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Résumé 

En raison de limitations physiques, il est désormais extrêmement difficile, si pas impossible, de 
faire distribuer un signal d'horloge globale synchrone sur une vaste zone de la puce. Comme une 
solution, les Réseaux-sur-Puce (NoCs) qui utilisent les techniques de Globalement Asynchrone 
Localement Synchrone (GALS), divisent la puce en plusieurs zones synchrones indépendantes. 
Chaque zone est cadencée par un signal d'horloge différente, et de cette façon le problème est 
réduit à un certain nombre de sous-problèmes plus petits. Le réseau pourrait être l'infrastructure de 
communication globale asynchrone du système. Mais, comment le réseau lui-même doit être 
cadencé et comment nous pouvons traiter le problème de la synchronisation des horloges en 
frontières. Cette thèse de doctorat, dans le fond, essaie de répondre à ces deux questions.  

Un réseau avec une conception entièrement asynchrone, qui n'implique pas la question de la 
synchronisation, est une approche naturelle pour construire des architectures GALS. Un NoC 
asynchrone limite la demande de synchronisation seulement aux interfaces du réseau, où les 
données synchrones doivent entrer dans le réseau asynchrone et les données asynchrones dans les 
sous-systèmes synchrones. 

ASPIN (Asynchronous Scalable Packet-switching Integrated Network), présenté dans ce 
manuscrit, est un réseau asynchrone qui utilise deux FIFOs spéciales pour connecter les IPs 
synchrones au réseau asynchrone. Au début, l’implémentation détaillée de l’architecture de 
routeur ASPIN et de deux nouvelles conceptions pour le FIFO synchrone-asynchrone (SA_FIFO) 
et le FIFO asynchrone-synchrone (AS_FIFO) comme les interfaces du réseau sont élaborées. Tous 
les dessins ont été physiquement implémentés, et les caractéristiques électriques ont été évaluées 
par la simulation SPICE poste-layout. 

Malgré que les NoCs sont beaucoup plus évolutif que les interconnexions traditionnelles, 
lorsque le nombre de composants générant du trafic augmente, le seuil de saturation du réseau 
diminue, et parfois il devient le goulot d'étranglement du système. Nous évaluons le seuil de 
saturation des réseaux ASPIN et DSPIN. DSPIN (Scalable Distributed Packet-switching 
Integrated Network) est un réseau multi-synchrone bien adapté au paradigme GALS. En réalité 
ASPIN est l’implémentation asynchrone de DSPIN. Dans l’évaluation de seuil de saturation 
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l'influence des deux paramètres est prise en compte: la capacité de stockage des flits et le débit du 
réseau. 

Dans les grands systèmes, où il y a de nombreux éléments à interconnecter, le seuil de 
saturation du réseau a une faible valeur et déclare un problème. Nous proposons une nouvelle 
méthode pour améliorer le seuil de saturation dans les réseaux asynchrones rapides: en utilisant un 
algorithme Quasi-Store-and-Forward (QSF) au lieu de routage bout-en-bout wormhole. Dans cette 
approche, tous les flits d'un paquet s'accumulent dans le format asynchrone avant d'entrer dans le 
réseau. 

Comme DSPIN et ASPIN utilisent la même architecture générale et fournissent les mêmes 
services, une comparaison systématique entre leurs paramètres de performances physiques, 
présentée dans cette thèse, peut aider à répondre à cette question que quelle type de l’architecture 
pourrait être plus satisfaisant à implémenter, synchrone ou asynchrone? Les caractéristiques 
physiques sont la surface en silicium, la latence de paquet, le débit de communication, et la 
consommation d'énergie. Comme un facteur prédominant, dans les évaluations les effets des longs 
fils ont été pris en compte. 
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Abstract 

Because of physical limitations, henceforth it is extremely hard, if not impossible, to distribute a 
global synchronous clock signal over a wide chip area. As a solution, Networks-on-Chip (NoCs) 
using Globally Asynchronous Locally Synchronous (GALS) techniques divide the chip area into 
several independent synchronous clusters. Each cluster is clocked by a different clock signal and 
thereby the problem is reduced to a number of smaller sub-problems. The network could be the 
asynchronous global communication infrastructure of the system. But, how the network itself 
must be clocked and how we can deal with the problem of synchronization on clock boundaries. 
This PhD thesis, basically, tries to answer these two questions. 

A network with a fully asynchronous design, which does not involve the issue of 
synchronization, is a natural approach to construct GALS architectures. An asynchronous NoC 
limits the synchronization failure only at the network interfaces, where the synchronous data has 
to enter into the asynchronous network and the asynchronous data into the synchronous 
subsystems. 

ASPIN (Asynchronous Scalable Packet-switching Integrated Network), introduced in this 
manuscript, is an asynchronous NoC using two special FIFOs to connect synchronous IP cores to 
the asynchronous network. At first the router implementation of the ASPIN architecture is 
detailed and two new concepts for Synchronous-to-Asynchronous FIFO (SA_FIFO) and 
Asynchronous-to-Synchronous FIFO (AS_FIFO) as network interfaces are elaborated. All designs 
have been physically implemented, and the electrical characteristics have been evaluated by post 
layout SPICE simulation. 

Even though NoCs are much more scalable than traditional on-chip interconnects, when the 
number of components generating traffic increases, the network saturation threshold decreases 
and sometimes becomes the system bottleneck. We evaluate the saturation threshold of the 
ASPIN and DSPIN network architectures. DSPIN (Distributed Scalable Packet-switching 
Integrated Network) is a multi-synchronous NoC well-suited to the GALS paradigm. Actually 
ASPIN is the asynchronous implementation of DSPIN. In the saturation threshold evaluation the 
influence of two parameters are considered: the flit storage capacity of the network and the 
network throughput.  
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In large systems, where there are many components to interconnect, the network saturation 
threshold has a low value and declares a problem. We propose a new method to improve the 
saturation threshold in fast asynchronous networks: using a Quasi-Store-and-Forward (QSF) 
algorithm instead of end-to-end wormhole routing. In this approach all flits of a given packet 
accumulate in the asynchronous form before entering the network. 

As DSPIN and ASPIN use the same general architectures and provide the same services, a 
systematic comparison between their physical performances parameters, presented in this thesis, 
may help to answer this question that which architecture type could be more adequate to 
implement, synchronous or asynchronous? The related physical characteristics are silicon area, 
packet latency, communication throughput, and power consumption. As a predominant factor, in 
the evaluations the effects of long wires have been taken into account. 
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Introduction 

Networks-on-Chip (NoCs) are a new design paradigm for scalable high-throughput 
communication infrastructures, in Systems-on-Chip (SoCs) with billions of transistors. The idea 
of NoCs is dividing a chip into several independent clusters (subsystems) connected together by a 
global communication architecture. 

The NoC technology attempts to solve the bandwidth bottleneck of traditional interconnects. In 
fact the classical interconnects such as shared busses do not scale when number of components to 
interconnect increases. NoCs are suitable to have a much more modular and flexible design flow. 
In additional, NoCs try to overcome fundamental physical issues introduced when using deep 
submicron (DSM) technology. In nanometer fabrication processes the largest part of delays is 
related to global wires and the interconnect propagation delay may exceed a clock cycle time 
needed by high-speed applications. 

Furthermore, because of physical limitations, henceforth it is extremely hard and even in some 
cases impossible to distribute a synchronous clock signal on the entire wide chip area. NoCs using 
Globally Asynchronous Locally Synchronous (GALS) techniques address this difficulty. In these 
techniques the chip area is divided into several independent clusters and each cluster is clocked by 
a different clock signal. The NoC architecture is the asynchronous global communication 
infrastructure which spreads on the entire chip. 

One of the most important issues in design of a NoC providing GALS system is to have a 
robust solution to interface clock boundaries. The main problem is to overcome the phenomenon 
of metastability and physical synchronization failure. The trade-off between robustness and 
latency/throughput is a major concern in design of such interfaces. 

One technique which seems the most compatible with the GALS paradigm is the use of a NoC 
with a fully asynchronous circuit design, in which the need of the asynchronous global 
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communication is naturally provided. This type of NoC can construct a GALS architecture by 
providing synchronous compliant interfaces to each local subsystem. Although the metastability 
could not be totally suppressed, an asynchronous NoC might reduce its possibility by limiting the 
place of its occurrence just to the interfaces between network and subsystems. 

This PhD thesis tries to describe the problems being encountered when designing a NoC for 
GALS architectures. The focus is on the distributed micro-networks developed at the LIP6 
laboratory (DSPIN: “Distributed Scalable Packet-switching Integrated Network” and, in 
particular, ASPIN: “Asynchronous Scalable Packet-switching Integrated Network”). In reality, 
DSPIN and ASPIN are two different implementations of the same generic NoC architecture. They 
are two different approaches to comply with GALS constraints. The first way (DSPIN) is to use a 
distributed multi-synchronous network, in which the routers are synchronous circuits. The second 
(ASPIN) approach is to have a fully asynchronous network architecture. As the general 
architectures and provided services of both networks are identical, DSPIN vs. ASPIN 
performances comparison, presented in this thesis, may help to answer this question: “Will future 
Networks-on-Chip be synchronous or asynchronous?” 

Thesis Overview 

In the following chapters and sections, I will first talk about the definition of problems concerning 
constructing Globally Asynchronous Locally Synchronous (GALS) architectures and the 
motivation of implementing asynchronous Networks-on-Chip.  Chapter 1 describes the issues 
about the clock distribution network in large synchronous systems, and explains the problem of 
metastability. It focuses on the definition of problems relating to the ASPIN implementation, and 
it gives an overview of the questions this thesis will address. 

Chapter 2 tries to introduce the state-of-the-art methods for GALS compatibility. The 
discussion will include the solutions for the problem of clock boundaries and synchronization 
failure. In this chapter some existing micro-network architectures compatible with GALS 
paradigm will be indicated, including DSPIN.  

As an asynchronous implementation of DSPIN, the ASPIN architecture will be discovered in 
chapter 3. Firstly a general architecture will be presented and it will be explained how ASPIN 
addresses the problem of long wires. Then, the architectures will be detailed and the behavior 
specification of different modules will be explained. 

Our robust solutions to interface the mixed and hybrid timing domains in GALS architectures 
are demonstrated in chapter 4. This chapter presents the detailed architectures and circuit 
implementations. Some experimental results are shown, as well as some physical layout 
examples. 

In chapter 5, I will explain the phenomenon of the network saturation. The network saturation 
threshold will be considered in our two approaches of DSPIN and ASPIN. This chapter describes 
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how the network saturation threshold could be improved by increasing the flit storage capacitance 
of the routers. It claims that the price may be much cheaper in ASPIN approach. I will discuss 
about the importance of the throughput on the network saturation threshold and the influence of 
the speed ratio between network and flit injectors, i.e. subsystems. Some simulation results are 
displayed. Finally this chapter proposes a new approach to improve the saturation threshold in 
large high-speed networks. 

A systematic physical performance comparison between DSPIN and ASPIN which are two 
implementation ways to have a NoC-based GALS architecture, will be presented in  Chapter 6. 
The considered physical performance parameters are Silicon Area, Communication Throughput, 
Packet Latency, and Power Consumption. As a critical issue the problem of long wires is taken 
into account. The experimental results demonstrated in this chapter could be thought as physical 
characteristics of ASPIN. 

One could find a summary of my thesis in the Summary section of this manuscript, just before 
appendixes. 

For the readers who are not familiar with Networks-on-Chip,  Appendix A presents the principle 
ideas about the NoC design paradigm, motivations, and perspectives. In this chapter the NoC 
design methodologies will be elaborated, and the current and future challenges in Systems and 
Networks on-Chip will be explained. 

As an introduction for who have no idea about asynchronous circuits,  Appendix B briefly 
introduces the asynchronous circuits, the design methodologies, and in particular the 
asynchronous data communication protocols. 

 Appendix C presents three different views of the specific basic cells of the asynchronous 
circuits, used in the designs illustrated in this thesis: the behavior as a VHDL model, the 
transistors net-list as a SPICE model, and the physical layout. 

And finally, at the end of the manuscript, the publications relating to this PhD thesis are listed. 

 

 

 

 

 



    

 

 
 

 

 

 

 



 

 

Chapter 1 

 Problem Definition 

The shrinking of processing technology in the Deep SubMicron (DSM) domain aggravates 
physical issues. As chip technologies scale down, the effect of wires on delay and power becomes 
predominant. Decreasing clock cycle time and increasing die sizes make it henceforth extremely 
hard, if not impossible, to distribute a single global clock signal over the entire chip area. In 
addition to the clock skew which is claiming a larger relative part of the total cycle time, the clock 
distribution network, needed to implement a globally synchronized signal, is demanding 
increasing portions of the power and area budget [1].  

The clock distribution network distributes the clock signal from a common point to all the 
elements that need it. The skew of the clock signals can severely limit the maximum performance 
of the entire system and create catastrophic race conditions in which an incorrect data signal may 
latch within a register. Highly symmetric and hierarchical clock trees are used to minimize clock 
skew, but an increase in clock signal delay is incurred, which does not make for high speed 
applications. Symmetric fractal H-Tree (demonstrated in Figure 1) is a common design example 
of clock distribution network for routing the clock signal to all parts of a chip with equal 
propagation delays to each part [2]. 

Even with H-Tree structured clock distribution networks the real amount of clock skew depends 
strongly on the physical size, the control of the fabrication process, and temperature variations. 
The difficulty in scaling such clock distribution networks is the primary reason for the recent 
effort placed on finding some new effective solutions, including the obvious solution of using 
globally asynchronous communication between locally synchronous regions [3]. A Globally 
Asynchronous Locally Synchronous (GALS) chip is divided into several independent clusters and 
each cluster is clocked by a different clock signal. The advantageous aspect of this method is the 
reducing of the problem of clock distribution to a number of smaller sub-problems. 
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Networks-on-Chip offers a structured approach to design a GALS architecture. Since NoCs 
span the entire chip, the network could be globally asynchronous part of the system, while the 
subsystem modules are the locally synchronous parts. Moreover, the principle idea of a NoC, in 
which a system is divided into several independent subsystems, helps to physically distinguish 
different timing domains. In other words, each subsystem could have its own clock domain 
without imposing any timing constraints on other clusters. Naturally this opportunity in such 
systems introduces some new design challenges, which will be addressed in the following 
chapters of this thesis. 

 

Figure 1. The first eight levels of an H-Tree (Clock Distribution Network) 

1.1 Clock Boundaries 

Figure 2 shows a 9-tile multi-clocked system arranged into a two-dimensional mesh. In the design 
of such GALS systems the main concern is the problem of clock boundaries, i.e. how separated 
synchronous domains can robustly communicate together. Transferring data between different 
timing domains requires safe synchronization. In fact sampling an asynchronous data into 
synchronous domain is similar to synchronizing the input data with the clock signal. Sampling the 

Clock Source 
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data just at the time that the data is changing (i.e. when there are setup-time and hold-time 
violations) may possibly cause synchronization failure. The most important issue in GALS 
paradigm is to prevent synchronization failures.  

 

Figure 2. A Multi-Clocked System arranged in Two-Dimensional Mesh Topology 

1.1.1 Metastability 

The metastability is the cause of the synchronization failure. The metastability is the possibility of 
a non-stable state to persist for a long (theoretically unlimited) period of time. In other words the 
metastability is an inevitable result of any attempt to map a continuous domain to a discrete one. 
There will always be points in the continuous domain which are equidistant from the points of the 
discrete domain, making a decision concerning which discrete point to select a difficult and 
potentially lengthy process.  

In effect a bistable device with hysteresis can enter into a metastable state and has a positive 
probability that it will remain indefinite for any given period of time, though over time the 
probability exponentially decreases. To better understand the difference between stability states 
Figure 3.a presents an example of a bistable system consisting of a ball and a hill. Clearly the 
location of the ball at the bases of the hill is much more stable than at the top of the hill. Actually 
at the hilltop the ball is in a metastable state because just for example the slightest air current 
would eventually cause the ball to roll down one side or the other. The ball at the hillsides is 
absolutely unstable. 

