the multi-synchronous DSPIN NoC in an industrial flow. 

The Front-End and Back-End flows do not require custom tools. Commercial 

synthesis tools as Synopsys Design Compiler, and place and route tools as Cadence 

Encounter are suited to implement this architecture.  

We demonstrated that the multi-synchronous DSPIN architecture can be simply 

and automatically implemented. The floorplanning of a SoC with DSPIN NoC is very 

flexible due to the DSPIN soft macro conception. It just requires defining 5 regions 

per router on the sides of the cluster. The mesochronous and asynchronous interfaces 

are easy implemented thank to the, correct by construction, bi-synchronous FIFO. A 

simple timing constraints file guarantees the correct implementation of these 

interfaces. The mesochronous clock-tree distribution network has been automatically 

implemented following four steps. Therefore, the intra-cluster clock skew is lower 

than 5% while the inter-cluster clock skew can reach 30%. The exclusion of 

asynchronous and custom cells in the DSPIN architecture simplifies the 

implementation flow and allows implementing it on fully synchronous Front-End 

and Back-End flows. Moreover, the architecture can directly ported to other CMOS 

process technologies, as it is fully synthesizable. 

We have compared the ANOC and DSPIN implementations on the same FAUST 

platform. Both implementations use the same process technology and has the same 

die area. DSPIN is 33% smaller than ANOC, and has 31% higher throughput than 

ANOC. In terms of packet latency, DSPIN has predictable packet latency as it 

depends on the clock frequency, while ANOC latency depends on the process, 

temperature, and voltage. Both architectures have similar packet latencies when the 

clock frequency is higher than 250 MHz; otherwise, ANOC has lower latency. The 

maximum operating frequency for DSPIN is 289 MHz on worst-case analysis. In 

terms of power consumption, ANOC consumes less power than DSPIN, even at low 

frequencies (150 MHz). The clock-gating implementation on DSPIN reduced its 

power consumption by 67%; however, it is still higher than the one of ANOC. The 

DSPIN clock-tree consumes as much power as the DSPIN router itself. 

We have analyzed the advantages of the address-based algorithm over the 

source-routing algorithm in a generic architecture. Address-based algorithm is more 
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generic and can be easily implemented on shared-memory and stream-oriented 

architectures. The algorithm is more compact in number of bit and does not require 

path extension mechanism to reach long distance paths. Source routing algorithm is 

suited to stream-oriented architectures where the task graph of the application is 

known before mapping the application; thus, the routing path can be optimized for 

the application and the congested links can be avoided. For generic and dynamic 

reallocation of the task graph, address-based algorithm is more suited than source 

routing algorithm. 
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Chapter 6 

6 Conclusion 

The experience gained in the design and physical implementation of the 32 ports 

SPIN network was precious to define a new architecture well suited to the Globally 

Asynchronous, Locally Synchronous (GALS) paradigm. This architecture is the 

DSPIN Network-on-Chip proposed by Alain Greiner at the University of Pierre et 

Marie Curie. However, this architecture did not provide guaranteed service traffic, 

and it has not been physically implemented.  

In this thesis, we addressed the following issues: We introduced and evaluated a 

low-cost guaranteed service mechanism using virtual channel in the DSPIN 

architecture. We designed an efficient and robust bi-synchronous FIFO able to 

interface synchronous systems. Finally, the DSPIN architecture has been physically 

implemented on a multi-million gate System-on-Chip. 

6.1 Guaranteed Service 

We have demonstrated the implementation of the guaranteed service in the 

DSPIN architecture. The virtual channel approach (generally used to multiplex 

several logical channels on the physical link between routers), can be applied to the 

router itself, making TDM multiplexing possible in a GALS, clustered multiprocessor 

architecture. With this low cost method, the DSPIN architecture provides the system 

designer hard bounds for both the latency (upper bound) and the throughput (lower 

bound) of a limited number of point-to-point communications. The overhead of the 

virtual channel increases the area by 43%, while the number of channels has been 

doubled. The router and network-interface controller architectures have been 

analyzed in detail. Modifications of the state machines have been proposed in order 
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to increase/decrease the guaranteed service throughput without provoking starvation 

situations on the best effort traffic.  

The strictly bounded latency and throughput result from the following choices: 

• DSPIN router uses a deterministic deadlock free routing algorithm. 

• DSPIN uses separate sub-networks for request and response traffic. 

• The storage elements for BE and GS traffic are independents. 

• The shared resources between BE and GS traffic are only combinational 

logic and long-wires. 

• The virtual channel allocation policy is fair and does not have starvation 

situation. 

• The NIC has independent ports for BE and GS traffic. 

Therefore, the implemented levels of the OSI reference model, from transport to 

physical level, are deadlock free without starvation situations. The latency of the 

guaranteed service traffic is predictable and bounded. Likewise, the throughput of 

the guaranteed service is guaranteed up to 50% of the channel bandwidth and can be 

increased/decreased by modifying the state-machine allocation policy. In order to 

achieve these guarantees, the DSPIN routers are clocked with the same clock 

frequency, but a clock skew can exist between neighbor routers. Thus, DSPIN uses a 

low power mesochronous clock-tree distribution compatible with the GALS 

approach. The communication between independent clock domains is carried out by 

bi-synchronous FIFOs. Finally, neighbor routers have inverted clock phases in order 

to avoid metastability failures in the bi-synchronous FIFOs. 

 The original DSPIN architecture has been updated in many aspects other than 

the guaranteed service traffic. The packet format has been redefined in order to 

respect the OSI reference model. The network clock frequency is independent of the 

system clock frequency. The architecture is synthesizable with standard cells only, 

without asynchronous or custom cells. Power reduction techniques have been 

designed and introduced in the architecture. The mesh topology, associated with the 

distributed implementation of the router itself solves the problem of long wires. 

The DSPIN architecture has been simulated on a 10x10 cluster platform to 

evaluate its saturation threshold. On the other hand, we have analyzed the tradeoff 

between FIFO depth, router area, and architecture performance. The optimum 

performance at minimum FIFO depth and router area is a packet length shorter than 

10 flits and the BE FIFO depth of 7 words. Finally, the estimated silicon area for the 

DSPIN router is 0.057mm² on CMOS 90nm process. The clock frequency is 500MHz. 

The synthesis is successful up to 833MHz while its area increases by 37%.  
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6.2 Synchronization 

We have designed a bi-synchronous FIFO able to interface two synchronous 

systems with independent clocks. The design is synthesizable with standard cells 

only, and does not use asynchronous or custom cells. The FIFO uses a new encoding 

algorithm, called bubble encoding, which has been demonstrated to have a better 

density than previous designs with similar performance. A smart definition of the 

FIFO pointers avoids using status registers. Thus, the write and read pointers are 

directly combined to obtain the Full and Empty signals. Moreover, the architecture 

uses simple registers with classical scan chain path, in order to avoid using a hard 

macro RAM memory and its associated BIST testing technique. The bi-synchronous 

FIFO can be used for a fully an asynchronous interface (different clock frequency and 

phase) or a mesochronous interface (same frequency but different phase). Through 

optimization, the FIFO latency for a mesochronous interface may be reduced. Its 

latency is 2-3 clock cycles in asynchronous mode, and 1-2 clock cycles in 

mesochronous mode. In terms of throughput, the FIFO can deliver 100% throughput 

when its depth is six or more words. 

We have synthesized a 32-bit 8-word deep bi-synchronous FIFO on CMOS 90nm 

technology, and estimated its maximum operation frequency at 1GHz and its area at 

6581µm². Finally, the proposed design has performances comparable to the 

equivalent best-known design, and it has a silicon area 33% smaller than the Gray-

code FIFO generally used in industry. 

The bubble encoding and the architecture of bi-synchronous FIFO have been 

patented by STMicroelectronics. 

6.3 Physical Implementation 

From the physical implementation point of view, we have demonstrated that the 

DSPIN architecture can be integrated in an industrial design flow based on state-of-

the-art commercial tools.  

The stream-oriented FAUST platform has been chosen as the SoC 

implementation. The full physical implementation flow has been performed using 

commercial tools and automated scripts. Thank to the modularity of the DSPIN 

router and its flexible implementation (synthesizable soft macro), the floorplanning 

of complex SoCs is simplified.  
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The NoC of FAUST (ANOC) has been replaced by the DSPIN NoC without 

modifying either the FAUST architecture or the chip area. A hierarchic synthesis has 

been performed on the Front-End flow. The floorplanning of the FAUST chip with 

the DSPIN NoC has been performed with minimum floorplan modifications in order 

to prove the adaptability of the DSPIN architecture in a SoC implementation. The 

mesochronous clock-tree has an intra-cluster clock skew lower than 5%, while the 

inter-cluster clock skew can reach 30%. The clock gating technique has been 

introduced to reduce by 67% the power consumption of the DSPIN NoC without 

reducing its performances. The asynchronous and mesochronous interfaces have 

been easily implemented thanks to the, correct by construction, bi-synchronous 

FIFOs and by simple timing constraint directives. The maximum DSPIN clock 

frequency on the FAUST platform for 130nm process is 289 MHz (worst-case). 

We have compared the DSPIN and ANOC implementations on the FAUST 

platform. In terms of area, DSPIN is 33% smaller than ANOC. DSPIN has 31% higher 

throughput than ANOC. In terms of packet latency, DSPIN has predictable packet 

latency as it depends on the clock frequency, while ANOC latency depends on the 

process, temperature, and voltage. Both architectures have similar packet latencies 

when the clock frequency is higher than 250 MHz; otherwise, ANOC has lower 

latency. In terms of power consumption, ANOC consumes lower power than DSPIN 

even at low frequencies (150 MHz). The DSPIN clock-tree consumes as much power 

as the DSPIN router itself. Consequently, DSPIN is optimized for low area and high 

performance architectures, while ANOC is optimized for low latency and low power 

application. 

We have also analyzed the programmability of an NoC using address-based 

routing and one source-routing. Address-based routing is more generic and versatile 

than source routing because it can be used on shared-memory architectures as well as 

on source-routing architectures. The NIC for an address-based routing is simpler 

than for source routing. This comes from the fact than on a shared-memory, the 

destination address can be easily recoded into an address-based address by simply 

taking the MSB bits. On the other hand, a complex Look-up Table has to be 

implemented on the NIC to convert addresses into routing paths for source routing. 

On a message-passing architecture, the address-based routing information is more 

compact than the source routing one, thus increasing the packet payload. Moreover, 

address-based routing does not require complex path-extension mechanisms 

compared to source-routing when the routing path does not fit into a single flit. 
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The top-down design and physical implementation of the DSPIN architecture 

confirmed the objectives defined at the beginning of this thesis, which were to design 

a distributed and synthesizable NoC with a flexible and simple industrial 

implementation flow suited to the GALS approach. 

6.4 Answers to the Open Questions 

In the first chapter, we formulated some open questions that the state-of-the-art 

could not answer completely. In this section, we summarize the answers given by 

our work: 

6.4.1 Quality of Service 

• Packet latency: DSPIN guarantees hard bounds on the packet latency of 

the GS traffic for a limited number of communications (when no path 

conflict exists). This latency is deterministic and depends on the network 

clock frequency.  

• Throughput: DSPIN guarantees at least 50% throughput to the GS traffic 

for a limited number of communications (when no path conflict exists). 

This guarantee is hard bounded and can be easily increased by modifying 

the allocation state-machine. 

• Overhead: The area increase of the DSPIN router with GS+BE traffic 

compared to a DSPIN router with only BE traffic is of 43%. Doubling the 

number of channels costs less than a 50% area increase. 

• Shared resources: DSPIN architecture uses virtual channels with a buffer 

per channel. The shared resources on DSPIN architecture are the long 

wires (intra-cluster wires). No data register is shared between BE and GS 

traffic.  

• Path allocation: The guaranteed service traffic must be allocated by a 

central path allocator. No hardware implementation is designed as the 

allocation and reallocation is not frequent. Consequently, a software task 

manages a data-graph of all current allocated paths on the SoC, and it 

decides the allocation of new traffics. 

• GALS: DSPIN is suited to the GALS approach. Each cluster can be 

considered as an independent clocked island with its own clock 

frequency. Moreover, the NoC uses a mesochronous clock-distribution 

network, which can be unbalanced up to 50% skew.  
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6.4.2 Synchronization 

• Latency: The latency of the bi-synchronous FIFO is 2-3 clock cycles in 

asynchronous mode, and 1-2 clock cycles in mesochronous mode. 

• Throughput: The bi-synchronous FIFO is able to deliver 100% 

throughput. Its depth must be 6 words or more in asynchronous mode 

and 5 words or more in mesochronous mode. 

• Robustness: The robustness of the bi-synchronous FIFO is achieved by 

two-flop synchronizers. The synchronizers can be chosen from the 

standard cell vendor library to improve the robustness.  

• Process, temperature, and voltage variation: The bi-synchronous FIFO is 

robust to process, temperature, and voltage variations because the 

communications between independent clock domains is synchronized by 

two-flop synchronizers. On mesochronous mode, the interface is less 

robust because some two-flop synchronizers are replaced by one-flop 

synchronizer in order to reduce the latency. 

• Portability and industrialization: The bi-synchronous FIFO is suited to 

industrial implementation. It contains neither asynchronous nor custom 

cells. Moreover, its physical implementation is flexible because no hard 

macros such as RAM memories are used. 

• Testability: The bi-synchronous FIFO can be tested by classic test 

methodologies such as scan paths.  

• Density: Its area is 6581 µm² for 8-word 32-bit bi-synchronous FIFO 

working at 1GHz clock frequency on CMOS 90nm technology. 

• Flexibility: The bi-synchronous FIFO is floorplan flexible. It does not 

contain hard macros. Its unique condition is to place the two-flop 

synchronizers as close as possible to increase robustness with respect to 

metastability.  

6.4.3 Physical Implementation 

• Soft macro: DSPIN is physically implemented as a soft macro. It does not 

contain any hard macro. 

• Floorplanning: The DSPIN router is composed of 5 modules, witch have 

to be placed on the sides of the cluster in order to be near the neighbor 

router modules. In terms of timing constraints, simple timing constrains 

are used in order to indentify the mesochronous and asynchronous 

interfaces. 
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• Industrialization: DSPIN is suited to be implemented on an industrial 

flow. Commercial tools from the Front-End to the Back-End synthesis can 

be used. Neither custom tools nor spice simulations are required to design 

and verify the correct operation. 

• Portability: DSPIN is fully portable to any standard cell technology. It 

does not contain asynchronous or custom cells, or RAM memories. Its 

architecture is fully synthesizable with industrial standard cells. 