The flip-flop is an electronic device that is susceptible to metastability. It has two well-defined 
stable states, traditionally designated 0 and 1. Assuming the use of a positive edge triggered 
master-slave D type flip-flop (as displayed in Figure 3.b), when the rising edge of the clock (CK) 
occurs at a point in time when the input (A) is causing its master latch to transition, the flip-flop is 
highly likely to end up in a metastable state. This rising clock causes the master latch to try to 
capture its current value, where Y follows the value of X and X follows the value of Y. Either of 
these two signals cannot instantaneously change the level and it must transition through the 
analog region where the other is transitioning through its analog region. Figure 3.c plots the 
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transition of X versus Y and Y versus X. As can be seen, these two curves have three intersection 
points, showing three stable points. Two of these three points correspond to the stable states of 
logic 0 and logic 1. But, though in theory the third point is also a stable state and a latch could 
remain there indefinitely, in reality thermal and induced noise will jostle the state of the latch 
causing it to move from this metastable state into either the logic 0 or logic 1 state. The most 
perfectly caught metastable state (on the very top of the hill) results in the longest time required 
for the flip-flop to resolve itself to one of the stable states. 

 

Figure 3. Metastability: (a) Ball and Hill, (b) Master-Slave D type Flip-Flop, (c) X vs. Y and 

Y vs. X, and (d) Flip-Flop Output in Metastable state  

After the rising edge of the clock the slave latch is opened allowing the flip-flop output (B) to 
follow the latched value of the master. Figure 3.d shows the chronograph of the flip-flop output 
when it is in a metastable state. The oscillating output has undesirable intermediate values 
between logic 1 and logic 0. Here the output finally settles down to 0, though unpredictably it was 
probable to settle down to 1. How long it takes to settle down (duration of the metastable state) is 
not predictable, and depends on the technology of the flip-flop. When the transition curves of X 
and Y are sharp the probability of remaining in the metastable state is reduced, though it is always 
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unpredictable. The undesirable value of the output can propagate in combinational parts of the 
circuit and causes the failure in the functionality of the system. 

1.2 Asynchronous Network-on-Chip 

Presenting novel NoC architectures to cope with Globally Asynchronous Locally Synchronous 
paradigm issues is now a very high active research domain of NoC technologies. Potentially, 
NoCs are compatible with the idea of GALS that needs to clusterize the chip into several 
independent subsystems. But the question that remains is how the network itself must be clocked, 
and how we can deal with the problem of synchronization and metastability on clock boundaries.  

 

Figure 4. A Multi-Clocked System using an Asynchronous Network 

Since one obvious way to eliminate the problem of clock skew is to use asynchronous logic, 
one can suppose the use of an asynchronous circuit for the global communication architecture. 
This is not the only way as will be seen in the next chapter. But the asynchronous design is a 
natural approach to construct GALS architectures. A large number of locally synchronous islands 
can communicate together via a global asynchronous network which does not involve the issue of 
synchronization. The possibility of the synchronization failure will be limited only at the network 
interfaces, where synchronous data has to enter into the asynchronous network, and where 
asynchronous data is obligated to go into the synchronous subsystems. In Figure 4 the black 
arrows resemble required synchronizing modules. 

1.2.1 Clock Boundary Interfaces 

Connecting synchronous IP cores to the asynchronous network requires designing some special 
interfaces involving certain serious problems. As an important responsibility, this kind of 
interfaces has to provide a robust synchronization. The increase of synchronization safety is often 
accompanied by a penalty on latency. To achieve performance, with any choice of synchronizer, 
such interfaces must fulfill the maximum throughput of one transmitted data per clock cycle, at 
the same time of optimizing silicon area and minimizing latency. Furthermore, the clock boundary 
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interface is involved to the flow control issues too. Overcoming all these problems,  Chapter 4 
describes the design of new interfaces well-suited to be instantiated at clock boundaries of an 
asynchronous NoC. 

1.2.2 Design Complexity 

In synchronous circuits an unpredicted variation in propagation delays possibly results in a serious 
malfunction of the system. Delay-insensitive asynchronous circuits can operate correctly in 
presence of variable delays in gates and wires. As a result a delay-insensitive asynchronous NoC 
will strongly simplify the work of the system designer. The network’s modules can be instantiated 
by a plug-and-play fashion, without any timing constraint. 

Usually a delay-insensitive asynchronous circuit relies on a delay-insensitive data encoding. 
The use of delay-insensitive data encoding (such as dual-rail) is often accompanied by more logic, 
as needed for extra data lines and required completion detection units. The area optimization is a 
major concern in design of NoCs which are extremely cost-constrained circuits.  

The design of a robust and delay-insensitive asynchronous circuit is not evident and due to the 
heavy restrictions such systems are complex to implement in a CMOS technology. Additionally 
there is very few synthesis tools for asynchronous circuits. A Signal Transition Graph (STG) is a 
common way to formalize the timing diagram, although defining an STG is not easy, especially 
for large systems.  Chapter 3 presents the asynchronous implementation and corresponding design 
complexities for ASPIN distributed NoC architecture. 

1.2.3 Long Wires Issue 

In the shrinking of process technology the length of local wires usually shrinks accordingly. In the 
contrary, since the die size does not decrease, global wire lengths do not reduce. The largest part 
of the delays is related to the global (long) wires now.  

In a distributed Networks-on-Chip the global wires are the wires connecting routers. Long 
wires in a NoC likely have large propagation delays incompatible with the required throughput. 
Long wires could be a performance bottleneck and are a real crucial issue in design of NoC 
architectures. 

1.3 Performance Comparison 

According to the fact that both synchronous and asynchronous circuits have their own advantages 
and disadvantages, it is not clear what is the best choice to implement a NoC-based system 
compatible with GALS paradigm.  Chapter 5 and  Chapter 6 are an attempt to predict whether 
future NoCs will be synchronous or asynchronous [4]. We believe that the answer of this question 
could be found by analyzing performance parameters of two synchronous and asynchronous 
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network providing the same services and having the same general architectures. DSPIN (briefly 
described in Section  2.6) and ASPIN (detailed in  Chapter 3 and  Chapter 4) are compared from the 
viewpoint of silicon area, power consumption, communication throughput, communication 
latency, and network saturation threshold. 

1.3.1 Saturation Threshold 

Any interconnect saturates when the average offered load reaches a point called saturation 
threshold, where communication latency becomes unpredictable and exponentially increases. 
Saturation threshold improvement is the main motivation supporting the NoC paradigm.  

The exact value of saturation threshold depends on the traffic load, average packet length, 
destination distribution, and distributed buffering capacity. These arguments should be taken into 
account as parameters of a generic simulation platform in order to evaluate the value of saturation 
threshold.  

Another issue in this kind of simulation is the difference between levels of modeling: Traffic 
generator and analyzer ask for a system-level modeling, while gate-level models are appropriate 
for the asynchronous network. 

The low value of saturation threshold (an important limiting factor for delay sensitive 
applications) convinces the system designers to pay more for ameliorating this key feature. A well 
known and efficient solution to improve the network saturation threshold is to grow buffering 
capacity of the network. But as a drawback, extra buffering capacity means extra power and area. 

On the other hand, although Networks-on-Chip are much more scalable than traditional on-chip 
interconnects, network saturation can still become the system bottleneck. Scalability in NoCs 
means that the value of saturation threshold seems to be roughly independent on the number of 
communication units. Nevertheless when number of cores generating traffic augments the 
saturation threshold degrades and in huge systems really becomes a significant limiting factor. As 
a result the need of some new approaches seems necessary. 

1.3.2 Physical Performance Parameters 

Abstraction is mandatory to manage complexity in design and modeling. While abstract modeling 
and automated synthesis enables complex system design, such an approach increases the 
variability of the physical and electrical parameters. Such parameters can determine if a NoC is 
cure or curse. 

In order to evaluate physical performance parameters close to the exact values, a post layout 
model of the design components is needed. That is to say before extracting transistor-level 
electrical models, gate-level structural models must be developed and then the cells must be 
placed and the design must be routed.  
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As emphasized before, due to the DSM technology long wires are now the dominant factor of 
delay and power consumption, and as a consequence in the evaluation of physical performance 
parameters they also have to be considered. In a NoC the exact value of the physical parameters 
directly depends on the cluster size. 

1.4 Summary 

Because of physical limitations, henceforth it is extremely hard, if not impossible, to distribute a 
global synchronous clock signal over a wide chip area. As a solution, Networks-on-Chip using 
Globally Asynchronous Locally Synchronous techniques divide the chip area into several 
independent synchronous clusters. Each cluster is clocked by a different clock signal and thereby 
the problem is reduced to a number of smaller sub-problems. The network could be the 
asynchronous global communication infrastructure of the system. But two basic questions remain 
which are how the network itself must be clocked and how we can deal with the problem of 
synchronization at clock boundaries. Accordingly, this PhD thesis will address the following 
questions: 

• Presenting a novel asynchronous NoC architecture to cope with the issues of the Globally 
Asynchronous Locally Synchronous paradigm and to reduce the possibility of 
metastability along the packet path. This architecture must also address the crucial issue 
of the global long wires which likely have large propagation delays, incompatible with 
the required throughput. 

• Presenting a new design of some special interfaces to be instantiated at clock boundaries. 
These architectures have to provide a robust synchronization and with any choice of 
synchronizer must fulfill the maximum throughput of one data per clock cycle.  

• Presenting an evaluation of the network saturation threshold which is a key feature and 
the main motivation supporting the NoC paradigm. This evaluation has to consider the 
influence of two parameters: the flit storage capacity of the network and the network 
throughput. Moreover, since when the number of cores generating traffic augments the 
saturation threshold degrades and in huge systems becomes the system bottleneck, a new 
approach to improve the saturation threshold must be addressed. 

• Presenting a systematic comparison between physical performance parameters in two 
synchronous and asynchronous networks providing the same services and having the 
same general architectures, as it is not clear which architecture type is the best choice to 
implement. As a predominant factor, in the evaluations the long wires effects must be 
taken into account too. 

 



 

 

Chapter 2 

 State of the Art 

Regarding the problems in multi-clocked systems and the synchronization failure, several 
solutions have been proposed. Related solution varies according to various hypotheses on phases 
and frequencies of the clock signals. Some authors (e.g. [5], [6], and [7]) have suggested 
plesiochronous solutions which rely on exact or nearly exact frequency and phase matching of 
clocks. The Globally Pseudochronous Locally Synchronous scheme (GPLS) is proposed in [8]. 
This clocking scheme (quasi-synchronous) distributes a clock with a constant phase difference 
between clusters. Mesochronous solutions are more general. In these approaches (e.g. [7], [9], 
[10], and [11]) it is argued that distributing the same frequency in several clock domains is not too 
difficult. The main problem is the undefined skew between clock phases. In heterochronous 
approaches (e.g. [7], [12], [13], and [14]), all clock signals can have different frequencies, but 
with fixed and integer ratios. Table 1 summarizes these conditions.  

Table 1. Timing-Dependent Methods 

  Δ Frequency  Δ  Phase 

Synchronous  0  0 

Plesiochronous  ε  ε 

Pseudochronous  0  Constant 

Mesochronous  0  Undefined 

Heterochronous  Rational  Undefined 

Multi‐synchronous  Undefined  Undefined 

Asynchronous  ‐  ‐ 
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Most of these timing-dependent methods roughly avoid the need for global synchrony, and in 
particular, popular mesochronous clock distribution has been used in a variety of commercial 
products. For instance Arteris’s NoC, called Danube, utilizes asynchronous bridges between 
locally mesochronous network clusters [15] and Intel’s 80-core tera-flap processor (mentioned in 
 A.1) uses a 5-port wormhole packet-switching router with mesochronous clocking scheme. 

2.1 Multi-Synchronous NoCs 

In design of a high-performance SoC, a fundamental challenge may be the capability of operating 
under totally independent timing assumptions. Typically the clusters (subsystems) of a large 
system are synthesized independently and have individual timing characteristics. To achieve 
maximum performance, each cluster should operate with its own timing limitations.  

Such a multi-synchronous system contains several synchronous subsystems clocked with 
completely independent clock signals. The routers are distributed in each subsystem and are 
connected to the north, south, east, and west neighbors by means of bidirectional point-to-point 
links. This architecture represents the problem of communication and synchronization failure at 
each clock boundary between each two neighbor routers. 

 

Figure 5. Two adjacent clusters in a multi-synchronous system 

Relating to this problem, several authors (e.g. [7], [16], [17], and [11]) have proposed different 
types of special FIFO architectures that can be used as robust interfaces. In these FIFOs the 
producer and consumer sides use two different clock signals, hence called bisynchronous FIFOs. 
As shown in Figure 5, bisynchronous FIFOs (SS_FIFOs in the figure) can be instantiated between 
each two adjacent routers. In this approach each router is a synchronous circuit and clocked by the 
local clock signal of the encompassing subsystem. In this thesis in  Chapter 4 the architecture of a 
new bisynchronous FIFO will be presented too. 
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One other possibility of clocking could be that the routers use a dedicated mesochronous clock 
signal, as displayed in Figure 6. Two advantages can be accounted for these new clocking ways. 
First, if the routers are clocked by different clock signals with different frequencies, the 
performance of the network in terms of latency and throughput is not easy to be predicted. Each 
path between a source and a destination includes a number of routers operating with individual 
speeds. Additionally the slow clusters become bottlenecks for all paths crossing them. The use of 
a single and dedicated clock signal for the network resolves both problems, as all routers will 
work with the same speed. The second advantage could be that the routers can likely use a faster 
clock signal than the subsystems. The use of a fast mesochronous dedicated clock signal for the 
network reduces the network latency and as will be explained in  Chapter 5 could provide a better 
saturation threshold. 

Nevertheless, the mesochronous network slightly complicates the design as it creates another 
clock boundary between the router and the Network Interface Controller (NIC). As robust 
interfaces, two bisynchronous FIFOs can be instantiated between the router and NIC of each 
subsystem. See Figure 6. Whereas mesochronous clocking way assumes that the clock frequency 
over the entire network is the same and it accepts only undefined phase skews, in order to 
optimize the network cost, within the network architecture we can use mesochronous solutions 
which have less complex design. Figure 6 proposes to use two mesochronous FIFOs (SS_FIFO´) 
(e.g. that of [11]) between each two adjacent routers, instead of bisynchronous FIFOs. 

 

Figure 6. Two adjacent clusters in a multi-synchronous system using a mesochronous 

network 

2.2 The Asynchronous Approach 

A fully asynchronous NoC profits from the same advantages indicated above for a mesochronous 
network. The asynchronous network operates with a speed independent from the subsystems 
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clocks, and in particular the network works as fast as possible. Different from synchronous 
circuits based on the worst cases, an asynchronous circuit works at the average case conditions. 
Furthermore, as explained in  Appendix B an asynchronous network offers some other beneficial 
features, such as zero idle state power dissipation, actual-case latency, plug-and-play reusability, 
delay insensitivity, etc.  

An asynchronous NoC reduces the number of synchronizing interfaces required to be 
instantiated in the network. In fact an asynchronous NoC can construct a GALS architecture if it 
provides synchronous compliant interfaces to each local subsystem. In this case, the 
synchronization failure can only happen at the network interfaces in the first and last steps of each 
packet path, i.e. in the source cluster where the synchronous data must be converted to an 
asynchronous form and in the destination cluster where the asynchronous data must be entered 
into a synchronous subsystem. Selecting a well-behaved handshake protocol in an asynchronous 
circuit reduces the risk of metastability.  

 

Figure 7. Two adjacent clusters in a multi-clocked system using an asynchronous network 

Figure 7 illustrates the use of two special types of FIFOs instantiated at the network boundaries, 
between the synchronous network interface controllers and the asynchronous routers. 
Asynchronous-to-synchronous FIFO (AS_FIFO in the figure) is that which has an asynchronous 
data producer and a synchronous data consumer, and likewise the other FIFO is called 
synchronous-to-asynchronous FIFO (SA_FIFO).  

Using FIFOs to interface mixed timing systems couples two fundamental issues which need to 
be considered in designing such interfaces: flow control (high level issue) and synchronization 
(low level issue). As will be explained this coupling reduces the need of hardware synchronizer to 
the handshake signals that are used for the flow control. Until now the design of a variety of 
Async-to-Sync and Sync-to-Async FIFO architectures have been presented (e.g. [16], [18], [19], 
[20], and [21]). The architecture of most of these published solutions is strongly dependent on the 
choice of a specific synchronizer. Designing two new Sync Async FIFO architectures 
independent from the selected synchronizer is one of the principle purposes of this thesis and 
 Chapter 4 is associated to this problem. 
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2.3 Synchronizer 

The goal of a synchronizer is to prevent metastability. An interesting bibliography of the 
metastability and the related solutions is assembled in [22]. Some authors (e.g. [3], [19], [20], 
[21], and [23]) have recommended stretching the clock signal by dynamically modifying the cycle 
time (generating stoppable or pausible clocks) in order to satisfy the setup-time and hold-time. In 
these methods, instead of synchronizing asynchronous inputs with the clock, the clock is 
synchronized with asynchronous inputs [18]. The synchronizer must be able to detect that it will 
be in the metastable state and it stretches the clock cycle of the local system until the probability 
of metastability is zero. For more than one asynchronous input, clock must be stretched until all 
synchronizers ensure that the metastable states would not occur. As a consequence, as it is 
explained in [12] and [24], these solutions are not well suited for high speed designs with IP cores 
having large clock buffer delays. 