• Clocking: DSPIN clock tree uses a mesochronous approach. Its 

implementation is automatic and it follows a bottom-up approach.  

• GALS: DSPIN is suited to the GALS approach. Each cluster can be 

physically implemented as a stand-alone module and later assembled on 

the SoC. The DSPIN NoC manages the inter-cluster communications. 

• Clock boundaries: The clock boundaries are implemented using bi-

synchronous FIFOs, which are correct by construction. Thus, its physical 

implementation is simple to realize using commercial tools.  

• Power: The clock gating technique has been implemented in DSPIN NoC. 

It reduced the power consumption by 63% compared with a non-clock 

gating implementation. 

• Long wires: The only long wires in DSPIN architecture are the intra-

cluster wires. Thus, the timing closure is simple because the long wires are 

restrained inside the cluster, which is an isochronous island. 

• Predictability: DSPIN architecture is predictable because its throughput 

and latency depend on the clock frequency and all the routers use the 

same clock frequency. 

6.5 Weakness 

The distributed router architecture of DSPIN has many advantages, but there is 

one known drawback associated to the distributed approach, related to the power 

gating implementation. 

Low power System-on-Chip uses different power reduction techniques as the 

clock-gating and power gating. The power-gating technique is a power reduction 

method that cuts down the power source of unused modules. Therefore, the gated 

modules consume neither static nor dynamic power. The entire gated module is 
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confined into a limited area, which has an independent power domain. Figure 6.1 

shows an example of three independent power domains. 

 

Figure 6.1 Power domains 

When a distributed NoC is implemented on a power-gated architecture (one 

router per module), the power domain of the router has to be independent of the 

power domain of the gated module domain in order to allow the communications to 

pass through the router even when the module is gated. However, the distributed 

implementation of the DSPIN router itself makes this power gating difficult: The 

DSPIN router is not a well-identified hard macro-cell. It is split in five components 

(North, South, East, West and Local modules) that are placed by an automatic place 

& route tool. Moreover, the repeaters (buffers) of the DSPIN intra-cluster wires, being 

routed over the subsystem’s module, have to be permanently powered in order to 

continue to operate. Figure 6.2a shows an example of DSPIN implementation where 

the N, S, E, W, and L modules, and repeaters should have an independent power 

domain (depicted in green). Moreover, the repeater interconnecting these modules 

has the same power domain as the DSPIN router.  

 

Figure 6.2 DSPIN and generic NoC power domains 
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Figure 6.2b shows an example of a generic NoC implemented as a hard macro. 

The router has an independent power domain of the subsystem. The inter-router 

wires have a reserved path and a reserved power domain in order to power the long-

wire repeaters. Therefore, the Back-End implementation is easier as the power 

domains are topologically disjoints. 

A possible solution to this issue is to follow the same implementation approach as 

used on the retention-registers. Such registers have a flip-flop and a retaining latch 

built in a single library cell. The flip-flop can be power-gated while the latch is 

always powered in order to maintain the register data when the system is power 

gated. Therefore, the repeaters could be continuously powered by the same power 

rails as the retention registers using Always-On Buffers (AOB). 

6.6 Future Work 

After analyzing the results obtained in this thesis, the future work should be 

oriented in three main directions: 

• Power consumption optimization: The clock tree power consumes 50% of 

the total power consumption. A clock gating technique has to be 

implemented at system level in order to maximize the reduction of the 

clock-tree power consumption when the router is in idle state. 

• Multiplexing Guaranteed Service traffics: The multiplexing of GS traffics 

on the same link, while guaranteeing each communication, should be 

analyzed following the work of Kees Goossens in Æethereal [Rijpke03] 

[Gangw05] [Hans07]. 

• Fault tolerant systems: The network has to be able to route the packet on 

a NoC where some links are unavailable due to faults or to inexistent 

connections. Moreover, the algorithm must be low cost and simple. The 

research on X-Y routing algorithm with minimal routing tables is a low 

cost and good candidate for future fault tolerant NoCs. The work of 

Evgeny Bolotin et al. in [Bolotin07] has to be analyzed.  
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Appendix A 

A Synchronization Techniques 

This chapter describes the state of the art on bi-synchronous FIFOs, in the context 

of Network-on-Chip using GALS approach.   

A.1 Gray-Code FIFO 

The Gray-code is a cyclic binary encoding algorithm where two successive values 

differ in only one digit. Thus, a Gray-code counter can be synchronized to another 

clock domain using a parallel synchronizer (Figure 1.18) without introducing errors. 

The value obtained after synchronization, can be the actual value or the previous 

value of the Gray-code counter. Even if a metastable event is present on the 

synchronizer, the synchronized values are limited to these two possibilities. In 

conclusion, Gray-code algorithm is suited to synchronize the value of a Gray-code 

counter. 

A.1.1 Architecture 

The Gray-code can be used to build RAM-based b-synchronous FIFOs. The 

architecture is composed of a RAM memory, a write pointer, a read pointer, a Full 

detector, and an Empty detector as shown in Figure A.1. The RAM memory is used 

to store the data to exchange from the write side to the read side. The write and read 

pointers determines the write and read address in the RAM. The write and read 

pointers are encoded in natural binary code. The Full detector compares the value of 

the write pointer to the read pointer to determine the fullness of the FIFO. Likewise, 

the Empty detector compares the write and read pointers to determine the emptiness 

of the FIFO.  
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Figure A.1 Gray-code FIFO 

In order to avoid catastrophic failures due to metastability, the Full and Empty 

detectors use the Gray-code to synchronize the pointers between the independent 

clock domains as shown in Figure A.2.  

• Full detector: The read pointer is recoded to Gray-code, and then 

synchronized with a parallel synchronizer to the write clock frequency. 

Once synchronized, it is recoded to natural binary code to subtract its 

value from the write pointer. The result of the subtraction is used to assert 

the Full signal before overflow the FIFO.  

• Empty detector: The write pointer is recoded to Gray-code, and then 

synchronized with a parallel synchronizer to the read clock frequency. 

Once synchronized, it is recoded to natural binary code to subtract its 

value from the read pointer. The result of the subtraction is used to assert 

the Empty signal before underflow the FIFO. 

The subtracting devices on the Full and Empty detectors can be designed to 

detect full/empty conditions or quasi-full/quasi-empty conditions. Therefore, it is 

possible to anticipate the full/empty condition and for example stop the 

producer/consumer clock instead of just stopping the producer/consumer data.  

The subtraction between the write and read pointers on the Full and Empty 

detectors could be done using Gray-code subtractors instead of natural binary code 

subtractors. Thus, the Gray-to-Natural converter could be omitted. However, the 

natural binary code subtractors are more area optimized than the Gray-code ones. 
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Figure A.2 Gary-code FIFO Full and Empty detectors 

The RAM memory module can be replaced by registers. Thus, a Gray FIFO can be 

delivered as a soft macro without using a hard macro RAM. Moreover, the registers 

can be tested with scan chain strategy rather than a Built in Self-Test (BIST) for the 

RAM memory. On the other side, the integration density of a RAM memory is higher 

than the density of discrete registers. Thus, for a small FIFOs, a register-based 

memory is suited. 

An example using RAM-based Gray-code FIFOs is the AsAP processor. It 

contains 32-word 16-bit FIFOs on TSMC CMOS 0.18 µm technology. Its area is 25000 

µm². Its maximum operating frequency is 580MHz at 1.8V. Its power consumption is 

10.3mW at 580MHz under maximum throughput operations. Detailed description of 

the FIFO can be found in [Apper07] and the AsAP processor in [Yu06][Yu07]. 