Some others (e.g. [25], [26], and [27]) suggest using different kind of Schmitt triggers to avoid 
the metastability. In a Schmitt trigger when the input is higher than a certain chosen threshold the 
output is high, when the input is below another chosen threshold (lower) the output is low, and 
when the input is between the two the output retains its value. The trigger is so named because the 
output retains its value until the input changes sufficiently to trigger a change. Although the 
output of such synchronizers has well defined values (VDD or VSS) and undesirable metastable 
state values are prevented to propagate, this does not solve the problem because the precise 
duration of the metastable state remains unpredictable. The transition of the output is 
asynchronous compared with the clock signal of the next stage. 

Additionally, as shown in [28], the Schmitt triggers can  themselves go to a metastable state. In 
reality, the metastability remains poorly understood in some circles, and various engineers have 
proposed their own pet circuits said to solve or filter out the metastability. Typically these circuits 
simply shift the occurrence of the metastability from one place to another [29]. Apparently a 
widely held belief is that the metastability is an unavoidable characteristic and cannot be totally 
eliminated [30]. 

However, the probability of the metastability, typically expressed in terms of Mean Time 
Between Failures (MTBF), can be bounded to an acceptable value by a carefully designed 
synchronizer [31], [32]. MTBF gives the average time interval between two successive failures. In 
quantitative terms, the rate of entering metastable state for a simple flip-flop is TW×fD×fC, where 
TW is a parameter related to the metastable susceptible time window of the flip-flop, fD is the 
frequency of pushing data across the clock domain boundary, and fC is the clock frequency. For a 
0.18 µm technology (where TW≈50ps [29]) with a clock frequency of 200 MHz and receiving data 
every 1000 cycles, that rate is 2000 per second (MTBF=0.5 ms) ! This is clearly not acceptable as 
MTBF is typically designed to be at least ten times the expected life of the product. 
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The simplest (and the most common) way to increase MTBF is to use two cascaded Flip-Flops, 
as shown in Figure 8.a. This approach allows for an entire clock period for the metastable states in 
the first synchronizing flip-flop to resolve themselves. As the probability that the metastable state 
continue longer than a time T decreases exponentially with T, quantitatively, the allowed settling 
time (T) provides an extra safety factor of eT/τ, where τ is the settling time constant of the flip-flop 
determined with regard to the technology [31]. So: 

CDW

T

ffT
eMTBF

τ/

=  

The MTBF for two cascaded Flip-Flops in a 0.18 μm technology (where τ ≈10ps [29]) with a 
clock frequency of 200 MHz  and receiving data every 1000 cycles can be estimated to e500/2000, 
or about 10206 years!  

 

Figure 8. Cascaded Flip-Flops: (a) Robust synchronizer and (b) Conservative synchronizer 

As conservative synchronizers, conservative designers can use more than two flip-flops. The 
MTBF can be improved by using several cascaded flip-flops (e.g. that displayed in Figure 8.b), 
but if synchronization latency is not an issue. Increasing the latency is the usual penalty for 
obtaining extra safety. We believe that the synchronizer choice must be a design decision 
depending on the application requirements. A generic architecture should support the trade-off 
between latency and robustness. 
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2.4 A Case Study of a Mixed-Timing FIFO Design 

Tiberiu Chelcea and Steven M. Nowick have presented a mixed-timing FIFO design [16] using a 
modular approach: they defined a set of basic interfaces, both synchronous and asynchronous, that 
can be assembled to obtain a FIFO that meets the desired timing assumptions on both the senders 
and receivers end. Thus, the design of a mixed-timing FIFO is reduced to reusing and assembling 
a few pre-designed components. In other words these designs are adaptable to scenarios where 
communication can be between mixed-clock synchronous modules, asynchronous-synchronous 
modules, or just between asynchronous-asynchronous modules. 

The FIFO employs a ring of storage elements in which tokens are used to indicate full or empty 
state. This simplifies detection of the state of the FIFO (full or empty) and thus makes 
synchronization robust. During continuous steady-state data transmission the probability of 
synchronization failure is zero. Synchronizers are added to the two global control signals (full and 
empty). The added latencies through the synchronizers may cause overflow/underflow. For 
example, when the FIFO becomes empty, the consumer interface is stalled two clock cycles later. 
So in the next clock cycle the consumer might request and read an empty cell. As a solution, the 
definition of full and empty are redefined and the main concern now is to detect when the FIFO 
is heading towards a full or empty state, and stop the respective interface in time (i.e. full 
means 0 or 1 cell being unused, while empty means only 0 or 1 cells being used). This helps in 
hiding the synchronization latency introduced between the state detection and the input/output 
handshaking.  

Due to the early detection of full the producer may see an n-place FIFO as an n-1 place one. 
And, the early detection of empty may cause the FIFO to deadlock: it is possible that the FIFO 
still contains one data item, but the requesting consumer is still stalled. As the possibility of 
stalling the consumer when there is a single valid data item in the FIFO should be avoided, a 
bimodal empty detector is used. The detector, in addition to computing the new empty 
definition, also computes the true empty one. 

Although these architectures are basically designed for only a pair of cascaded flip-flops as a 
synchronizer, for arbitrary robustness the designer might use more than two. In these new designs 
the definitions of new full and new empty have to change in order to avoid overflow/underflow. 
For example for k cascaded flip-flops the FIFO is full when there are no more than k empty cells, 
and the FIFO is empty when there are no more than k full cells. Notice that to avoid deadlock the 
normal empty detector must still be used. 

However, the new implementation (as a solution for providing robustness) may have a negative 
impact on the throughput of the consumer interface, as for example for three cascaded flip-flops, 
when the FIFO has two data items and there have not been any recent read request, the two data 
items will be dequeued in three clock cycles, whereas with the basic FIFO (with two cascaded 
flip-flops) these two data items can be dequeued in two clock cycles.  
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Finally, the implementation of these mixed-timing FIFOs presented in [16] is based on ad-hoc 
design. This design uses a tri-state bus for the read action and complex cells for full/empty 
detection, and thus cannot be handled easily by standard tools.  

2.5 Case Studies for GALS Compatible NoCs 

Most of previously published NoCs (such as SPIN [33], Dally’s NoC [34], AEthereal [35], 
Nostrum [36], xPipes [37], CLICHÉ [38], Octagon [39] and Spidergon [40], SoCBUS [41], 
HERMES [42], aSoC [43], SoCIN [44], BFT [45], BONE [46], and Proteo [47]) are based on 
synchronous circuit techniques. However, in the literature until now there are some on-chip 
interconnects which employ fully asynchronous circuits. These include Chain [48], QoS [49], 
QNoC [50], Nexus [51], ANoC [52], and MANGO [53]. As two case studies I briefly describe 
MANGO and ANoC architectures as follows. 

2.5.1 MANGO 

The MANGO (Message-passing Asynchronous Network-on-chip providing Guaranteed services 
over OCP interfaces) architecture, developed at the Technical University of Denmark, is an 
asynchronous NoC, targeted for coarse-grained GALS-type SoC [54]. MANGO provides 
connection-less Best Effort (BE) routing as well as connection-oriented Guaranteed Services 
(GS). Guaranteed services connections are established by allocating a sequence of Virtual 
Channels (VCs) through the network. The routers implement VCs as separate physical buffers. A 
scheduling scheme called ALG (Asynchronous Latency Guarantees), schedules access to the 
links, allowing latency guarantees to be made. 

The router consists of two separate routers: the BE router and the GS router. The BE router 
implements a source routing scheme. The three MSBs of the packet header indicate one of five 
output ports. After passing the router, the header is rotated three bits, positioning the header bits 
for the next hop. With a flit size of 33 bits (of which one is the end-of-packet bit) it is thus 
possible to make only 10 routing hops. 

While the routers themselves are implemented using area efficient bundled-data circuits, the 
links implement delay-insensitive dual-rail data encoding. This makes global timing robust, 
because no timing assumptions are necessary between routers. However pipelining is necessary in 
order to keep performance. 

2.5.1.1 Network Adapter 

In the MANGO architecture the router has a number of unidirectional ports of which two are local 
ports. The local ports connect to a module called the Network Adapter. As a network interface 
controller, the Network Adapter (NA) provides OCP-based standard socket interface, based on the 
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primitive routing services of the network. The NA implements a Core Interface (CI) at the core 
side and a Network Interface (NI) at the network side. The GALS architectures are enabled as the 
NA implements synchronization between the clocked OCP interfaces and the asynchronous 
network. Its design is a balanced mix of synchronous and asynchronous circuit parts. 

Employing a two cascaded flip-flops as a synchronizer on signals requiring synchronization 
incurs an overhead on system performance (in terms of packet latency and communication 
throughput). In the NA a two-phase handshake channel is implemented in order to reduce the 
synchronization overhead. This is converted in the asynchronous domain to a four-phase protocol 
compliant with the handshaking of MANGO. 

2.5.2 ANoC 

ANoC, a complete Asynchronous NoC architecture adapted to GALS systems, is proposed and 
developed by CEA-LETI (Commissariat à l’Energie Atomique – Laboratoire d’Electronique et de 
Technologie de l’Information) of Grenoble [52]. ANoC uses Virtual Channels (VCs) to provide 
Quality-of-Service (QoS), and is implemented in Quasi-Delay-Insensitive (QDI) asynchronous 
logic using four-phase handshake protocol and one-hot (1-of-4) data encoding. 

The ANoC communication architecture is composed of nodes, links between nodes, and 
computation resources. The NoC asynchronous nodes are the basic switching elements of the 
network. They are responsible to handle the wormhole protocol and arbitrate between any 
conflicting packets. Each flit is composed of 32-bit data and 2 control bits where the 34th bit 
encodes the begin-of-packet and the 33rd bit encodes the end-of-packet. 

The packet header contains a field path-to-target in order to perform the packet routing from 
one initiator to a target. The static path between initiator and target resources are programmed and 
stored in the initiator resources. Then the nodes arbitrate between incoming requests. Each node 
uses the two LSB bits and shifts the path-to-target field for the following node. The path-to-target 
field is encoded on 18 bits, which allows crossing at most 9 different nodes in the network 
topology. 

Even if the routing is deterministic, the routing paths between the resources are determined 
using a dynamic routing algorithm called “odd-even turn model” adaptive routing algorithm [55]. 
By using a virtual channel priority scheme and an adaptive routing algorithm some packets can be 
guaranteed through the network. The data paths are separated in real-time and best-effort packets. 
The real-time packets must not overlap while the best-effort packet may overlap. Real-time 
constraints are checked at system level by simulating the complete application on the network 
architecture. 

ANoC and its related design methodology have been applied to the design of a prototype chip 
in a 130 nm STMicroelectronics CMOS technology, called FAUST. The FAUST chip (Flexible 
Architecture of Unified System for Telecommunication) [56], arranged in a two-dimensional 
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mesh topology, integrates 20 asynchronous NoC nodes, 23 synchronous units including ARM946 
processor core, embedded memories, various IP blocks, reconfigurable data paths engines, and 
one clock management unit to generate the 23 distinct clock domains. The 20 NoC nodes 
represent about 15% of the overall area. 

2.5.2.1 Network Interface 

To integrate any synchronous IP within ANoC architecture a dedicated network interface 
performs two main tasks: the synchronization between the synchronous and asynchronous logic 
domains, and providing all facilities to access the NoC communication infrastructure including 
network routing path programming, network data packetizing, and IP core configuration. In 
design of such an interface two technical points have been addressed: On-chip GALS interfaces 
between the synchronous and asynchronous NoC domains, and Off-chip interfaces to 
communicate off-chip at NoC level [57].  

The on-chip GALS interfaces are based on a pre-existing multi-clock synchronous FIFO using 
gray code [58]. Even if less efficient compared with Chelcea and Nowick FIFO, the aim of this 
design has been mainly to be adapted as much as possible to standard synchronous tools. Because 
the timing domains between the synchronous and asynchronous sides are distinct, it is mandatory 
to resynchronize, for example in the asynchronous-to-synchronous FIFO, the write pointer with 
the read clock in order to generate the empty information. This synchronization is done by a 
standard two cascaded flip-flop synchronizer. Using a gray code to encode the read and write 
pointers guarantees that if a metastability problem occurs in the first flip-flop stage, the empty 
decision is always correct, but at most generated one clock cycle later. Using a multi-clock 
domain gray FIFO in an asynchronous environment needs to generate a local clock pulse to the 
FIFO when a new transfer is required by the asynchronous side, and to handle differently the full 
and empty flag of the asynchronous side within the FIFO. 

The Asynchronous-to-Synchronous gray FIFO is composed of: 

• 8 × 34-bit registers 
• A write pointer and a write clock which is generated by the asynchronous side of the 

GALS interface 
• A read pointer and a read clock which is actually equivalent to the clock of the 

synchronous domain 
• Write enable, read enable, full, and empty FIFO control signals 

And similarly the Synchronous-to-Asynchronous gray FIFO is composed of: 

• 8 × 34-bit registers 
• A read pointer and a read clock which is generated by the asynchronous side of the GALS 

interface 
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• A write pointer and a write clock which is actually equivalent to the clock of the 
synchronous domain 

• Read enable, write enable, empty, and full FIFO control signals 

On the asynchronous side of, for example, A-to-S FIFO, since the write clock is generated only 
when a new asynchronous write is requested, it would be possible to set the full signal after the 
last write, but it would not be possible to clear the full signal after a read on the synchronous side. 
As a solution, the full information is regenerated according to the relative phases of the write 
clock and read clock: the full signal is cleared when full was true, read clock is low (read pointer 
register value is stable), and the comparison between write and read pointers shows a non-full 
situation. 

Some timing margins must be respected: the read clock and write clock high-pulses must be 
long enough so that the gray pointer register outputs are stable, as well as the combinational test 
between the read and write pointers. Additionally, a trickier timing requirement is to guarantee 
that the input FIFO signals (e.g. write data and write enable) are stable before the write clock 
pulse is generated. This has been tuned by the clock tree insertion time. As a drawback, a special 
care must be given to the clock tree synthesis during place and route within the GALS interfaces 
in order to manage properly the clock tree synthesis and insertion time. 

The ANoC off-chip interface shows a dual synchronous/asynchronous NoC port mode. The 
architecture is built with the on-chip NoC A-to-S and S-to-A interfaces, for the synchronous port, 
and with the asynchronous Quasi-Delay-Insensitive (QDI) to Bundled Data (BD) protocol 
converters, for the asynchronous port. In fact internal QDI protocol does not fit off-chip 
communication, because four-rail is too costly in number of pads, and four-phase is too slow as 
pad latency occurs four times per data transfer. 

2.6 DSPIN 

Looking for cost-effectiveness, in continuation of the SPIN micro-network, LIP6 developed a new 
distributed Network-on-Chip (called DSPIN, i.e. Distributed Scalable Packet-switching Integrated 
Network). DSPIN has been designed generally to support large-scale clusterized shared memory 
MP-SoCs. This new architecture is an answer to the problems encountered during the physical 
implementation of SPIN micro-network architecture [59], the first published attempt of NoC 
technology design. Among these faced difficulties are: implementation complexity of adaptive 
routing algorithms and eventual lack of in-order-delivery, inflexibility of fat-tree topologies, 
inappropriate synthesizability of hard macro-cells, and GALS incompatibility of a centralized 
NoC architectures. 

Different from the SPIN architecture in which the network topology was a 4-ary n-dimensional 
fat-tree and the routers were centralized as a hard macro-cell, the DSPIN network topology is a 
two-dimensional mesh and the routers are physically distributed within the clusters. The size and 
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shape of the clusters have no constraints, but the mesh (grid-based) topology has to be respected. 
Refer to Figure 2.  

 

Figure 9. Clock Boundary between two adjacent DSPIN Routers 

The first and most important projection of the DSPIN architecture was to respect the GALS 
paradigm. DSPIN exploits the multi-synchronous approaches to solve the clock boundary issues. 
In order to provide point-to-point asynchronous (or mesochronous) links the connections between 
routers are implemented as special bisynchronous (or mesochronous) FIFOs. Refer to Figure 5 
and Figure 6. As DSPIN uses the storage strategy of input buffering, the special FIFOs are 
instantiated inside the input ports (IN). Figure 9 displays the clock boundary between two 
adjacent routers in the DSPIN architecture. 