A.1.2 Analysis  

The synchronization of a Gray-code counter is suited to interface a pointer 

between two independent clock domains. A FIFO implementing this technique is 

robust to the metastability failures. Moreover, the robustness of the FIFO can be 

increased by increasing the depth of the synchronizers. In this case, the latency of the 

FIFO is increased while being able to achieve 100% throughput. 

The Gray-code FIFO architecture is suited to design deep FIFOs because the 

Gray-code is very compact compared to one-hot encoding. Example, the write and 

read pointers for a 256 words FIFO can require 8 bits and thus, the synchronizers 

require 8 bits. In the other hand, if one-hot encoding were used, it would be required 

256-bit pointers and 256-bit synchronizer. 

A RAM-based FIFO can be easily implemented on a Gray-code FIFO because the 

write pointers are encoded using a log2 algorithm as the Natural binary code. Thus, 
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the write and read pointers are directly the write and read address of the RAM 

memory. In the other hand, a RAM-based FIFO requires a testing methodology for 

the RAM memory. It can be a Built in Self-Test (BIST) or functional patterns to test 

the integrality of the FIFO. Thus, RAM-based FIFOs are suited for deep FIFOs. 

Moreover, a RAM memory is physically implemented as a hard macro. Thus, the 

floorplanning of the chip with RAM-based FIFOs became more constrained due to 

the hard macro blockages (width, height, and metal levels used), the need of 

manually place these RAM memories, and to modify the position of these memories 

when the wire congestion or timing constrains are not satisfied.  

Finally, the conversion to Gray-code and later reconversion to Natural binary 

code, and the subtraction devices on the Full and Empty detectors requires complex 

logic schemes compared to other FIFOs as the one of J. Jex et al. 

A.2 T. Chelcea et S. Nowick FIFO 

T. Chelcea and S. Nowick (TCSN) propose a mixed-timing FIFO for synchronous-

to-synchronous, asynchronous-to-synchronous, and synchronous-to-synchronous 

interfaces in [Chelcea04] and patented in [Chelcea07]. In this analysis, just the 

synchronous-to-synchronous FIFO is detailed due to the limited scope of the chapter. 

A.2.1 Architecture 

The TCSN FIFO is a register-based FIFO able to interface two synchronous 

systems where there is not relationship between their clock frequencies. The 

architecture view of the FIFO is depicted in Figure A.3. It is composed by a Full 

detector, an Empty detector, Data Cells (contain the write/read pointers and the 

stored data), a Put controller, and a Get controller. The number of Cells determines 

the depth of the FIFO.  

The write and read pointers are encoded using the one-hot encoding algorithm. 

The pointers are distributed on the Cell elements, a 1-bit register per Cell element 

and per pointer. Figure A.4 details a Cell element. The top left register is the write 

pointer register while the bottom left register is the read register. In the middle of the 

Cell element, the data register (REG) stores the data and a Valid bit. On the right side 

of the figure, the adjacent Cell write/read pointer registers are depicted. When the 

write register of the Cell in the right (ptok_in = 1) is asserted and a write operation is 

performed (en_put = 1), the data register stores the input data (data_put). Likewise, 

when the read register of the Cell in the right (gtok_in = 1) is asserted and a read 
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operation is performed (en_get = 1), the data register (REG) is read through a tri-state 

buffer to the output data bus (data_get). 

 

Figure A.3 TCSN FIFO overview [Chelcea04] 

An asynchronous SR register per CELL element computes the state of the FIFO. If 

output f_i is asserted, the data register i contains data to be read. Likewise, if the 

output e_i is asserted, the data register i does not contain data to be read. This 

information is used on the detection of the full and empty conditions. 

 

Figure A.4 TCSN FIFO: Cell element [Chelcea04] 

The Full detector is composed by NMOS transistors, a PMOS transistor and a 

two-flop synchronizer as depicted in Figure A.5a. The detector analyze if at least two 

consecutive data registers are empty (example e_0=1 and e_1=1). If two of them are 

empty, the output is Low; otherwise, it is high. Finally, this signal is synchronized 

using a two-flop synchronizer to obtain the Full signal.  
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The Put controller is depicted in Figure A.5b. Its output is asserted when the 

producer system request a write operation (req_put =1) and the FIFO is not full. Its 

output is sent to all the Cell elements of the FIFO. 

 

Figure A.5 TCSN FIFO: Full detector and put controller [Chelcea04] 

The empty detector is composed by three modules: the New empty detector 

(Figure A.6a), the Normal empty detector (Figure A.6b), and the Empty detector 

(Figure A.7). The New empty detector computation is similar to the Full detector. If 

two successive cells are full (example f_0=1 and f_1=1), the ne signal is asserted after 

synchronization. The ne signal detects when the FIFO contains at least two elements. 

In order to detect at least one element in the FIFO, the Normal detector is needed. 

Finally, the ne signal and the oe signal (from the Normal detector) are combined 

using a AND gate to generate the FIFO Empty signal (Figure A.7) 

 

Figure A.6 TCSN FIFO: New and normal empty detectors [Chelcea04] 

The Get controller generates the en_get signal, which is asserted when the 

consumer requires a FIFO read operation (req_get = 1) and the FIFO is not empty. 

Furthermore, a data valid signal (valid_get) is generated when the valid bit of the 

data register (Figure A.4) is asserted, the consumer required a FIFO read operation 

and the FIFO is not empty. 
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Figure A.7 TCSN FIFO: Get controller and empty detector [Chelcea04] 

A.2.2 Analysis 

The TCSN FIFO is a compact and well-optimized architecture. The one-hot 

encoding algorithm allows a distributed implementation of the architecture in a 

modular manner. However, the design has some limiting aspects: 

• Custom cells: The architecture requires full custom cells to be 

implemented. The Full and Empty detectors requires special NMOS and 

PMOS transistor designs. These detectors could be designed in standard 

cells, despite of the increase of the area. 

• Clock relationship: If the producer clock frequency is more than three 

times higher/lower than the consumer clock frequency, the FIFO can be 

useless. This problem comes from the asynchronous RS latch. When a 

write operation is performed, the f_i signal of the RS latch is asserted 

asynchronously even when no data is written yet. If the consumer 

frequency is more than three times higher than the producer one, the 

empty detector is deasserted. Under these circumstances, the consumer 

could try to read a new data that is not yet written. Thus, the FIFO 

operation is not correct. The same phenomenon occurs when the 

consumer starts to reads a FIFO data and the producer is three or more 

times faster than the consumer does. Under these circumstances, the 

producer writes a new data in the same data register while the consumer 

reads tries to read the old one. 

• Glitch: If the producer system connected to the FIFO has glitches in the 

write request (req_put) signal, the asynchronous RS latch (Figure A.4) will 

toggle to Full state even when no data is written into the FIFO. 

•  Finally, the FIFO is protected by international patents [Chelcea07]. 
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A.3 J. Jex et al. FIFO 

The J. Jex at al. FIFO is a register-based FIFO with a programmable settling time 

synchronizer [Jex97][Dike00]. This programmability is used to improve the 

robustness of the synchronizer to the metastability. It was used on the Intel TeraFlops 

computer developed at Sandia Labs in 1994, which contains about 9200 Xeon type 

processors. Thus, there are 9200 interfaces between a 66 MHz bus and a self-timed 

circuit able to burst 200 MHz. 

A.3.1 Architecture 

Its architecture contains a Write pointer a Read pointer, a status register, an 

Empty detector, a Full detector, and data registers. The Write and Read pointer use 

one-hot encoding algorithm to identify the register to write and the register to read. 

Thus, the depth of the FIFO is equal to the number of bits of the write pointer. The 

write pointer bits controls the write_enable (Wen) of the data register while the read 

pointer bits controls the output_enable (Oen) input of the data registers as shown in 

Figure A.8. 

 

Figure A.8 J. Jex at al. FIFO data path 

A status register is an N-bit register where N is the depth of the FIFO. The status 

register content identifies the data registers that contain valid data. If the bit i of the 

status register is asserted, the data register i contains valid data. Figure A.9 shows the 

status register, the Full detector, and the Empty detector.  

The status register is controlled by the write pointer and the write_enable signal 

of the FIFO, as shown in Figure A.10. When a new data is written into the FIFO, the 

status register bit of the corresponding written data register is asserted. Then, the 

status register is synchronized to the read clock domain using a two-flop 
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synchronizer per bit. The synchronized signals are used to detect the empty 

condition on the Empty detector, which is described hereinafter.  

 

Figure A.9 Jex at al. FIFO: Full and Empty detectors [Dike00] 

When the read side performs a read operation on data_register i, the status 

register i, and the two-flop synchronizer i are reset using the read_pointer i bit. Thus, 

the write side can perform a new write operation on data on register i. 
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Figure A.10 Jex at al. FIFO: status register and synchronizers [Dike00] 

The Empty detector is a simple OR gate collecting all the synchronized signals of 

the status register, as shown in Figure A.9. If there are one or more asserted bits on 

the synchronized status register the FIFO is not empty.  

The Full detector compares with AND gates the pairs of bits of the status register 

to detect half-full FIFO conditions as shown in Figure A.9. Status register bit i is 

compared to ((N-1)/2+i) mod N bit using a AND gate. Thus, if the result of the AND 

gate for any i is TRUE, the FIFO contains at least N/2 elements. All the AND gates are 

collected using an N-input OR gate and later synchronized to obtain the FULL signal. 



 

154 

Due to the synchronization latency of the synchronizers, the detection of the Full 

condition is anticipated. 

In order to improve the robustness of the FIFO against the metastability failure, 

the synchronizers use a programmable settling time system. Thus, the settling time of 

the synchronizer can be modified from one clock cycle to four clock cycles. Therefore, 

the two-flop synchronized becomes a three-flop or four-flop synchronizer. However, 

the latency of the FIFO increases when the settling time increases. 

Detailed description of the architecture can be found on patent [Jex97] and in 

tutorial [Dike00]. 

A.3.2 Analysis 

All the metastability issues are correctly analyzed. The synchronizers are well 

dimensioned and the settling time can be increased in order to improve the 

metastability robustness. The design is simple and can be implemented using 

standard cells. However, no mesochronous adaptation is proposed. 

The throughput of the FIFO can be maximized to 100% for large FIFOs; however, 

the half Full FIFO detection and the latency of the synchronizers reduce the FIFO 

throughput when the FIFO depth is small. The minimum FIFO depth to archive 100% 

throughput is 14 words. The half-full detection of the Full detector, limits the 

performance of the FIFO because it is nearly impossible to full all the FIFO elements. 

Thus, the useful depth of the FIFO is N/2+4 (using the smaller synchronization 

latency), where 4 is the synchronization latency of Full and Empty. 

Finally, the FIFO architecture is protected by Intel Corporation on US Patent 

[Jex97]. 
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Appendix B 

B Integration of the DSPIN Network into the 

FAUST Platform 

In this appendix, we analyze the problems that must be solved to replace the 

ANOC NoC by the DSPIN NoC in the FAUST stream-oriented platform. We analyze 

how the DSPIN network-on-chip, originally designed for shared memory multi-

processors architectures, can support stream-oriented architectures.  

In section B.1, the ANOC and DSPIN architectures are compared in terms of 

routing algorithm, switching algorithm, packet definition, and clocking techniques. 

In section B.2, the IP integration template for ANOC is depicted and adapted to the 

DSPIN network. In section B.3, we describe how the FAUST topology has been 

rearranged in order to support the X-first routing algorithm. Finally, we describe in 

section B.4, how the DSPIN FIFOs have been dimensioned to support the real-time 

constraints of the FAUST application.  

B.1 Architecture Comparison 

DSPIN and ANOC are similar NoC architecture. However, DSPIN uses 

synchronous cells while ANOC uses asynchronous cells. Both architectures offer the 

same type of traffic and they can be exchanged. Towards that end, their similarities 

and differences are analyzed in the next table: 
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Table B.1 ANOC and DSPIN architecture comparison 

 ANOC DSPIN 

Topology Irregular Regular 2D mesh 

Router arity 5 port router 5 port router 

Routing technique Source routing Address-based  

X-First algorithm 

Switching technique Wormhole Wormhole 

Flit size 34 bits 34 bits (generic) 

Flit payload 32 bits 32 bits (generic) 

Flow control bits Begin of packet (BOP)  

End of packet (EOP) 

Begin of packet (BOP)  

End of packet (EOP) 

Routing overhead and 
capability 

18-bits, allowing 9 routing 
hops 

Path extension is possible 

8-bits, allowing any architecture 
up to 16*16 clusters 

Programming model Message passing Shared-memory 

(2 routers per cluster) 

Message-passing 

(1 router per cluster) 

Clocking scheme Fully asynchronous (QDI) 
with GALS interfaces 

Multi-synchronous with 
mesochronous interfaces 

Metastability issues Metastable-free inside routers 
(4 phase protocol), GALS FIFO 
interfaces on local ports 

Resolved by bi-synchronous 
FIFOs 

Virtual channels Best effort and  
Guaranteed service 

Best effort and  
Guaranteed service 

Flow control protocol Send/accept asynchronous 
handshake 

FIFO protocol (Write and 
WriteOk) 

Clock tree None One per router 

Physical implementation Hard macro Soft macro distributed on five 
modules 

Long wires Inter-router wires Intra-cluster wires 

 

DSPIN and ANOC use similar packet format. Figure B.1 shows the ANOC and 

DSPIN packet definition. DSPIN having a generic flit size, its length can be set as 

long as the ANOC flit size, 34 bits. Thus, both architectures have 32 bits of packet 

payload. ANOC uses 18 bits on the first flit for the source routing information while 

DSPIN uses 8 bits for the destination address. Moreover, both architectures use the 

same control bits Begin_of_Packet (BOP) and End_of_Packet (EOP). 
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Figure B.1 ANOC and DSPIN packet definition 

B.2 Protocol Conversion 

This section presents the protocol_conversion module, which replaces the 

GALS_interface module as shown in Figure B.2. 

GALS interface Protocol_conversion

Synchronous
SEND/ACCEPT

Asynchronous
SEND/ACCEPT

Asynchronous
READ/WRITE

Synchronous
SEND/ACCEPT

IP

NIC

IP

NIC

LUT

ANOC router DSPIN router

Mesochronous
READ/WRITE

Asynchronous
SEND/ACCEPT

CLK_IP

CLK_NoC

CLK_IP

b) DSPIN IP templatea) ANOC IP template  

Figure B.2 IP integration detail 

For ANOC, the GALS_interface module performs the adaptation of the 

asynchronous send/accept protocol to the synchronous send/accept protocol of the 

local subsystem. Moreover, this module contains the local input and output FIFOs, 

which performs the synchronization of the asynchronous-data to the local clock 

frequency.  