DSPIN is a wormhole packet-switching network. Packets are divided into flits (flow control 
units) which consist of only one phit (physical unit). The smallest physical unit handled by the 
routers, a phit (or a flit) in DSPIN is a single 32-bit data word accompanied by 2 control bits. 
Figure 10 shows the format of DSPIN’s packet. The first flit of a packet is the packet header. It 
includes the destination cluster address, defined by absolute coordinates of (Y, X). When an input 
port of the router receives the header of a packet, where the flag indicating the beginning of the 
packet (BOP) is 1, the destination address field (the eight LSB bits) is analyzed and the flit is 
forwarded to the corresponding output port. The rest of the packet is also forwarded to the same 
port until the trailer of packet, where the flag marking the end of the packet (EOP) is 1. When 
there are simultaneous requests for the same output port, the Round-Robin algorithm will be used 
to schedule the requests in order to avoid starvation. 

According to the fact that DSPIN is a direct network, each router in addition to the north, south, 
east, and west neighbor routers, is connected to the local subsystem. To route packets between 
these five different sides, from input ports to output ports, DSPIN uses the distributed X-First 
algorithm guaranteeing the in-order-delivery property for the network. With this algorithm, 
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packets are first routed on the X direction and then on the Y direction. As a result, there is no need 
to connect the north and south input ports to the west and east output ports (see Figure 12), 
decreasing the hardware complexity.  

 

Figure 10. DSPIN’s Packet format 

The interconnection between the input and output ports in DSPIN is composed of a set of four 
different signals, Out_Req, Data, Put, and Get, as illustrated in Figure 11. Out-Req, connecting 
the routing algorithm module (implemented in the input port) to the scheduling algorithm module 
(implemented in the output port), indicates that which output port must be allocated to the 
incoming packet. With regards to the Round-Robin algorithm, the output port then selects the 
corresponding input. Afterward, the sequence of flits appeared on Data moves from the input port 
to the output port, whenever Get and Put are both asserted. In fact Put is the ROK (not empty) 
signal of the input FIFO and so it declares that there is a flit to be transferred. On the other hand, 
as Get follows the WOK (not full) signal of the next router’s FIFO, it states that the flit can be 
accepted by the next stage. Since at the same time for each input port there is only one Get 
following states of the next hops, a simple OR Gate can be used to provide the Read signal of the 
input port’s FIFO buffer. 

0

1

X

X

X

X

Y

Y

Y

Y

0

0

 

 

 

 

 

 

 

 

0 

0 

 

 

 

 

 

 

 

 

1 

0 

 

 

 

 

 

 

 

 

Payload Data 

H
eader 

Trailer 

MSB 

LSB 

BOP (the flag of Begin-Of-Packet) 

EOP (the flag of End-Of-Packet) 

X Coordinate of the destination 

Y Coordinate of the destination 

Bits available for the network interface use 



26  Chapter 2 – State of the Art 
 

 

 

Figure 11. General Architecture of DSPIN’s Input / Output Ports 

2.6.1 Long Wire Issue 

As emphasized before, in deep submicron processes the largest part of the delays is related to the 
long wires. Seeing that the place and route tools have difficulties to cope with long wires, in 
multi-million gates SoCs, the timing closure can become a nightmare [60]. DSPIN architecture 
attempts to solve this problem by partitioning the SoC into isolated clusters. This allows 
performing physical synthesis and timing closure analysis for each cluster independently, without 
any time constraints between different clusters. 

As shown in Figure 12, the DSPIN router is not a centralized macro-cell. The router is split in 
five separated modules (North, South, East, West, and Local) that are physically distributed on the 
cluster borders. This feature allows us to distinguish two classes of wires:  

• Intra-Cluster Wires, which connect the modules of the same router (black arrows) 

• Inter-Cluster Wires, which connect the modules of two adjacent routers (white wide 
arrows) 
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As shown, the intra-cluster wires are spread out along the cluster. Though the length of these 
wires is bounded by the physical area of a given synchronous domain, they are long (even the 
longest) wires and likely require to be latched and use repeaters. On the contrary, as in most of the 
times the corresponding modules of each two neighbor routers, for example the east module in 
cluster (Y, X) and the west module in cluster (Y, X+1), could be very close to each other, the 
inter-cluster wires are usually short wires. Once the clusters are individually synthesized, the    
pre-placed and pre-routed clusters can be placed one beside the other and be connected one to the 
other, in a plug-and-play fashion. 

 

Figure 12. DSPIN’s Router Architecture 

2.7 Summary 

The principal ideas and the state-of-the-art methods regarding GALS compatibility and 
synchronization failure have been introduced. Networks-on-Chip offer a structured approach to 
design a multi-clocked system, and as relevant approaches multi-synchronous and fully 
asynchronous NoC paradigms have been described. While in a packet path a multi-synchronous 
approach represents the possibility of synchronization failure at each clock boundary between 
each two neighbor routers, an asynchronous NoC limits the synchronization failure only at the 
network interfaces, where the synchronous data has to enter into the asynchronous network and 
the asynchronous data into the synchronous subsystems. 

As robust interfaces, in a multi-synchronous NoC a bisynchronous FIFO (in which the 
consumer and producer sides use independently their own clock signals) can be instantiated at 
clock boundaries, and in an asynchronous NoC two special FIFOs: synchronous-to-asynchronous 
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FIFO (which has a synchronous data producer and an asynchronous data consumer) and 
asynchronous-to-synchronous FIFO (in which the data producer is asynchronous and the data 
consumer is synchronous). 

Finally, I indicated some existing micro-network constructing GALS architectures, including 
DSPIN developed in the LIP6 laboratory. DSPIN is a distributed multi-synchronous NoC that has 
been designed generally to support shared-memory Multi-Processor Systems-on-Chip. As an 
important feature, DSPIN addresses the crucial issue of the global long wires. In deep submicron 
technologies the largest part of the delays is related to the long wires. 

 

 

 

 

 

 

 

 



 

 

Chapter 3 

 Asynchronous Implementation 

The general architecture of DSPIN, a multi-synchronous NoC well-suited to the GALS paradigm, 
was introduced in Chapter 2. An asynchronous implementation, called ASPIN (Asynchronous 
SPIN), is presented in this chapter. As said, the NoCs using asynchronous circuits seem the most 
compatible techniques to support the GALS paradigm. As ASPIN’s router has a fully 
asynchronous design, ASPIN uses two special async-to-sync and sync-to-async FIFOs in order to 
provide synchronous compliant interfaces at each local port. The router implementation is 
described in the present chapter and the design of AS_FIFO and SA_FIFO will be considered in 
the next chapter.  

3.1 General Architecture 

As DSPIN, ASPIN has been designed to support clusterized shared-memory MP-SoC 
architectures. The network topology is a two-dimensional mesh and the routers are physically 
distributed within clusters. Each router is connected to the north, south, east, and west neighbor 
routers, as well as to the local subsystem. To route packets from input ports to output ports of 
these five different sides, ASPIN uses the distributed X-First routing algorithm. ASPIN is a 
wormhole packet-switching network and uses the storage strategy of input buffering. When there 
are simultaneous requests for the same output ports, a Round-Robin algorithm will be used to 
schedule the requests in order to avoid starvation. 

3.1.1 Long Wires Issue 

As a predominant physical factor in deep submicron technologies the delays incurred by the long 
wires can become the limiting factor for the network throughput. As DSPIN, ASPIN’s routers are 
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split in five separated modules of North, South, East, West, and Local. Those modules can be 
physically distributed over the cluster area, in order to balance the length of the long wires. 

However, in large clusters the long wires need to be pipelined. In ASPIN architecture an 
Intermediate Pipeline Stage (IPS) is instantiated as a relay station inside the router between the 
input and output modules, dividing the length of the intra-cluster wires in two. Figure 13 
demonstrates ASPIN’s router architecture. Supplementary pipeline stages can be instantiated on 
the inter-cluster wires (wide white arrows). 

Depending on the routing, long wires can have various lengths for different bits of a flit, and 
thus the resulting skew is not predictable. In order to guarantee delay insensitivity, the long wires 
in ASPIN use double-rail data encoding and the communication employs four-phase handshake 
protocol. Dual-rail data encoding is a delay-insensitive code since the validity information is 
carried along every bit in the data word, and thereby the receiver is enable to unambiguously 
detect the word completion, regardless of delays. 

 
Figure 13. ASPIN’s Router Architecture 
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3.1.2 Packet Structure 

In ASPIN packets are divided into flits (flow control units) and each flit consists of only one phit 
(physical unit). A phit is a single N-bit data word accompanied by one control bit indicating the 
end of the packet. Figure 14 shows the structure of ASPIN’s packet. The first flit of a packet is the 
packet header including the destination address. The address is defined by absolute coordinates 
(Y, X). When the packet header is entered to an input port of the router, the destination address 
field (the eight LSB bits) is analyzed and the flit is forwarded to the corresponding output port. 
The rest of the packet is also forwarded until the packet trailer, where the flag marking the end of 
the packet (EOP) is 1.  

 

Figure 14. ASPIN’s Packet Format 

3.1.3 Block Diagram 

As shown, an ASPIN router consists of three different kinds of blocks: Input Ports, Output Ports, 
and Intermediate Pipeline Stages. The interconnection between ASPIN’s modules is depicted in 
Figure 15. Seeing that the communication over the long wires uses double-rail four-phase 
handshake protocol, signals transferring data between separated blocks are composed of two types 
of signals: Data and ACK.  
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Due to the fact that to represent each bit, Data uses two wires, a major concern may be the 
significant overhead in silicon area. In a router the storage places (FIFOs) are the most important 
area occupant. In order to minimize the silicon area overhead, the asynchronous FIFO 
(instantiated in the input port) is designed as an optimized hard-block (in which the designer can 
control the signal timings) and uses single-rail protocol (bundled-data encoding). To be compliant 
with dual-rail data encoding used by the rest of the router, two protocol converters, dual-rail to 
single-rail and single-rail to dual-rail, are implemented respectively before and after the 
asynchronous bundled-data FIFO.  

 

Figure 15. General Architecture of ASPIN’s Modules 

The Out-Req signals connecting the routing algorithm module (implemented in the input port) 
to the scheduling algorithm module (implemented in the output port) are the allocation request. 
With regard to the Round-Robin algorithm, the output port then selects the corresponding channel 
to establish the communication between the intermediate and output pipeline stages.  

A simple AND gate can provide the acknowledge signal of the intermediate pipeline stage, 
because when a channel is unselected the corresponding ACK remains at high value. In fact the 
communication handshake sequence of the last flit (the packet trailer) does not finish and the 
output port does not produce the last ACK-. Thanks to that it resembles the output port has not yet 
ended the transmission of the last flit, and thus the intermediate pipeline stage does not take the 
next flit which is the header of the next packet and must be retained in the input port until the 
routing algorithm unit makes its decision and asserts the relative Out-Req. 

When due to a transient error on the packet header there is a failure on the destination address it 
is possible that a packet aims to go to an invalid direction and thereby blocks the port (for 
example a packet incoming from the north intends to go to the east). Recall that in order to 
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optimize the design complexity, as in DSPIN, in ASPIN a packet is not permitted to return to the 
same port and there is not any physical connection from the vertical (i.e. north and south) input 
ports to the horizontal (i.e. east and west) output ports, as not required by the X-First routing 
algorithm. To resolve this blocking situation, the routing algorithm module of ASPIN determines 
the faulty packet and generates a virtual ACK (which is combined with ACK going out from the 
intermediate pipeline stage by an OR gate) to gather the flits from the path. 

3.2 Input Port 

The detailed architecture of ASPIN’s input port is shown in Figure 16. As can be seen, an 
incoming packet is led to be retained in the storage unit consisting of three parts: dual-rail to 
single-rail converter, single-rail FIFO, and single-rail to dual-rail converter. When a packet header 
appears on the output of the single-rail to dual-rail converter, a comparison module compares the 
packet destination addresses (Y and X) with the local cluster addresses (Y0 and X0), and then for 
each coordinate asserts one of three output signals signifying the three possibilities: Y0>Y, 
Y0=Y, and Y0<Y, and, X0>X, X0=X, and X0<X.  

Except for the header of packet, address comparison introduces an invalid operation. By the use 
of an upper asymmetric C-element the value high of P does not let outputs of Address 
Comparator be propagated. The Controller unit holds P at logic one during packet transmission. 
Waiting for beginning of a new packet, at the end of each packet transmission Controller sets P to 
zero. Before arriving P down, Controller should be assured that the Address Comparator’s 
outputs are zero and their previous values will not incorrectly be propagated. nZero produced by 
an OR gate is provided for this reason. Considering dual-rail data encoding, at data idle state, 
when the two wires of each address bit are zero, all six outputs of Address Comparator are set to 
zero. 

When a new packet arrives, depending on the address comparison one of five signals indicating 
destination (i.e. EAST, WEST, NORTH, SOUTH, or LOCAL) will be asserted. As required by 
Controller, from these five signals a simple OR gate generates the BOP signal which informs the 
packet beginning. 

The design example displayed in Figure 16 is the south input port. According to the X-First 
routing algorithm, a packet incoming from the south requires to be headed only to the north or 
local subsystem. Out_ReqN and Out_ReqL indicate request for the intended direction respectively. 
Nevertheless, if incorrectly another direction (i.e. east, west, or south) is demanded (for example 
due to transient errors on bits of the destination address field in the packet header), the packet will 
be considered as corrupted and must be removed. Using a state-holding element (C-element), Err 
remains high until the end of the packet. At the end of the packet P goes down and sets Err to 
zero. Note that the incorrect direction request (EAST, WEST, or SOUTH) is already set down. 
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Figure 16. Input Port Architecture (South Port) 

To control the flow of packet transmission the two wires of the bit indicating the end of packet 
(i.e. EOP and nEOP) are separated from data signals and enter Controller. They will be 
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leaving Controller. Recall that in dual-rail four-phase handshake protocol packet transmission 
does not progress until all data bits are completed. 

The assertion of one of two signals of EOPo and nEOPo means Controller has given the 
permission for transferring the current flit. As a consequence, the combination with Err via an 
AND gate can generate a local ACK signal (eAck) to complete the handshake sequence, removing 
flits of the faulty packet. 
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3.2.1 Controller 

As explained, in order to allow the progression of packet transmission and to confirm the routing 
algorithm decision, the Controller generates two different indicators: a signal indicating the 
presence of a packet being transmitted (P), and flags indicating the end (or not) of the packet 
transmission (EOPo or nEOPo). Accordingly, the Controller needs three different input 
information signals: an indicator indicating the beginning of a packet (BOP), a signal signaling 
the presence of a non-zero value on Address Comparator‘s outputs (nZero), and flags signifying 
the end (or not) of the incoming packet (EOP or nEOP). The circuit implementation of Controller 
is shown in Figure 17.a and its detailed behavior, specified as a Signal Transition Graph (STG), is 
depicted in Figure 17.b. In this STG the dashed-lines represent transitions outside the Controller 
and the solid-lines represent the inside transitions. 

 

Figure 17. Input Port’s Controller (a) Circuit Implementation and (b) STG 
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Otherwise, if the next flit is the packet trailer (i.e. after nEOPo-, instead of nEOP+, EOP+ is 
produced), Controller asserts EOPo and waits for EOP-. Afterward, when EOP- (signifying the 
request for end of the packet transferring) is occurred, and if nZero is set down, P and then EOPo 
go to zero, waiting for a new packet. 

3.2.2 Address Comparator 

In ASPIN the eight Least Significant Bits (LSB) of the packet header contain the destination 
address being composed of two absolute coordinates of Y and X. The responsibility of Address 
Comparator is to independently compare Y with Y0 (y-coordinate of the local cluster) and X with 
X0 (x-coordinate of the local cluster). Each bit of X and Y will be separately compared with the 
corresponding bit of X0 and Y0.  

 

Figure 18. X Comparison in Address Comparator 
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A circuit fragment of Address Comparator’s internal architecture, corresponding to the X 
comparison, is shown in Figure 18. As ASPIN uses dual-rail data encoding, for each bit i of X, 
signal Xi represents the value one and nXi signifies the value zero. So, if nXi and X0i both are equal 
to one, it means X0i is greater than Xi. On the contrary, when Xi is one and X0i is zero, a signal 
indicating that X0i is less than Xi must be asserted. The two other cases (i.e. when Xi and X0i both 
are one and when nXi is one but X0i is zero) represent the equality of Xi and X0i.  