For DSPIN, the protocol_conversion module is directly connected to local 

subsystem through the synchronous Send/Accept interface. Moreover, this module 



 

158 

contains the synchronization FIFOs to the local clock frequency. The implementation 

of this module is detailed hereinafter.  

B.2.1 Flow Control Conversion 

All FAUST local subsystems use the synchronous send/accept protocol. This flow 

control protocol works as follows: 

• Send: The producer informs that a data is valid to be sent on the current 

cycle. 

• Accept: The consumer is ready to accept one data at the next cycle. 

The producer is allowed to transfer the data, if only if, at the previous cycle the 

consumer asserted the Accept signal. Therefore, the transfer of the data depends on 

the state of the Accept signal on the previous cycle. 

DSPIN uses a FIFO protocol controlled by two signals: 

• Write: The producer informs that a data is valid to be sent on the current 

cycle. 

• Read: The consumer is ready to accept one data on the current cycle.  

The producer is allowed to transfer the data, if only if, the consumer is ready to 

accept a data on the current cycle. Data transfers depend only on the actual state of 

the control signals.  

 

Figure B.3 Send/Accept and Write/Read protocol 

The conversion module translates the Send/Accept flow control signal into the 

DSPIN flow control signals following these conversions: 

• If the producer uses the write/read protocol, the conversion to the 

send/accept protocol is simple (Figure B.4a). A register delays the Accept 

signal one clock cycle to generate the Read signal of the FIFO. Moreover, a 

AND gate asserts the Send signal, if only if, the FIFO is ready to accept 

need data (ROK = 1) and the Accept signal was asserted on the previous 

clock cycle. 

• When the producer uses the Send/Accept protocol, the FIFO has to be 

internally modified (Figure B.4b). The Accept signal is the inverted value 
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of the intermediate signal of the FULL synchronizer. Hence, the Accept 

signal is advanced of one clock cycle. Moreover, the internal Write signal 

of the FIFO is asserted, if only if, the Accept has been asserted on the 

previous clock cycle and the Send signal asserted.  

 

Figure B.4 Flow control signal converters between send/accept and FIFO protocol 

B.2.2 Packet Address Conversion 

DSPIN and ANOC use a similar packet format. However, ANOC uses a source 

routing algorithm and DSPIN uses an address-based routing algorithm. Thus, it is 

necessary to convert all the source routing bits into address-based bits. In order to 

avoid any modification on the application software, the routing algorithm conversion 

is performed by the hardware using a Look-Up Table (LUT). Therefore, each 

protocol_conversion module contains a hard-wired LUT. The LUT converts the 18-bits 

of source routing to the 8-bits of destination address (Figure 2.16). As the routing 

information is just inserted on the first flit of the packet, the protocol_conversion 

module replaces this data just when the begin_of_packet signal is asserted. Otherwise, 

the packet data is not modified. This solution is not optimized, as it uses a hard-

wired LUT but we did not want to modify the application software for this 

experiment. 

The content of the LUT have been generated analyzing all the paths used by the 

selected application on the FAUST platform. A spy module inserted between the 

GALS_interface module and the NI of each FAUST module (Figure B.5) has been used 

to extract all the communications of the platform. 
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Figure B.5 SPY module 

Table B.2 shows the information obtained by the spy module. Source and 

destination denotes the producer and consumer of the packet respectively. The np_1 

module, which is connected to top input external port of the FAUST chip, has many 

different packet destinations. This phenomenon is the result of the initialization of 

the FAUST chip, where all the modules receive their configuration by the external 

port (see Figure 2.17 for the FAUST architecture). Accordingly, the np_1 module has 

to forward this configuration to all the modules of the system.  

As explained in previous paragraph, each IP requires a dedicated 

packet_conversion module as its pair source-destination LUT is different. However, in 

order to reduce the number of different LUTs, we developed three different LUTs 

covering all the previous table cases. Thus, the same LUT is reused for various 

packet_conversion modules. 
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Table B.2 Routing information of FAUST modules 

Source Destination Routing path Number of packets Channel 
dec   rx_bit ESL  4608 VC0 
dec   np_1 NNWWNL  832 VC0 
dmap rx_bit   EL  4416 VC0 
dmap RAM_ext  NNEL  17664 VC0 
equal  rx_ofdm SL  17664 VC0 
equal  est EL  17664 VC0 
equal  rx_fht SEL  17664 VC0 
est RAM_ext    EENL  4416 VC0 
est equal      WL  17664 VC0 
est rx_ofdm    WSL  2944 VC0 
np_1 drh      EENNNNNNN  1 VC0 
np_1 syn        SSSWL  14  VC0 
np_1 RAM1        SL  35436 VC0 
np_1 RAM Ext       SEEEL  8 VC0 
np_1 rot        SSWL  16 VC0 
np_1 equal        SSL  12 VC0 
np_1 est          SSEL  11 VC0 
np_1 rx_fht       SSSEL  9 VC0 
np_1 rx_ofdm       SSSL  17 VC0 
np_1 rx_bit       SSSEEEL  9 VC0 
np_1 dmap        SSSEEL  267 VC0 
np_1 dec        SSEEL  8 VC0 
np_1 dec        EESSL  810 VC0 
RAM_ext dmap   WSSL  23552 VC0 
RAM_ext est    WWSL  549 VC0 
RAM_ext rx_fht WWSSL  8583 VC0 
RAM1 rot WSL  28672 VC0 
RAM1 syn WSSL  801 VC0 
RAM1 np_1 NNNNNNNNN  35004 VC0 
rot  ram1        NEL  28665 VC0 
rot  rx_ofdm       SEL  28672 VC0 
rx_bit  dec NWL  4608 VC0 
rx_bit  dmap WL  4416 VC0 
rx_fht  RAM_ext NNEEL  8832 VC0 
rx_fht  equal   NWL  17664 VC0 
rx_ofdm rot WNL  28672 VC0 
rx_ofdm est NEL  2944 VC0 
rx_ofdm equal NL  17664 VC0 
syn  np_1 ENNNNWNNN  8 VC0 
syn  RAM1 NNEL  801 VC0 
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B.3 Topology Rearrangement  

DSPIN NoC is designed for regular 2D mesh topologies. However, the FAUST 

architecture has some irregularities that are easily handled by the source routing 

algorithm of ANOC, but have to be arranged for DSPIN. 

Firstly, the local subsystem on DSPIN NoC has to be connected to the local port of 

the DSPIN router. Otherwise, the X-first algorithm cannot route properly the packets 

over the network. In the FAUST architecture, the modules np_1 (top input port), ahb 

(clk & test ctrl), enc (turbo coder), dec (convolution coder), and exp are connected to 

non-local ports. Fortunately, the enc, dec, and both exp modules are not used by the 

selected software application. Consequently, the topology of FAUST was rearranged 

to connect all the used modules on the local ports of the DSPIN routers (see Figure 

2.17). The new topology is depicted in Figure B.6 where the orange lines show the 

modified connections. The modules depicted in green are physically implemented 

but not used by the application. 