Note that idle state (where both Xi and nXi are equal to zero) all signals indicating X0i<Xi, 
X0i>Xi, and X0i=Xi are set to zero. As a consequence, in idle state all Address Comparator’s 
outputs will be set to zero, respecting the four-phase protocol principles. 

3.3 Output Port 

The main duty of an output port controller is to allocate the output port to one of the requesting 
input ports. The allocation policy must be starvation-free. Accordingly, ASPIN employs the 
Round-Robin algorithm. Due to the X-First routing algorithm the output ports of the west and east 
are connected to two input channels, while those of the north, south, and local are connected to 
four.  

Figure 19.a shows the circuit implementation of an output port (the local port) with four input 
channels. For each channel i, the behavior of the output port can be specified as a Signal 
Transition Graph depicted in Figure 19.b. The dashed-lines are transitions outside the output port 
and the solid-lines are the inside transitions.  

When the input channel i demands to communicate, Out_Reqi becomes high. This request will 
be accepted to be scheduled if the internal signal Ai is high, and then as a result Reqi will be set 
high. In fact Ai is an internal state accepting the allocation request. Reqi enters to the allocation 
scheduler performing a Round-Robin strategy. When it is the turn of channel i to communicate, 
the scheduler sets Aloci to one. In Figure 19.b the dashed-dotted-dotted-line between Reqi+ and 
Aloci+ signifies that there may be some other transitions, as Round-Robin Scheduler may allocate 
the output port to some other channels before selecting channel i. 

The value one of Aloci lets ACKi (which in the idle state is held at one) goes down and follows 
ACKo’s values. ACKo is the acknowledge signal of the output pipeline stage. Additionally, Aloci, 
as a multiplexer select signal, allows Datai to be connected to the pipeline stage. Therefore, all 
packet flits coming from channel i can be transferred to the pipeline stage and the corresponding 
handshake sequences can be completed. The dotted-lines in the STG indicate possible transitions 
of ACKo and ACKi during packet transmission. 

As can be seen in Figure 19.a, EOPi (the positive wire of bit indicating the end of packet) is 
separated from other data signals and combined with Aloci via a C-element to generate EOPOi. 
All EOPOi merge together and join with the multiplexer outputs to complete data wires. This 
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allows controlling the flow of the packet trailer. In fact when Aloci is one, EOPi+ causes EOPOi+ 
and flit transmission continues, but EOPi- cannot drive EOPOi-.  

 

Figure 19. Output Port (a) Circuit Implementation and (b) STG 
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As said before, in ASPIN the Intermediate Pipeline Stages (IPS) of the router suppose that the 
transmission of the last flit of each packet is not completed. When ACKi goes to one for the last 
flit, it has not to return to zero and must remains at high. After EOPOi+ and when ACKo+ 
happens, Ai and consequently Reqi will be set to zero (note that at this time Out_Reqi has already 
changed to zero). When Reqi- happens the scheduler sets Aloci to zero and thereby prevents the 
occurrence of ACKi-, even if EOPOi- and as a result ACKo- happen. The value low of Ai avoids an 
eventual new Reqi+ and Aloci+, until Aloci- is seen and EOPOi- is occurred. 

Here there is a timing constraint. ACKo+ causes Ai-, and as a consequence Reqi- must be 
happened. Reqi- needs that Out_Reqi remains at zero.  Now the problem is: at the same time, due 
to ACKo+, ACKi+ occurs and afterward there may be an eventual Out_Reqi+. Furthermore, 
Out_Reqi+ causes Reqi+ if Ai is still high. As a conclusion, a new Out_Reqi+ can happen after and 
only after Ai- and Reqi- occurred. Referring to the ASPIN general architecture (Figure 15) and the 
input port design (Figure 16), the delay between ACKo+ and Out_Reqi+ (T2) involves the 
propagation delays of tens of logical gates, plus the propagation delays of long wires traversing 
from one side to the opposite side of the cluster. While on the other hand, the delay between 
ACKo+ and Reqi- (T1) is the propagation delays of two logical gates. Clearly, this timing 
constraint that T2 must be greater that T1, does not introduce any bother for the functionality of 
the circuit. 

3.3.1 Token-Ring Arbiter as Round-Robin Scheduler 

As a Round-Robin scheduler, we implement a Token-Ring arbiter. The design of an asynchronous 
Token-Ring Arbiter, firstly presented in [61], is displayed in Figure 20. It consists of several 
Token Arbiter arranged in a ring topology. Each Token Arbiter corresponds to a request (Reqi) 
and for each request there is a grant (Aloci). 

When a request arrives to a Token Arbiter, which is not the Token owner, the request will be 
transferred to the next Token Arbiter on the ring. And if the next Token Arbiter also does not have 
the Token, the request will be propagated to the next in a same manner. On the other side, when a 
request, whether from the external (via the input port R) or from the previous Token Arbiter (via 
the input port Ri), enters to a Token Arbiter which has the Token, the corresponding acknowledge 
signal (A or Ai) will be asserted. And when a Token Arbiter which has launched a request, 
receives the acknowledge, depending on the original request (coming from the external or 
internal), sets A or Ai to one.  

When a Token Arbiter sets its external acknowledge signal (A) to one, it means that the Token 
is moved to this place. In the circuit implementation, an RS flip-flop (as a state-holding element) 
is used to keep the Token. The flip-flop will be reset if the internal acknowledge (Ai) is asserted, 
and will be set when the assertion of A means the acceptance of the external request. 
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The arbitration between two or more requests that eventually arrive at the same time is the 
responsibility of a Token-Ring Arbiter. In fact if there are several simultaneous requests, the 
nearest request to the Token will be acknowledged. However it must be ensured that the 
arbitration between the internal and external requests is mutually exclusive. Accordingly, the 
Token Arbiter exploits a handshake Arbiter which uses MUTEX. The MUTEX ensures that even 
if its request signals R0 and R1 are set simultaneously, signals G0 and G1 are mutually exclusive. 
Following the MUTEX there are two AND gates whose purpose is to ensure that the handshakes 
on channel 0 and channel 1 are mutually exclusive, as for example the output request of channel 0 
(I0) can only go high if A1 is low. In this way, if handshaking is in progress along one channel, it 
blocks handshaking on the other channel. 

 

Figure 20. Token-Ring Arbiter as a Round-Robin Scheduler 
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Requested by a starvation-free scheduling algorithm, a Token-Ring Arbiter has a bounded 
blocking time. Figure 21 shows a worst-case example. Assume that there are concurrent requests 
at the inputs of a four-place Token-Ring Arbiter, and imagine that ReqE lose the race with the 
internal request granted for another request (ReqW). The granted request propagates to the next 
stage and in the worst case it can be blocked before the two other requests (ReqN and ReqS). 
Afterwards, when ReqW is acknowledged, the MUTEX immediately grants ReqE, and thereby the 
Token is not allowed anymore to pass over this place. The granted request for ReqE will propagate 
to the next stage, where it can fail to keep the possession of the Token at most for two other times. 

 

Figure 21. The Worst-Case Blocking Time in a Four-Place Token-Ring Arbiter 

3.4 Asynchronous FIFO 

Figure 22 displays the block diagram of the asynchronous FIFO (AA_FIFO) used in ASPIN’s 
routers. In the producer side there is one asynchronous demultiplexer and in the consumer side 
there is one asynchronous multiplexer. The input data is demultiplexed to the FIFO stages, and 
then they are multiplexed on the FIFO output. In both sides there is an asynchronous controller 
(named Domino Controller) which after finishing the asynchronous event of each side, in a cyclic 
way selects the next stage to communicate. 
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Figure 22. Asynchronous FIFO (AA_FIFO) with a depth of 2 flits 

The design of the asynchronous multiplexer and demultiplexer using four-phase bundled-data 
protocol ([62]) are shown in Figure 23.a and Figure 23.b, respectively. These circuits need to do a 
handshake with their controller module generating the Select signals (Si). This handshaking brings 
out with the sequence of Si+, Acki+, Si-, and Acki- . After Acki- indicating the end of the current 
four-phase sequence, the controller can select another set to be multiplexed or demultiplexed. 

 

Figure 23. Asynchronous (a) Multiplexer and (b) Demultiplexer 
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handshake protocol of Four-Phase Bundled-Data. The only constraint in selecting a storage stage 
is: each side of the stage has to perform its current data communication independent on the other 
side. 

As storage stage, AA_FIFO instantiated in ASPIN’s input ports uses an advanced asynchronous 
pipeline stage whose architecture is presented in [62]. The design is called “normally opaque 
fully-decoupled latch controller”, and its circuit implementation is shown in Figure 24.a. The 
behavior of this pipeline stage, specified as an STG, is depicted in Figure 24.b.  
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Figure 24.  Asynchronous Pipeline Stage 

3.4.1 Domino Controller 

As said, the asynchronous controller used in AA_FIFO is named Domino Controller. It is an 
asynchronous One-Hot counter providing required signals for the handshake protocol of the 
asynchronous multiplexer and demultiplexer. As an instance, the block diagram of a 3-bit Domino 
Controller is illustrated in Figure 25.c. Each cell i has 2 outputs Si and Ai (representing ith bit of 
the counter) and 4 inputs Acki-1, Acki, Acki+1, and Ai-1. The bit one is moved from cell to cell in a 
ring topology. At the initial state, A2 and S0 are high and the other outputs are low. The value high 
of S0 means the first asynchronous event will be performed in stage0. 

 
Figure 25. Asynchronous Domino Controller 
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presented in Figure 25.b. Acki+ means Si+ is seen, and so the bit one that at this time is in the 
previous cell (i-1) can be transferred to the current cell. The handshake protocol continues by Si- 
when the transmission of the one is ended. 

3.5 Summary 

The detailed implementation of a novel asynchronous NoC architecture has been presented. 
Arranged in a two-dimensional mesh topology, this architecture (called ASPIN) is a wormhole 
packet-switching network. To route packets ASPIN uses the distributed, deadlock-free X-first 
routing algorithm. The starvation-free Round-Robin algorithm is used to schedule the concurrent 
requests. 

ASPIN addresses also the crucial issue of the global long wires which likely have large 
propagation delays, incompatible with the required throughput. ASPIN’s router is not a 
centralized macro-cell. The router is split in five separated modules (North, South, East, West, 
and Local) that can be physically distributed over the cluster area. This feature allows balancing 
the length of the long wires. Guaranteeing a delay-insensitive communication, ASPIN uses the 
double-rail four-phase handshake protocol for long wires. 

Seeing that in a router the storage places (FIFOs) are the most important area occupant, in order 
to minimize the silicon area overhead the asynchronous FIFO, instantiated in ASPIN’s input 
ports, has been designed as an optimized hard-block using single-rail (bundled-data) encoding. 

 

 

 
 



 

 

Chapter 4 

 Clock Boundary Interfaces 

As described in  Chapter 1 the main problem of GALS architecture is the synchronization on clock 
boundaries. To resolve this problem, the use of some special FIFOs as robust interfaces between 
different timing domains was proposed in  Chapter 2. Corresponding to the three possible 
combinations of mixed-timing domains, this chapter presents three new designs for different FIFO 
types: Asynchronous-to-Synchronous, Synchronous-to-Asynchronous, and Bi-Synchronous 
(Synchronous-to-Synchronous). It should be noticed that these designs must allow the designers 
to select their own hardware synchronizer with regard to the trade-off between latency and 
robustness. They have also to guaranty a throughput (data transfer rate) of one flit per cycle, and 
the data must be stored in asynchronous form rather than synchronous. The interest of this last 
requirement will be explained in  Chapter 5. 

4.1 General Architecture 

Figure 26 shows the general architecture of two FIFOs converting asynchronous Four-Phase 
Bundled-Data protocol to synchronous FIFO protocol and vice versa. As shown in Figure 27 the 
Four-Phase, Bundled Data, asynchronous protocol, is a sequence of REQ+, ACK+, REQ- and 
ACK- events, where REQ and ACK are the asynchronous handshake (flow control) signals. Data 
is valid when REQ is in the high state. The high level of ACK indicates that the request of data 
communication is accepted.  

Figure 28 gives examples of the synchronous FIFO protocol, where the producer and the 
consumer share the same clock signal, and the protocol uses two handshake signals: ROK 
(correspondingly WOK) and READ (correspondingly WRITE). The ROK signal (or not empty) is 
set by the producer at each cycle where there is a valid data to be transferred. The READ signal is 
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set by the consumer at each cycle where the consumer wants to consume a data on the next clock 
edge. Both WRITE and READ signals are state signals that can be generated by Moore FSMs. 

 

Figure 26. Synchronous  Asynchronous FIFOs 

Asynchronous-to-Synchronous FIFO is called AS_FIFO, and Synchronous-to-Asynchronous, 
SA_FIFO. The synchronous data incoming to SA_FIFO and asynchronous data entering to 
AS_FIFO will be written into N pipelined storage stages in a cyclic way. The task of protocol 
converting is the responsibility of the storage stages.  

The signals that have a risk of metastability (and must use a hardware synchronizer) are the 
handshake signals transmitted from the asynchronous side (precisely from the storage stages) to 
the synchronous side. As emphasized before, the synchronizer design is a trade-off between 
robustness (i.e. low probability of metastability) and latency (measured as a number of cycles in 
the synchronous domain). If the synchronization cost is a latency of K clock cycles, the FIFO 
must have at least K+1 stages, if we want a throughput of one data transfer per cycle.  

 

Figure 27. Four-Phase Handshake Protocol in Push Model 
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In such pipelined design, the effect of synchronization latency is different in the two FIFO 
types. In the asynchronous-to-synchronous FIFO (AS_FIFO), the synchronizer latency is visible 
only when the FIFO is empty. In the synchronous-to-asynchronous FIFO (SA_FIFO), it is visible 
when the FIFO is full. The latency between the arrival of data to an empty AS_FIFO and its 
availability on the output (typically named FIFO Latency) is about K clock cycles.  For a full 
SA_FIFO, the latency between the consumption of a data and the information of the availability 
of an empty place on the other side is about K clock cycles. 

 

Figure 28. Write and Read event examples of Synchronous FIFO Protocol 
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in AS_FIFO it includes an asynchronous demultiplexer. These circuits need to handshake with a 
controller module generating their select signals in a cyclic way. The required asynchronous 
controller is named Domino Controller. The design of the asynchronous multiplexer, 
demultiplexer, and domino controller was detailed in  Chapter 3. 

 

Figure 29. Synchronous-to-Asynchronous FIFO (SA_FIFO) 

I present in Figure 29.b and Figure 30.b the Finite State Machines (FSMs) of the synchronous 
side controllers, i.e. SA_FSM and AS_FSM. These controllers are Mealy Finite State Machines. 
The state Wi means the next Write event will be done to stage i, and similarly, the state Ri signifies 
that data will be read from stage i at the next Read event. Consequently, the FIFOs status signals 
(WOK and ROK) depend on both the FSMs state and the status of the corresponding storage stage 
(being signaled by WOKi and ROKi). ROKi means stage i is not empty and WOKi indicates that 
stage i is not full. 

 

Figure 30. Asynchronous-to-Synchronous FIFO (AS_FIFO) 
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Synchronous hazard free commands are generated when there is a synchronous request and the 
current asynchronous stage is ready to accept. The positive edge of Writei indicates to the ith stage 
of SA_FIFO that a data has to be written. The positive edge of Readi informs the ith stage of 
AS_FIFO that the data will be read and so the stage must be freed. The positive edge of wasReadi 
declares that the synchronous consumer has read the data and the ith stage of AS_FIFO can change 
its value.  

As seen in Figure 29, Writei is a synchronous signal and will be asserted on rising edge of the 
clock signal, when a new data will be available to be sampled at the next rising edge. On the other 
side the storage stage (which is an asynchronous circuit) considers Writei as an asynchronous 
signal and as a result, immediately on its transition the input data will be written. Consequently 
while it is intended that the FIFO samples the data at rising edge m, the data is sampled just after 
rising edge m-1. Here there may be a constraint: a setup-time approximately equal to the whole 
clock cycle time is required. 

In typical synchronous circuits this constraint is not annoying, as usually data changes to a new 
value on the rising edge on which the previous data is sampled, providing the required setup-time. 
However respecting the conservator designers, Writei can be modified to Wi+1 (similar to 
wasReadi in Figure 30). With this modification the stage will be ordered to write on the next clock 
edge, when data is certainly valid. In this case to have the maximum throughput of one data 
transfer per cycle, the minimum number of stages should be K+2 where K is the synchronizer 
latency. 

4.2.1 Storage Stages 

The pipelined storage stages in AS_FIFO and SA_FIFO have two main functionalities: storing 
data and converting communication protocol. Figure 31.a and Figure 32.a illustrate the circuit 
schematics of the storage stages respectively in SA_FIFO and AS_FIFO. As demonstrated, data 
storage is done by latches sampling on high value of WOKi (in SA_Stage) and L (in AS_Stage). 
The transition to 0 of WOKi indicates SA_Stage contains valid data and no more writing is 
permitted and so data sampling must be ended. And a new data can be written into AS_Stage only 
when the value of L on rising edge of wasReadi (declaring the content of the stage was read) is 
changed to 1. 

The operation of the storage stages in SA_FIFO and AS_FIFO are specified as two Signal 
Transition Graphs (STGs) respectively in Figure 31.b and Figure 32.b. The dotted lines are the 
asynchronous side transitions and the dashed lines are that of the synchronous side. According to 
the synchronous protocol base, the synchronous side transitions should be considered on the 
edges. Regarding to the two STGs, on rising edge of Writei, Readi, and wasReadi respectively, A, 
ROKi, and C must go to the low position. In the circuit implementations three D-Type Flip-Flops 
which have a constant value of 0 as input data, generate these signals. The Flip-Flops will 
asynchronously be set when their S input (Set) signal is 1. 
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Figure 31. Synchronous-to-Asynchronous Stage (SA_Stage) 
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architecture of AS_FIFO (see Figure 30), the time between ROKi+ and rising edge of Readi (T2) 
is more than K clock cycles where K is the synchronizer latency. On the other side, A- happens 
after Acki+ occurring simultaneous with ROKi+, by propagation delay of two gates (T1). Evidently 
a two gate propagation delay is less than the latency of a robust synchronizer. The latency of two 
cascaded Flip-Flops is one clock cycle. However if a designer finds a miraculous synchronizer 
with a very low latency (!), this time constraint may express a risk on the functionality for the 
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Figure 32. Asynchronous-to-Synchronous Stage (AS_Stage) 
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4.2.2 Improved Architecture of AS_FIFO 

As explained, the architecture of AS_FIFO presented in the previous subsection has a time 
constraint. To resolve this restriction, here as shown in Figure 33.b, we propose a new STG of 
AS_Stage. In this new design, the stage will be informed to be freed at the moment it is 
authorized to accept a new content. Readi is removed and instead the stage will be freed (ROKi 
goes to Low) on the rising edge of wasReadi, where a new data is permitted to be written to the 
latches (L goes to High). As can be seen, the circuit implementation, demonstrated in Figure 33.a, 
is simpler than the previous design. 

 

Figure 33. Improved AS_Stage 

As a drawback, the stage will be freed after rising edge of the clock, and we need one more 
clock cycle to perform a complete read event. Consequently in order to have maximum 
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In addition, the complexity of the two FSMs and the output multiplexer is reduced, because for 
each of the two FSMs (SA_FSM and AS_FSM) in an n-place FIFO instead of n states we need 
n/2 states, and in place of an n-to-1 multiplexer we need an n/2-to-1. As a result, the silicon area 
of an n-place SS_FIFO is much smaller than an n-place AS_FIFO or SA_FIFO. The cost is a little 
increase in the FIFO latency, as data must pass through two stages to appear on the output port. 

 

Figure 34. Bi-Synchronous FIFO (SS_FIFO) 

4.4 Physical Implementation 

We developed a generic FIFO generator, using the Stratus hardware description language of the 
Coriolis platform ([63]). This generator creates both a net-list of standard cells and a physical 
layout. The two parameters are the depth of FIFO (FIFO’s places) and the number of data bits per 
flit. In this implementation the synchronizer uses two cascaded Flip-Flops and its latency is one 
clock cycle. In order to reach the maximum throughput of one data transfer per cycle, 2-Stage 
AS_FIFO and 2-Stage SA_FIFO use the constrained architectures. 

As a standard cell library, we used the portable ALLIANCE CMOS standard cell library ([64]). 
The physical layouts of some 32-bit FIFOs are presented in Figure 35. The silicon areas of these 
examples are given in Table 2. These values are normalized to GPLVT STMicroelectronics 
library surfaces in 90nm fabrication process. 

From the physical layout, we extracted SPICE models of the FIFOs, using ALLIANCE CAD 
Tools ([65]). The target fabrication process is the STMicroelectronics 90 nm GPLVT transistors 
in typical conditions. The electrical simulation results (under Eldo) are presented in Table 2. In 
this Table, T is the consumer clock cycle time. Due to relation between the asynchronous event 
entrance time and the consumer clock phase, AS_FIFO has various latencies with a difference of 
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one clock cycle. Caused by skew relation between the consumer and the producer clocks, 
SS_FIFO has different latencies too.  

 

Figure 35. Physical Layouts 

The throughput value of SA_FIFOs is limited by the asynchronous side and its handshake 
protocol. The throughput of AS_FIFOs with more than 3 stages is also limited on the 
asynchronous side components. But in the case of 2-Place (2-Stage) and 3-Place (3-Stage) 
AS_FIFO there are other constraints: regarding to Figure 32 in 2-Place AS_FIFO, Acki+ and 
Reqi+1+ must be happened in the same clock cycle if maximum throughput of one data word 
transferring per cycle is required. Figure 33 testifies that the throughput of one event per cycle for 
AS_FIFO with 3 stages is attained if ROKi- and ROKi+ are occurred in the same clock. This 
constraint should also be respected in 6-Place (3-Stage) SS_FIFO. 

Due to the inability of 2-Place AS_FIFO to reach to a high throughput (comparing 1.5 
GEvents/Sec with 2.61 of 3-Place AS_FIFO), in order to sustain the throughput, one could opt for 
3-Place AS_FIFO. Its area (2011 μm2) is not negligible, but it should not be forgotten that these 
components in addition of robustly interfacing have another advantage: providing a storage place 
with a FIFO behavior. As we know, in order to obtain minimum overhead of data communication 
between two different timing domains, having a FIFO in the interface is not eliminable. So, we 
suppose using a FIFO with the storage place of more than three may also be reasonable! 

Finally, as a quick comparison, the minimum latency of a Mixed-Clock FIFO presented by 
Tiberiu Chelcea and Steven M. Nowick in [16] is 0.5 TP + 2.5 TC and its maximum value is 0.5 TP 
+ 3 TC where TP is the producer clock cycle time and TC is that of the consumer. The maximum 
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throughput of an 8-bit 4-place Mixed-Clock FIFO is 549 MHz. This evaluation has been given for 
0.6 µm HP CMOS technology. The same evaluations for Async-Sync and Sync-Async FIFOs are 
421 and 454 MHz respectively. 

Another example to compare could be the bi-synchronous FIFO presented by Ivan Miro 
Panades in [11]. The minimum latency of this FIFO is 2 clock cycles and its maximum delay is 3. 
If it is intended to have the maximum throughput of one flit per cycle, the number of places must 
be more than 5. This architecture has been synthesized under Synopsis with two different 
configurations: the output data path is implemented, first, by using tri-state buffers, and second, 
by using multiplexers. With 32-bit data word using STMicroelectronics CMOS 90 nm standard 
cells, an 8-place FIFO with tri-state buffers occupies 8032 μm2 and with multiplexers 6581 μm2. 
The maximum frequency of write events in both architectures is 2000 MHz. But the maximum 
frequency of read events in tri-state buffer model is 1250 MHz and in model using multiplexer is 
1000 MHz. 

Table 2. Simulation Results 

FIFO Transistors Surface Min Latency Max Latency Max Throughput

2-Place SA_FIFO 1338 1422 μm2 177 pS 2.39 GEvents/S 

3-Place SA_FIFO 1969 2054 μm2 207 pS 2.36 GEvents/S 

8-Place SA_FIFO 5126 5215 μm2 219 pS 2.22 GEvents/S 

2-Place AS_FIFO 1388 1452 μm2 271 pS + T 271 pS + 2T 1.50 GEvents/S 

3-Place AS_FIFO 1942 2011 μm2 247 pS + T 247 pS + 2T 2.61 GEvents/S 

8-Place AS_FIFO 5054 5107 μm2 263 pS + T 263 pS + 2T 2.89 GEvents/S 

6-Place SS_FIFO 2985 2940 μm2 362 pS + T 362 pS + 2T 2.61 GEvents/S 

8-Place SS_FIFO 3956 3869 μm2 366 pS + T 366 pS + 2T 4.60 GEvents/S 

4.5 Summary 

Three new FIFO architectures for interfacing an asynchronous NoC with synchronous subsystems 
or two adjacent routers in a multi-synchronous NoC have been presented. The design of the FIFO 
interfacing two asynchronous and synchronous domains can be used as a convertor to convert the 
asynchronous Four-Phase Bundled-Data protocol to the synchronous FIFO protocol.  

The synchronizer used in the architectures can be arbitrarily chosen by the system designer, 
supporting various trade-off between latency and robustness. The FIFOs can achieve the maximal 
throughput of one word per cycle, even if the selected synchronizer has a large latency. The 
designs have been physically implemented with portable ALLIANCE CMOS standard cell 
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library. Using the STMicroelectronics 90nm GPLVT CMOS fabrication process, the throughputs 
and latencies have been evaluated by post layout SPICE simulation from the extracted layout.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

Chapter 5 

  Saturation Threshold 

The classical interconnects do not scale when the number of components to interconnect 
increases, and saturate when too many cores generate traffic. The saturation occurs when the load 
offered by each component reaches a point called saturation threshold, where the average packet 
latency raises exponentially to an infinite value. In this case the interconnect becomes the system 
bottleneck. In scalable interconnects the value of saturation threshold is roughly independent on 
the number of communicating components. 

Networks-on-Chip are much more scalable than traditional on-chip interconnects. However the 
network saturation threshold can still become a problem. A low saturation threshold is an 
important limiting factor for delay sensitive applications. Recall that the main motivation 
supporting the NoC paradigm is to improve the saturation threshold. This chapter presents the 
evaluation of the saturation threshold in DSPIN and ASPIN architectures, and considers some 
improving techniques. 

5.1 Simulation Platform 

To evaluate the saturation threshold, a system-level simulation platform which will provides the 
means to generate packets according to a parameter determining the traffic load, and to measure 
packet latencies is needed. We have focused on a network in which each cluster contains one 
Traffic Generator (TG) and one Traffic Analyzer (TA). We used the same cycle accurate SystemC 
models for Traffic Generator (TG) and Traffic Analyzer (TA) components in both DSPIN and 
ASPIN simulations.  

As said before, we have developed a generic ASPIN generator generating a gate-level net-list of 
standard cells in structural VHDL. The cell behavioral models are written as Transport Delay 
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Models. As examples, the VHDL behavior models of basic cells of asynchronous circuits are 
presented in  Appendix C. We have used ModelSim to perform a VHDL-SystemC co-simulation 
including ASPIN VHDL model and the cycle accurate TG and TA SystemC models. Refer to 
Figure 36. The synchronous DSPIN router was described as a cycle accurate SystemC simulation 
model. 

 

Figure 36. VHDL-SystemC Co-Simulation Platform for ASPIN 

The exact value of saturation threshold in a NoC depends on the following parameters: 

• Traffic load: The total traffic offered by traffic generators during a specified time 
interval is called traffic load. In a real application the traffic load does not remain constant 
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and as a consequence the traffic is not concentrated in some fixed points. However 
although in a heterogeneous system there are always some hot points and traffic is 
distributed non-uniformly, the uniform traffic distribution is a model of destination 
distribution in homogeneous applications. 

• Packet Length: In a wormhole packet-switching network a packet spread along the path 
and occupies several network channels. When the packet length is short a lower number 
of network resources are reserved than when it is long. As a result the packet length has a 
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• Distributed Storage Capacity: In a network there is a number of buffer queues 
distributed in the routers. A larger depth of these FIFOs induces gathering the flits of 
stalled packets in a lower number of channels, and consequently more network resources 
are available for other packets, resulting in a higher saturation threshold. 

5.1.1 Traffic Generator 

The task of the Traffic Generator (TG) is to generate packets and to inject them into the network. 
The generated traffic has a uniform random distribution. That is to say each TG sends randomly 
packets to all external Traffic Analyzers (TAs) with a fixed load equivalent in all clusters. When 
generating a new packet, a destination will be randomly selected and its coordinate in the form of 
(Y, X) will be included in the header of packet. As a time stamp, the point of time at which the 
packet begins to be injected (called START) will also be included. 

If TOTAL is the aggregate packet length (total number of flits injected into the network), and 
TIME is the total number of clock cycles, the offered load is defined, for each TG, as the 
percentage of the maximal bandwidth:  

Load = TIME
TOTAL  

When a new packet is being generated, START (the injection time of the packet) will be 
determined according to the fact that the requested offered load must remain respected. TIME 
(equal to TOTAL / Load) is the end point of the time interval in which the packet should be 
injected into the network. The random selection of START allows providing a uniform random 
traffic spectrum. 

In order to take into account the network contention and to have a meaningful latency 
measurement, the packets are posted in an infinite FIFO located in each TG. In other words, it is 
supposed the generated packets are injected with the maximum rate of one flit per cycle. For 
example if a packet begun to be transmitted at START and its length is LEN, the packet injection 
will be finished at END equal to START+LEN, where a new packet will be generated. For each 
new packet a new START will be determined independent of the real clock cycle number. In fact 
START represents a virtual cycle number at which the packet should be transmitted to the virtual 
infinite FIFO. If the real clock cycle number has exceeded (or exceeds) from START, the FIFO is 
not empty and thus TG starts to inject the packet into the network. To better understand refer to 
Figure 37. 

5.1.2 Traffic Analyzer 

The task of the Traffic Analyzer (TA) is to evaluate the average latency of received packets. The 
packet latency is measured as the number of clock cycles between the posting time in the source 
node (included as a time stamp in the header of the packet), and the arrival time in the destination 
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node. TAs store their results in a common file to be used later. After each simulation we have 
employed MatLab to read the result file and to plot the average packet latency versus the offered 
load, helping to extract the saturation threshold. 

 

Figure 37. Uniform Random Traffic Generator 
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void next_packet() 
{ 
   END = START+LEN ; 
   LEN = next_length() ; 
   TOTAL += LEN ; 
   START = (rand() % ((TOTAL*100/Load) – END)) + END + 1 ; 
} 
 
void transition() 
{ 
   if (RESETN == true) 
   { 
      G_FSM = G_IDLE ; 
      Cycle = 0 ; 
      START = 0 ; 
      TOTAL = 0 ; 
      LEN   = 0 ; 
      next_packet() ; 
   } 
   else 
   { 
      Cycle++ ; 
      switch (G_FSM) 
      { 
         case G_IDLE : 
            if (Cycle >= START) G_FSM = G_BOP ; 
            break ; 
         case G_BOP : 
            if (WOK == true) { G_FSM = G_DATA ; n = 1 ; } 
            break ; 
         case G_DATA : 
            if (WOK == true) n++ ; 
            if (LEN-1 == n) G_FSM = G_EOP ; 
            break ; 
         case G_EOP : 
            if (WOK == true) { G_FSM = G_IDLE ; next_packet() ; } 
            break ; 
      } 
   } 
} 
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5.2 Multi-Synchronous vs. Asynchronous 

Seeing the fact that in a typical shared-memory MP-SoC most of the packets traversing the 
network are cache miss requests and responses, in our simulations we have chosen a packet length 
of 16 flits assumed equal to the cache line length. And, we have focused on a network containing 
5×5 clusters. 

To compare the saturation threshold of the asynchronous (ASPIN) and multi-synchronous 
(DSPIN) architectures, we have assumed DSPIN router is directly clocked by local subsystems. In 
our simulations we have chosen a speed ratio of 5 between the asynchronous network and the 
synchronous subsystems throughputs. For example, if ASPIN works at 1 GFlits/s, clusters inject 
the flits with a throughput of 200 Mflits/s. Indeed if the multi-synchronous DSPIN network is 
clocked by a dedicated mesochronous clock signal, with a speed equal to the ASPIN throughput, 
from the point of view of saturation threshold the behavior of the two networks will be 
approximately the same. Therefore, from this point forward, in this chapter, DSPIN (Multi in the 
figures) means a network of which the routers are clocked locally and work at the speed of 
subsystems. Naturally the results of ASPIN (Async in the figures) may almost be considered as 
results of a multi-synchronous network clocked with a fast dedicated signal at a speed five times 
faster than the speed of the subsystems clock. In the next subsection the influence of the speed 
ratio and the saturation threshold improvement obtained in a network with a throughput much 
higher than the flit injection rate will be analyzed. 