 

Figure B.6 Rearanged totpology of FAUST chip for DSPIN 
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B.4 FIFO Dimensioning 

The analysis of the spy module results reveals some path conflicts when the X-

first routing algorithm is used. These path conflicts results in multiple utilization of 

the same GS links by two or more producer-consumer pairs. Consequently, the total 

throughput of the link is shared between all the producer-consumer pairs. As the 

ANOC uses the source routing algorithm, these path conflicts are resolved by 

rerouting the conflicting path to other links. Consequently, some links of the FAUST 

platform are more congested with DSPIN than with ANOC. Table B.3 shows the 

three routing conflicts when the X-first algorithm is used. 

Table B.3 Routing conflicts using the X-first algorithm 

Number of packets Source Destination Routing path 

 17664 dmap RAM_ext  NNEL 

 8832 rx_fht  to RAM_ext NNEEL 
    

 28672 rot  rx_ofdm       SEL 

 17664 equal  rx_ofdm SL 
    

 17664 rx_fht  equal   NWL 

 17664 rx_ofdm equal NL 

 

Two solutions have been considered to minimize these conflicts. 

• Rearrange the mapping of the subsystem to avoid the congestion. This 

solution has been abandoned as the modification on the mapping has an 

impact on the floorplanning of the chip and many memory hard macros 

are used. Consequently, the placement has not been modified to minimize 

floorplanning differences between the implementation of ANOC and 

DSPIN. 

• Increase the depth of the DSPIN FIFOs to support the conflicting traffics 

without reducing the performance of the system. This solution had been 

chosen as it does not modify the chip topology and it is compatible with 

the DSPIN architecture. 

The FIFO depth of the DSPIN router has been dimensioned by simulating the 

whole system with different DSPIN FIFO depths. The FAUST application 

demodulates the OFDM signal with a maximum processing time per OFDM frame of 

600us. Consequently, the dimensioning of the FIFO has to guarantee this processing 



 

164 

time for the worst-case condition. Hence, the DSPIN clock frequency is set as low as 

the worst-case condition of the system clock frequency (150 MHz). Table B.4 shows 

the processing time of one OFDM frame in function of the FIFO depth at 150MHz. 

Table B.4 Processing time of one OFDM frame in function of DSPIN FIFO  
depth at 150MHz 

FIFO depth 

(words) 

Processing time  

per OFDM frame  

5 773 µs 

6 577 µs 

7 577 µs 

 

The minimum GS FIFO depth to guarantee the system performance is six 

words. Beyond this depth, the FIFO depth does not improve the system 

performances. Finally, we have chosen to implement a GS FIFOs depth of seven 

words because the best effort and guaranteed service channels are equilibrated with 

seven words each one. 
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Appendix C 

C Power Consumption Estimation in the FAUST 

platform 

This appendix details the power consumption estimation for the DSPIN and 

ANOC implementations in the FAUST platform. The power estimation is performed 

using back-annotated simulations of the implemented gate-level netlist. The simulation 

application is a full OFDM demodulation frame. The comparison of the ANOC and 

DSPIN power consumption obtained in this appendix is analyzed in Chapter 5.  

The first section presents the power consumption estimation methodology 

employed. The power consumption estimation for DSPIN and ANOC is detailed in 

sections C.2 and C.3. 

C.1 Power Consumption Estimation Methodology 

The PrimPower tool was used to estimate the power consumption for both 

architectures DSPIN and ANOC. The input files required are the gate-level netlist, 

the sdf (parasites) file, and the vcd (stimuli) file. The parasites file was extracted from 

the physical layout on typical conditions. The stimuli file, is the back-annotation 

simulation of the gate-level netlist. This stimuli file contains all the transitions states 

of the signals on the selected modules; thus, even the glitch transition can be 

computed. 

The tool computes the detailed power consumption module by module. The 

switching, internal, and glitch power is reported. Moreover, it is possible to visualize 

the power consumption over the time of each individual module. An example of this 

visualization is depicted in Figure C.1. 
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C.2 DSPIN Power Consumption Estimation 

The DSPIN routers, NIC FIFOs and clock-trees power consumption were 

extracted for two implementations; with and without clock-gating. 

C.2.1 Without Clock-Gating 

The power consumption of the non clock-gating version of DSPIN was simulated 

for 274MHz and 149MHz. The power consumption over the time showed that the 

power consumption of the DSPIN router do not vary much in function of the router 

activity. At 149MHz, a full activity router consumes 10.3mW while a non-active 

router consumes 6.6mW. Moreover, the registers power consumption is 86% of the 

total DSPIN router power at 274MHz. The leakage power consumption is very low 

0.5-0.7% of the total power, as the standard cells used were Low Power cells with 

high Vt transistors. Table C.1 details the average power consumption of a DSPIN 

router. 

Table C.1 Power consomption of DSPIN router without clock-gating 

 149 MHz 274 MHz 

Power consumption per router ~ 9 mW ~ 14 mW 

Leakage power ~ 0.7 % ~ 0.5 % 

Dynamic power ~ 99.3 % ~ 99.5 % 

  - Switching power ~ 6.0 % ~ 3.0 % 

  - Internal power ~ 94.0 % ~ 97.0 % 

 

Table C.2 shows the power consumption of each DSPIN router at 149 MHz. The 

position in the table corresponds to the position of the router on the network 

topology (see Figure 2.17). The gray cells indicate the non-active routers, because 

they are not used by the software application. The aggregated power consumption of 

the DSPIN routers is 165 mW. 

Table C.2 Power consomption of DSPIN routers without clock-gating at 149 MHz 

6.62 mW 7.97 mW 6.58 mW 6.64 mW 4.03 mW 

7.31 mW 10.30 mW 8.41 mW 8.74 mW 9.01 mW 

9.18 mW 10.39 mW 9.24 mW 9.49 mW 7.30 mW 

8.47 mW 9.67 mW 8.80 mW 9.06 mW 8.62 mW 
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Table C.3 shows the DSPIN clock-tree power consumption for two clock 

frequencies. The clock tree computed here includes the DSPIN router and the DSPIN 

NIC FIFOs clock trees. The Top clock tree corresponds to the mesochronous clock tree, 

while the Bottom clock tree corresponds to the synchronous DSPIN route clock tree. 

Table C.3 DSPIN clock-tree power consumption without clock-gating 

 Power consumption 
at 149 MHz 

Power consumption 
at 274 MHz 

Top clock tree 1.26 mW 2.31 mW 

Bottom clock tree 151.00 mW 274.00 mW 

Total 152.26 mW 280.31 mW 

 

99.9 % of the clock-tree power consumption is due to the dynamic power 

consumption, where 75% is switching power and 25% is internal power. Each DSPIN 

clock tree power (a branch of the bottom clock-tree) consumes 13.2 mW at 274 MHz 

and 7.3 mW at 149 MHz. Consequently, the power consumption of the DSPIN clock-

tree consumes as much as the DSPIN router itself. Moreover, the total power 

consumption routers and clock-trees are 317 mW at 149 MHz.  

C.2.2 With Clock-Gating 

With the clock-gating technique, the power consumption was reduced. Table C.4 

and Table C.5 show the power consumption of the DSPIN routers at 149 MHz and 

289MHz. The position in the table corresponds to the position of the router on the 

network topology (see Figure 2.17). The gray cells indicate the non-active routers, 

because they are not used by the software application. The DSPIN routers power 

consumption is 54.25 mW at 149MHz and 92.17 mW at 289MHz. With the 

introduction of the clock-gating, the power consumption of the DSPIN routers is 

reduced by 67% (at 149MHz). 

With the clock gating mechanism, the increase of the clock frequency does no 

longer force a linear increase of the power consumption. Otherwise, the power 

consumption at 289MHz would be 105 mW instead of 92.17 mW, thus saving 12%.  

Table C.4 Power consomption of DSPIN routers with clock-gating at 149MHz 

2.02 mW 3.05 mW 2.06 mW 2.06 mW 1.63 mW 

2.75 mW 4.23 mW 2.32 mW 2.51 mW 2.64 mW 

3.95 mW 3.96 mW 3.00 mW 2.52 mW 2.13 mW 

2.45 mW 3.27 mW 2.61 mW 2.61 mW 2.43 mW 
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Table C.5 Power consomption of DSPIN routers with clock-gating at 289MHz 

3.92 mW 4.76 mW 3.93 mW 3.72 mW 3.09 mW 

4.73 mW 6.40 mW 4.17 mW 4.48 mW 4.53 mW 

5.95 mW 6.09 mW 4.93 mW 4.49 mW 4.00 mW 

4.33 mW 5.27 mW 4.55 mW 4.53 mW 4.30 mW 

 

Figure C.1 shows a detailed analysis of the power consumption on router (1,2) at 

149MHz. The first row shows the aggregated power consumption of the router while 

the other rows show the detailed power consumption of the DSPIN router modules. 

cInEast is the sender submodule of East DSPIN module while cOutEast is the 

receiver submodule of East DSPIN module. Submodule cInEast does not have 

activity, thus its power consumption is very low. Submodule cInSouth receive a long 

packet in the middle of the scope while cInLocal receive many long packets. It is 

possible to identify the power consumption due to packet transmission and the 

power reduction when no packet is sent. Submodule cWires contains the buffers 

interconnecting the modules, the long wires of DSPIN router. 

 

Figure C.1 Power analysis of router (1,2) at 149MHz 
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The power consumption of the two FIFOs contained in the NIC of was extracted 

for 149MHz and 289MHz. In this physical implementation, these FIFOs are located in 

the protocol_conversion module; see Appendix B for further details. Table C.6 shows 

the power consumption for each pair of FIFOs on the topology.  

Table C.6 Power consumption of NIC FIFOs at 149MHz (at 289MHz) 

242.8 µW 

(462 µW) 

478.9 µW 

(697 µW) 

245.2 µW 

(463 µW) 

481.9 µW 

(698 µW) 

246.0 µW 

(465 µW) 

246.5 µW 

(465 µW) 

919.9 µW 

(1319 µW) 

500.2 µW 

(718 µW) 

501.7 µW 

(722 µW) 

559.4 µW 

(792 µW) 

842.4 µW 

(1110 µW) 

642.4 µW 

(937 µW) 

519.9 µW 

(742 µW) 

487.6 µW 

(713 µW) 

245.4 µW 

(464 µW) 

447.2 µW 

(665 µW) 

834.6 µW 

(1118 µW) 

593.1 µW 

(842 µW) 

597.4 µW 

(850 µW) 

464.0 µW 

(689 µW) 

   

Table C.7 shows the clock-tree power consumption for two clock frequencies. 

Compared to the non clock-gating implementation, the power consumption is 

reduced by 67 %.  

Table C.7 DSPIN clock-tree power consumption with clock-gating 

 Power consumption 
at 149 MHz 

Power consumption 
at 289 MHz 

Top clock tree 1.23 mW 2.39 mW 

Bottom clock tree 47.70 mW 92.30 mW 

Total 48.93 mW 94.69 mW 

 

Table C.8 shows the total power consumption with clock-gating for 149 MHz and 

289 MHz. Around 50% of the total power consumed is consumed by the clock-tree. 

Comparing with the non clock-gating implementation, this implementation has 

saved 67% of power consumption at 149 MHz. 

Table C.8 Total power consumption with clock-gating 

 Power consumption 
at 149 MHz 

Power consumption 
at 289 MHz 

DSPIN routers 54.25 mW 92.17 mW 

FIFOs on NIC 9.96 mW 14.92 mW 

Clock tree 48.93 mW 94.69 mW 

Total (all routers) 113.14 mW 201.78 mW 

Total (per router) 5.65 mW 10.08 mW 
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C.3 ANOC Power Consumption Estimation 

The ANOC power consumption estimation has been performed using the same 

methodology as the DSPIN one, and the same OFDM demodulation application has 

been used. The power consumption have been analyzed for the 15 bottom ANOC 

routers rather than for the 20 because these the other 5 do not interact with the 

selected application. Table C.9 shows the leakage and dynamic power consumption 

of the 15 bottom ANOC routers (see Figure 2.17). The total power consumed by these 

routers is 31.04 mW while the leakage power is around 0.37 µW per router.  

Table C.9 Power consomption of ANOC routers 

 ?.? mW  ?.? mW  ?.? mW  ?.? mW  ?.? mW 

1.93 mW 3.75 mW 0.83 mW 1.85 mW 1.85 mW 

3.40 mW 3.30 mW 2.04 mW 1.65 mW 0.66 mW 

1.89 mW 3.76 mW 1.74 mW 1.55 mW 0.84 mW 

 

The power consumption of the GALS_interface module was computed for the 15 

bottom clusters as shown in Table C.10. The leakage power consumption is around 

0.24 µW for each module. 

Table C.10 Power consomption of GALS_interface modules 

 ?.? mW  ?.? mW  ?.? mW  ?.? mW  ?.? mW 

0.024 mW 3.646 mW 0.026 mW 0.026 mW 2.096 mW 

3.166 mW 3.185 mW 1.797 mW 1.454 mW 0.026 mW 

0.026 mW 3.076 mW 2.265 mW 2.034 mW 1.556 mW 
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Abbreviations 

ANOC Asynchronous Network-on-Chip 

ASIC  Application Specific Integrated Circuit 

BE Best Effort 

BIST Built in Self-Test 

CMOS Complementary Metal Oxide Semiconductor 

DSPIN Distributed Scalable Programmable Integrated Network 

EDA Electronic design automation 

FAUST Flexible Architecture of Unified Systems for Telecom 

FIFO First In, First Out 

GALS Globally Asynchronous, Locally Synchronous 

GDSII Graphic Data System II 

GS Guaranteed Service 

MANGO Message-passing Asynchronous Network-on-Chip providing 

Guaranteed services through OCP interfaces 

MPEG Moving Picture Experts Group 

NIC Network Interface Controller 

NMOS N-channel Metal Oxide Semiconductor 

NoC Network-on-Chip 

OFDM Orthogonal Frequency-Division Multiplexing 

PLL Phase Locked Loop 

PMOS P-channel Metal Oxide Semiconductor 

QDI Quasi Delay Insensitive 

QNoC Quality of Service Network-on-Chip 

RAM Random Access Memory 

RC Resistance Capacitance 

RTL Register Transfer Level 

SDF Standard Delay Format 

SLID Synchronous Latency Insensitive Designs 

SoC System-on-Chip 

SPIN Scalable Programmable Integrated Network 
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SRAM Static Random Access Memory 

TDM Time Division Multiplexing 

VC Virtual Channel 

VCI Virtual Component Interface 

VHDL VHSIC Hardware Description Language 

VHSIC Very High Speed Integrated Circuits 

VLSI Very Large Scale Integration 
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