 

Figure 38. The Network Saturation Threshold in DSPIN and ASPIN 

Figure 38 depicts the DSPIN (Multi) and ASPIN (Async) average packet latencies (in cycles) 
versus the offered load. DSPIN saturates for an offered load of about 34%. ASPIN saturates for an 
offered load of 44%. In a packet switching network when a packet is traversing the network all 
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resources in the path between the header (first flit) and the trailer (last flit) are allocated to the 
packet and no other packet can use those resources. The other packets must wait until the path is 
released, that is after the packet trailer is passed. In a multi-synchronous NoC the flits injected to 
the network (as well as the trailer) move through the hops cycle by cycle, with a throughput of 
one flit per cycle. In contrast, in the asynchronous approach flits propagate as fast as possible. 
Imagine the case that the speed ratio between network and flit injectors (subsystems) is larger than 
one. In this case, in the asynchronous network, the trailer releases the path faster than in a     
multi-synchronous one which works with the speed of subsystems. We believe fast path liberation 
is why fast asynchronous NoCs have a better saturation threshold. 

5.3 FIFO Depth 

In case of contention, the storage capacity distributed in the network helps to gather the flits of the 
stalled packets. Therefore, increasing the depth of the FIFOs in the routers, improves the 
saturation threshold. In Figure 39, the average packet latencies of DSPIN and ASPIN are shown 
for two different FIFO depths of 4 and 16 flits. The saturation threshold is improved to about 42% 
for DSPIN and to about 64% for ASPIN. However, the price to pay is very high. Even for small 
FIFOs, for example with a depth of 4 flits, most of the router silicon area is due to the FIFOs. 

 

Figure 39. The influence of the distributed storage capacity on the saturation threshold  

5.3.1 AS_FIFO 

As explained previously, the physical links between the asynchronous network and the 
synchronous subsystems are two Async-to-Sync and Sync-to-Async FIFOs. SA_FIFO is the first 
step in each packet path and AS_FIFO is the last. In the path between SA_FIFO and AS_FIFO 
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there are a variable number of asynchronous FIFOs. The notion of x.y.z in this chapter indicates x 
as the SA, y as the intermediates, and z as the AS FIFOs depths. 

If the clock frequency of the destination subsystem is much lower than the network average 
throughput, the flits arriving to AS_FIFO cannot exit the network fast, and thus accumulate in the 
AS_FIFO.  As a Back-Pressure, the flit accumulation is retro-propagated trough the network and 
occupies network resources, causing network saturation.  

 

Figure 40. The influence of the last FIFO (AS_FIFO) on the saturation threshold  

As illustrated in Figure 40, by paying for an extra silicon area and power consumption, it is 
possible to strongly improve the saturation threshold. We just need to increase the depth of the 
last FIFO (AS_FIFO), for example, to 16, 32, or 64 flits. 

In a heterogeneous shared-memory MP-SoC application the packet distribution is not uniform. 
For example, if a system has an external memory controller, a large number of requests will be 
addressed to the corresponding subsystem. In this case, the system designer will not introduce 
large AS_FIFO in all clusters. It’s enough to instantiate a huge FIFO in the clusters containing the 
external memory controller. 

For a multi-synchronous network ,where the rates of flit injection/consumption and the network 
throughput are identical (one flit per cycle), the size augmentation of the last FIFO (that of the 
local output ports) has no significant effect on the saturation threshold.  

5.3.2 SA_FIFO 

In the case of contention in an asynchronous NoC the flits can be blocked even in the first step 
(i.e. in SA_FIFO). If SA_FIFO becomes full, NIC is stalled, and the blocked flits remain in 
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synchronous form. When the network contention is resolved, the blocked flits will be sent at the 
subsystem speed, one flit per cycle. Clearly, increasing the depth of SA_FIFO will improve the 
saturation threshold. Recall that thanks to our SA_FIFO, the stored flits have been converted to 
asynchronous format and will be injected to the network as fast as possible. 

According to the simulation results, depicted in Figure 41, the saturation threshold is about 62% 
with a depth of 4 for SA_FIFO, and is about 70%, when SA_FIFO has a depth of 16 or more. The 
optimal FIFO depth depends on the packet length, as the SA_FIFO should just have the capability 
to store a complete packet.  

 

Figure 41. The influence of the first FIFO (SA_FIFO) on the saturation threshold  

In an ASPIN router there are one SA_FIFO, one AS_FIFO, and four other FIFOs 
corresponding to the north, south, east, and west input ports. Thus for a router of 16.16.16, the 
total storage capacity is 16 + 4×16 + 16 = 96 flits. As presented before, regarding to our 
simulations the saturation threshold of such an asynchronous network is about 64%. A 16.4.64 
network router has the same storage cost (16 + 4×4 + 64 = 96 flits), but the saturation threshold is 
about 70%. This fact describes the importance of allowing the flits to gather in the last and first 
steps, instead of distributing over the network. 

5.4 Network Throughput 

All previous discussions emphasize the effect of network throughput on the saturation threshold. 
In fast networks, the path liberation is faster than in networks working with the speed of clusters. 
As a testimonial, we plotted in Figure 42 the saturation thresholds of a 16.4.256 ASPIN network 
for different values of the ratio between the asynchronous network throughput and the 
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synchronous subsystems clock frequency. In this simulation, the large depth of AS_FIFO 
significantly decreases the back-pressure effects and thereby the network throughput can 
influence the network saturation as a predominant factor. 

 

Figure 42. The influence of the speed ratio on the saturation threshold  

While a saturation threshold of more than 80% is really an artistic achievement, the speed ratio 
of 5 or 10 is a surrealistic assumption. As said before, our goal was not to extract the real and 
feasible value of the saturation threshold. Instead, we wanted to show the importance of the ratio 
between the network throughput and the flit injection rate. 

5.5 The approach of Quasi-Store-and-Forward 

As projected by the 2005 ITRS [66], in few years from now, 14×14 mesh topologies will be 
practically feasible. Figure 43 presents the simulation results for the saturation threshold in such 
large network. As shown, the saturation threshold of DSPIN degrades to 11%. Such a low 
saturation threshold could really become a system bottleneck. Likewise, the saturation threshold 
of ASPIN (an Asynchronous NoC) is reduced to about 30%. In this simulation we used 16.4.16 
networks, and a speed ratio of 5 for the case of ASPIN. 

We believe that this can be improved by a new switching policy. When the network throughput 
is faster than the flit injection rate, there is an unusable delay between two consecutive flits of a 
packet. As a consequence a packet tends to occupy the path more than necessary, reducing the 
saturation threshold. In order to ameliorate the saturation threshold, we propose to replace the 
end-to-end wormhole switching, by a new approach, called Quasi-Store-and-Forward (QSF).  
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In this approach, all flits of a given packet accumulate in the asynchronous form before entering 
the network. Recall again that all retained flits in a SA_FIFO (presented in this thesis) have been 
converted to the asynchronous form. Thereby, the packet is not authorized to go until the packet 
trailer (the end of packet) arrives in the SA_FIFOs. The router-to-router asynchronous 
communications remain in wormhole approach. 

 

Figure 43. The influence of the QSF approach on the saturation threshold  

With this QSF approach, the packet does not occupy any resources unless it is sure that all its 
flits can traverse the network at full speed. In fact QSF approach attempts to realize a network 
offered load reduction by a coefficient equal to the speed ratio. The simulation results for the QSF 
approach are presented in Figure 43 (red curve). The saturation threshold is improved, and the 
cost is an increased average latency.  

5.5.1 QSF Implementation 

Figure 44 shows the block diagram of the QSF Implementation. In this figure Input Controller 
represents a synchronous FSM controlling the entrance of packets, and Output Blocker 
symbolizes an asynchronous circuit ruling the packet departure. Firstly, Output Blocker blocks the 
output path, and thereby the incoming packet will be retained in SA_FIFO. When the packet 
trailer (where the flag of EOP is 1) enters to the FIFO, Input Controller set the signal of Trig, 
indicating a whole packet is stored (and thus converted to the asynchronous form). Afterward, 
Output Blocker releases the path, and then when the entire packet exits the FIFO, re-prevents any 
further output transitions. The signal of eop, asserted by Output Blocker, indicates that the packet 
left the FIFO and flits are not authorized anymore to go out. As eop is an asynchronous signal 
toward a synchronous domain, the use of a hardware synchronizer is required. 
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As the size of SA_FIFO is often limited, in certain applications there are likely some packets 
which cannot be entirely stored. So another responsibility of Input Controller is to count the 
number of entered flits. When the FIFO becomes full, even if the end of packet is not arrived, Trig 
must be asserted.  

 

Figure 44. QSF Implementation 

The Finite State Machine of Input Controller is shown in Figure 45. At the initial time the FSM 
is at the state T2. It enters to the state N2 when the end of packet is arrived and the FIFO is not 
full. The state N1 indicates the situation that the FIFO becomes full before the arrival of the 
packet trailer. In both states the flit input will be halted (Writei and WOK set to zero), waiting for 
eop. Note that at this time eop signifies the exit of the previous packet and there is always one 
packet interval between Input Controller and Output Blocker. As a result when a packet is going 
out, another is allowed to be entered, keeping the maximum bandwidth. Trig will be set when the 
FSM is in the states T1 and T2. 

 

Figure 45. Finite State Machine of Input Controller  
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The behavior of Output Blocker is specified as a Signal Transition Graph (STG), shown in 
Figure 46.a. In this STG the dotted lines represent the external asynchronous transitions and the 
dashed line stands for the transition of the synchronous domain. Respecting synchronous protocol 
base, the transition of the synchronous signal (Trig) should be considered on the edge. In the 
circuit implementation (demonstrated in Figure 46.b) a D-Type Flip-Flop is used to achieve this 
requirement. On the rising edge of Trig the input constant value of 0 appears on the output, 
generating B-. In order to generate B+ the Flip-Flop will asynchronously be set when the S input 
(Set Signal) is high. When B is high Req+ cannot be happened and thereby the handshake does 
not continue, blocking the path. On the contrary, when B is low Req+ may be occurred and Output 
Blocker is in the release state. 

 

Figure 46. Output Blocker: (a) STG and (b) Circuit Implementation 

5.6 Summary 

Although NoCs are much more scalable than traditional interconnects, when the number of 
clusters generating traffic increases the network saturation threshold which is a critical issue 
reduces and sometimes becomes the system bottleneck. This chapter presented a systematic 
evaluation of the saturation threshold in ASPIN and DSPIN architecture. ASPIN has fully 
asynchronous network architecture and DSPIN is a multi-synchronous NoC. In the evaluations the 

B- 

C 
+ 

C 
+ 

C 
+ 

EOP 

Ack 

0
B 

Acki 

Req 

eop 

S 

Trig 

Reqi 

Req+ 

Ack+ 

Reqi+ 

Acki+ 

eop+ 

B+ 

Req- 

Ack- 

Reqi- 

Acki- 

eop- 

EOP EOP 

Trig↑ 

(a) 

(b) 



 5.6. Summary  69 
 

 

influence of two parameters has been considered: the flit storage capacity of the network and the 
network throughput. 

We have shown that increasing the storage capacity distributed in the network can improve the 
network saturation threshold, but the corresponding cost may be much cheaper for fast 
asynchronous network than for multi-synchronous one which works with subsystems speed. We 
justified the importance of allowing the flits to gather in the last and first FIFO steps, instead of 
distributing over the network 

Finally, we proposed a new method to improve the saturation threshold in fast and large 
asynchronous networks: using a Quasi-Store-and-Forward (QSF) algorithm instead of end-to-end 
wormhole routing. In this approach, all flits of a given packet accumulate in the asynchronous 
form before entering the network. With this QSF approach, the packet does not occupy any 
resources unless it is sure that all its flits can traverse the network at full speed. In fact QSF 
approach attempts to realize a network offered load reduction by a coefficient equal to the speed 
ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 6 

 Physical Performance Comparison 

Will future NoCs be synchronous or asynchronous? As the general architectures and the provided 
services are totally identical in DSPIN and ASPIN implementations, the physical performance 
comparison between these two architectures may help to answer this question. The trade-off 
between costs and performances is a major issue of NoC design and determines a NoC is cure or 
curse. In this chapter we present a systematic comparison in terms of Silicon Area, Power 
Consumption, Communication Throughput, and Packet Latency which are the most important 
NoC physical performance parameters. 

All results presented in this chapter have been obtained in close cooperation with Ivan Miro 
Panades, who was in charge of the DSPIN evaluation. We have developed the gate-level 
structural VHDL models, as well as the layout synthesis, for all ASPIN and DSPIN components. I 
have developed a first version of Synthesizable VHDL models for all DSPIN components. An 
improved implementation, including an optional Quality of Services (QoS), has been developed 
by Ivan MIRO. Regarding the ASPIN components, I developed a generic ASPIN generator, using 
the Stratus procedural hardware description language of the Coriolis platform [63]. From a user 
point of view, Stratus allows Python programming flow control, variable use, and specialized 
functions in order to handle VLSI objects. The Stratus language gives the user the ability to 
describe net-list and layout views. The ASPIN generator generates both a gate-level net-list and 
the physical layout. Figure 47 demonstrates some layout examples of ASPIN modules. A 
complete 32-bit ASPN router with FIFO depth of 8-word contains 47672 transistors. 

To evaluate the electrical characteristics we have extracted the SPICE models for all DSPIN 
and ASPIN components. The target fabrication process is the STMicroelectronics 90 nm GPLVT. 
Electrical simulations have been performed for typical conditions under Eldo. For some physical 
performance parameters such as power consumption, or communication throughput, the length of 
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the long wires is a key factor. The length of these wires depends on the cluster size as the routers 
are physically distributed. In 90 nm fabrication process 2×2 mm2 is a rough surface estimation for 
a large cluster. Therefore, in the performance evaluations we have considered a simple RC model 
of wires with a length of 2 mm. The model of an intra-cluster wire connecting one input module 
to four output modules is shown in Figure 48. 

 

 

Figure 47. The Physical Layout Examples of ASPIN Modules with 8-Word FIFO Depth 
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Figure 48. Long Wire RC Model 

6.1 Silicon Area 

The actual silicon area after physical implementation is the first important parameter. A 32-bit 
DSPIN router synthesized by Synopsys takes 40200 µm2 for the STMicroelectronics GPLVT 
standard cell library in 90 nm process, as illustrated in Table 3. For ASPIN, the total silicon area 
of a 32-bit router is 36199 µm2, for the same fabrication process. Note that for ASPIN we have 
used SXLIB, the ALLIANCE portable standard cell library [64], and in order to make this value 
comparable with DSPIN it is normalized. ALLIANCE is a complete set of free CAD tools and 
CMOS portable libraries for VLSI design. The layout libraries rely on a symbolic layout approach 
that provides process independence in order to allow the designers to easily port their designs 
from one silicon supplier to another. 

Table 3. Silicon Area 

 DSPIN ASPIN 

Router 40200 µm2 36199 µm2 

Long Wire Buffers 4276 µm2 7815 µm2 

Total 44476 µm2 44014 µm2 

The ASPIN router area is about 10% smaller than the DSPIN area, but another factor must be 
accounted. In some cases, the long wires (e.g. the intra-cluster wires in DSPIN) need to be 
bufferized. As for long wires ASPIN uses double-rail data encoding, the area of the long wire 
buffers is about two times larger in ASPIN than in DSPIN. As a conclusion, ASPIN and DSPIN 
have nearly similar foot-print if long wires buffers are taken into account. 
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Perhaps it seems surprising that the silicon area of a synchronous circuit and a similar 
asynchronous circuit with double-rail wires are almost equal. But it is very important to notice 
and recall that ASPIN uses double-rail wires only for the long wires, and ASPIN’s FIFOs which 
are the most significant area occupant are designed as optimized hard-blocks and use single-rail 
protocol (bundled-data encoding). 

6.2 Communication Throughput 

The communication throughput is the maximum number of flits transmitted per second through a 
router. In our implementation a flit contains a 32-bit data word. This physical parameter depends 
on the router micro-architecture and on the long wire effects. The communication throughput 
strongly impacts the end-to-end system performance and as explained in  Chapter 5 it may also be 
related to the network saturation threshold.  

The first row of Table 4 presents the Maximum Throughput for DSPIN and ASPIN routers. In 
case of DSPIN (the synchronous approach), this indicates the maximum clock frequency that can 
be used to clock the router. In case of ASPIN (the asynchronous approach), the maximum 
throughput is equal to the inverse of the time needed to pass a flit through the slowest pipeline 
stage of the router.  

The first row of the table does not take into account the long wire effects. The second row 
presents the effect of the long wires delays, using a 2 mm wires model. These long wires delays 
are about four times larger in ASPIN, due to the delay insensitive Four-Phase handshake protocol. 
In a Four-Phase handshaking for each data transmission there are four signal transitions, 
consisting of REQ+, ACK+, REQ-, and ACK-. 

Table 4. Communication Throughput 

 DSPIN ASPIN 

Maximum Throughput 787 MFlits/S 1131 MFlits/S 

Long Wire Effect 135 ps 515 ps 

Applicable Throughput 711 MFlits/S 714 MFlits/S 

The Applicable Throughputs, mentioned in the third row, are the final evaluations. The inverse 
of the applicable throughput (the time needed by a flit to traverse a router) is equal to the inverse 
of the maximum throughput plus the effect of the long wire delays. As said before, a 4 mm2 
cluster is a large cluster, so these throughputs are a worst case evaluation which can be considered 
as an applicable throughput for almost all clusters regardless of their size. Indeed the actual 
throughput for ASPIN varies depending on the actual cluster size, in contrast with DSPIN where 
the throughput is exactly equal to the employed clock frequency. 
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As a summary, the number of flits passing per second through an ASPIN cluster may be higher 
on average. On the other side in large clusters the applicable communication throughputs for 
ASPIN and DSPIN are approximately identical. 

6.3 Packet Latency 

The minimal Packet Latency is the end-to-end delay between the time a packet header enters into 
the first router and the time it exits the last router, assuming no contention in the network. The 
path through the network can be decomposed in three parts: the First router, Intermediate routers, 
and finally the Last router which have different latencies. Table 5 shows the packet latencies in 
ASPIN and DSPIN architectures.  

As DSPIN is a synchronous circuit, its latency depends on the clock cycle time. Precisely, the 
exact value depends also on the clock skew relation between the network clock, and the 
subsystems clocks. For example the latency of the first DSPIN router is between the minimum 
latency of 3 and the maximum latency of 4 clock cycles, including the FIFO stage latencies. Note 
that here we focused on a DSPIN which uses bi-synchronous and mesochronous FIFOs described 
by Ivan Miro Panades in [11]. According to the synchronous circuit principles, DSPIN Packet 
Latency depends only on clock frequency. 

The ASPIN Packet Latencies are given in nanosecond. However, in the last router, where an 
Asynchronous-to-Synchronous FIFO (detailed in  Chapter 4) is instantiated, there is a clock 
frequency dependency between one and two clock cycles, as needed for the hardware 
synchronization. Packet Latency in ASPIN directly depends on the cluster size and long wire 
delays. Four-Phase protocol with 2 mm wires causes an extra latency of about 390 ps per cluster. 

Assuming 500 MHz as the clock frequency estimation for fast and 200 MHz for slow MP-SoC 
subsystems in 90 nm technology, the equations below denote some example of the Packet 
Latencies in large 4 mm2 clusters, where N is the number of routers in the packet transmission 
path. 

• DSPIN Packet Latency at 500 MHz:   L = (5.00×(N-2) + 17.0)  ns 

• ASPIN Packet Latency at 500 MHz:   L = (1.92×(N-2) + 6.60)  ns 

• DSPIN Packet Latency at 200 MHz:   L = (12.5×(N-2) + 42.5)  ns 

• ASPIN Packet Latency at 200 MHz:  L = (1.92×(N-2) + 11.1)  ns 

Depending on the clock frequency the latency of the asynchronous network can be, for 
example, 2.5 (at 500 MHz) to 6 (at 200 MHz) times smaller. The synchronization delay at each 
clock boundary crossing explains why the DSPIN Latency is much higher than the ASPIN 
Latency. In Shared-Memory Multi-processor System-on-Chip (MP-SoC), the packet latency is 
one of the most important factors that defines the cost of the cache miss and is critical for system 
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global performance. According to the above equations, the asynchronous approach can really 
improve the system performance.  

Table 5. Packet Latency 

 DSPIN ASPIN 

First Router 3~4 T 
* 1.06 ns 

Intermediate Router 2.5 T 1.53 ns 

Last Router 4.5~5.5 T 1.76 ns + 1~2 T 

Long Wire Effect 0 ns 0.39 ns 
* T is the clock cycle time (e.g. 2 ns for 500 MHz clock frequency) 

6.4 Power Consumption 

Power consumption of the communication structure in deep submicron fabrication processes is a 
major concern. Although most research has focused on average power consumption or total 
energy consumption [67], we believe that instantaneous power consumption (or energy 
consumption) during one short period of time is also important for NoC characterization. In 
calculating the NoC power consumption, two terms must be taken into account: dissipated energy 
per transmitted flit and idle power consumption. 

 

Figure 49. Current Integrator Model 

To measure electrical energy consumed by the circuit in a defined period of time, we used a 
Current Integrator model in electrical simulations. The schematic of the proposed Integrator is 
shown in Figure 49. The output voltage (Vout) is equal to the definite integral of the instantaneous 
current (i) traversing the circuit, from the beginning of the simulation. This Current Integrator can 
be modeled in SPICE as follows: 

∫=
− T

dtiVout
RC

G

0
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.param One = 1v 
 
* VDD : the power supply point to be used 
vSupply VDD 0 One 
 
************************** 
*   Current Integrator   * 
* VOUT : Consumed Energy * 
************************** 
hh1 p1 0 vSupply 1 
rr1 p1 p2 1meg 
cc1 p2 VOUT 1u ic=0 
ee1 VOUT 0 0 p2 999k 
************************** 

As a first step, we have measured, for each router, the idle power consumption. An idle router 
means there is no packet to route. Table 6 presents the results. The DSPIN power consumption is 
2060 µWatt at 500 MHz, using clock gating [68]. With 640 µWatt the ASPIN power consumption 
is about three times lower. It is well known that the clock power dissipation in synchronous 
designs is not negligible, even with the use of clock gating techniques.  

Table 6. Idle Power Consumption 

 DSPIN ASPIN 

Idle Router 2060 µWatt 640 µWatt 

In the second step, the energy consumptions of two activated DSPIN and ASPIN routers have 
been compared. The energy consumptions have been measured for the transmission of a single 
packet containing five flits. Separated measurements have been done for the First, Intermediate 
and Last routers. We have executed the measurements with four different hypotheses, depending 
on two parameters. The first parameter is the packet content. All flits in the packet can have a 
constant value, or all bit values change between two successive flits. The second parameter is the 
long wires effect and the corresponding electrical energy dissipation. The energy consumption 
results for a clock frequency of 500 MHz is summarized in Table 7 when the power dissipation 
effect of long wires is not taken into account, and in Table 8 when this effect is concerned. In 
these tables, N is the number of routers in the packet path. 

In the asynchronous Double-Rail Four-Phase handshake protocol, one of the two rails of each 
bit goes to logic One and Return to Zero (RTZ), whatever the bit content (zero or one). 
Consequently, ASPIN energy consumption is nearly independent on the packet content. In small 
clusters, where the effect of long wires is insignificant, DSPIN and ASPIN consume 
approximately the same amount of energy to transfer one packet. When the long wire effect is 
taken into account, the energy required by DSPIN to transfer a packet with constant content 
remains almost at the previous value, but if the packet has an alternate content, energy 
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consumption increases. As expected, the long wire effect on ASPIN energy consumption is much 
more dissipative. 

Table 7. 5-Flit Packet Energy Consumption (pJ) without Long Wire Effect 

 
With Constant Content With Alternate Content 

DSPIN ASPIN DSPIN ASPIN 

First Router 37 27 43 34 

Intermediate Router 36 33 42 41 

Last Router 36 48 42 62 

Transmission Path 36×(N-2)+73 33×(N-2)+75 42×(N-2)+85 41×(N-2)+96 

In a typical shared-memory multi-processor system using a Best-Effort packet-switching 
Micro-Network, the average activity of the routers is rather low, and most of the time, the routers 
are idle. According to a typical average bandwidth utilization of 20% (per input port of the 
router), the average power consumption is not significantly different between DSPIN and ASPIN 
routers. 

Table 8. 5-Flit Packet Energy Consumption (pJ) with Long Wire Effect 

 
With Constant Content With Alternate Content 

DSPIN ASPIN DSPIN ASPIN 

First Router 50 124 83 131 

Intermediate Router 45 129 81 137 

Last Router 45 147 81 161 

Transmission Path 45×(N-2)+95 129×(N-2)+271 81×(N-2)+164 137×(N-2)+292 

6.5 Summary 

A systematic comparison between physical performance parameters of two different 
implementations of the same micro-network architecture has been presented. The DSPIN 
implementation is a multi-synchronous, and the ASPIN implementation is a fully asynchronous 
NoC. The related parameters are silicon area, packet latency, communication throughput, and 
power consumption. These electrical characteristics have been evaluated by post layout SPICE 
simulation for STMicroelectronics 90 nm GPLVT CMOS fabrication process. As a predominant 
factor, in the evaluations the long wires effects have been taken into account. 



 6.5. Summary  79 
 

 

• Regarding the silicon area, both implementations have similar foot-prints, if long wire 
buffers are taken into account. 

• In systems containing large clusters, the energy dissipated to transmit a packet is higher in 
the asynchronous approach than in the synchronous approach, but the idle power 
consumption is 3 times lower. Consequently, the difference of the average power 
consumption is expected to be insignificant for typical shared memory MP-SoCs. 

• The maximal bandwidths are approximately similar: about 700 MFlits/S for the 
synchronous approach, against 700 to 1100 MFlits/S (depending on the cluster size) for 
the asynchronous approach. 

• The packet latency is clearly the strong point for the asynchronous approach, as the 
latency, for example, is 2.5 (at 500 MHz) to 6 (at 200 MHz) times smaller for ASPIN 
than for DSPIN. 

As a general conclusion, silicon area, power consumption and communication bandwidth have 
approximately similar values, but the asynchronous implementation’s average packet latency 
(which is a crucial parameter) is smaller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Summary 

A novel asynchronous NoC architecture (called ASPIN) to cope with the issues in the Globally 
Asynchronous Locally Synchronous paradigm and to reduce the possibility of metastability along 
the packet path has been presented. A large number of locally synchronous islands can 
communicate together via an asynchronous network and thereby the crucial problem of 
distributing a global synchronous clock signal over a wide chip area is reduced to a number of 
smaller sub-problems. An asynchronous NoC limits the synchronization failure only at the 
network interfaces, where the synchronous data has to enter into the asynchronous network and 
the asynchronous data into the synchronous subsystems. 

Arranged in a two-dimensional mesh topology, ASPIN is a wormhole packet-switching 
network. To route packets ASPIN uses the distributed, deadlock-free X-first routing algorithm. 
The starvation-free Round-Robin algorithm is used to schedule the concurrent requests. 

ASPIN addresses also the crucial issue of the global long wires which likely have large 
propagation delays, incompatible with the required throughput. ASPIN’s router is not a 
centralized macro-cell. The router is split in five separated modules (North, South, East, West, 
and Local) that can be physically distributed over the cluster area. This feature allows balancing 
the length of the long wires. Guaranteeing a delay-insensitive communication, ASPIN uses the 
double-rail four-phase handshake protocol for long wires.  

Seeing that in a router the storage places (FIFOs) are the most important area occupant, in order 
to minimize the silicon area overhead the asynchronous FIFO, instantiated in ASPIN’s input 
ports, has been designed as an optimized hard-block using single-rail (bundled-data) encoding. 

At clock boundaries ASPIN uses two special FIFOs to connect synchronous IP cores to the 
asynchronous network. Accordingly, two new concepts for Synchronous-to-Asynchronous FIFO 
(SA_FIFO) and Asynchronous-to-Synchronous FIFO (AS_FIFO) have been described in details. 
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All designs have been physically implemented, and the electrical characteristics have been 
evaluated by post layout SPICE simulation. These architectures are rather generic and allow the 
system designer to make various trade-offs between latency and robustness, depending on the 
selected synchronizer. With any choice of synchronizer, these FIFOs can achieve the maximum 
throughput of one transmitted word per clock cycle. 

Furthermore, we illustrated the evaluation of the network saturation threshold in the ASPIN and 
DSPIN architectures. DSPIN (which has been briefly presented in this thesis manuscript) is a 
multi-synchronous NoC well-suited to the GALS paradigm. Actually ASPIN is the asynchronous 
implementation of DSPIN. In the saturation threshold evaluation the influence of two parameters 
has been considered: the flit storage capacity of the network and the network throughput.  

This thesis showed that the ratio of the network throughput to the flit injection rate has a direct 
influence on the network saturation threshold, and as a consequence the network saturation 
threshold in a fast asynchronous network is much higher than in a multi-synchronous network 
which works with the speed of subsystems.  

Additionally this PhD thesis justified the fact that in a fast asynchronous network the 
accumulation of flits in the two ends of a packet path (i.e. in SA_FIFO and AS_FIFO) is more 
efficient than distributing them over the network (i.e. in the intermediate FIFOs). As a result, the 
corresponding cost of increasing the storage capacity distributed in the network (which can 
improve the network saturation threshold) may be much cheaper for a high-speed asynchronous 
network than for a multi-synchronous one. 

We proposed a new method to improve the saturation threshold in fast and large asynchronous 
networks: using a Quasi-Store-and-Forward (QSF) algorithm instead of end-to-end wormhole 
routing. In this approach, all flits of a given packet accumulate in the asynchronous form before 
entering the network. With this QSF approach, the packet does not occupy any resources unless it 
is sure that all its flits can traverse the network at full speed. In fact QSF approach attempts to 
realize a network offered load reduction by a coefficient equal to the speed ratio. 

Finally, a systematic comparison between physical performance parameters of DSPIN and 
ASPIN architectures has been presented. The relevant parameters are silicon area, packet latency, 
communication throughput, and power consumption. The electrical characteristics have been 
evaluated by post layout SPICE simulation for STMicroelectronics 90 nm GPLVT CMOS 
fabrication process. As a predominant factor, the long wires effects have been taken into account. 
As DSPIN and ASPIN are two different implementations of the same micro-network architecture, 
the performance comparison may help to answer this question that which architecture type could 
be the best choice to implement, synchronous or asynchronous? 

• Regarding the silicon area, both implementations have similar foot-prints, if long wire 
buffers are taken into account. 
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• In systems containing large clusters, the energy dissipated to transmit a packet is higher in 
the asynchronous approach than in the synchronous approach, but the idle power 
consumption is 3 times lower. Consequently, the difference of the average power 
consumption is expected to be insignificant for typical shared memory MP-SoCs. 

• The maximal bandwidths are approximately similar: about 700 MFlits/S for the 
synchronous approach, against 700 to 1100 MFlits/S (depending on the cluster size) for 
the asynchronous approach. 

• The packet latency is clearly the strong point for the asynchronous approach, as the 
latency, for example, is 2.5 (at 500 MHz) to 6 (at 200 MHz) times smaller for ASPIN 
than for DSPIN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

Appendix A 

 Networks-on-Chip 

“…the first microprocessor only had 22 hundred transistors. We are looking at something a 
million times that complex in the next generations—a billion transistors. What that gives us in the 
way of flexibility to design products is phenomenal.” said Gordon E. Moore, a co-founder of Intel 
Corporation. The man whose prediction, now popularly known as Moore's Law, states that the 
number of transistors on a chip doubles about every two years. It is sometimes quoted as every 18 
months. On this basis the chip density increases 10-fold every 5 years. See Figure 50. 

 

Figure 50. Moore’s Law means more Performance (taken from www.intel.com) 
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Transistor feature size is expected to continue to shrink. A reduction of 70% in linear 
dimensions of transistors by moving to a new fabrication process (for example from 65 nm to     
45 nm) allows a 2-fold increase in the chip density. New technologies such as 3D die stacking 
may allow even greater increases in total transistor count within a given footprint [69]. 3D die 
stacking is an exciting new technology that increases transistor density by vertically integrating 
two or more die with a dense, high-speed interface. The 2005 International Technology Roadmap 
for Semiconductors (ITRS) [66] projects that multi-billion transistor chips will come to 
production by the end of this decade. Refer to Figure 51. 

 

Figure 51. Product Technology Trends (2005 ITRS) 

A.1. Multi-Core Processors, Clients for NoCs 

As we proceed into deep submicron (DSM) technologies, feature sizes will not only introduce a 
whole new set of application possibilities but will also aggravate current problems in VLSI/ULSI 
design, and moreover, introduce several new ones. Recently the Intel Tera-Scale Computing [70] 
research team in a white paper [71] has mentioned that “power thermal issues, such as dissipating 
heat from increasingly densely packed transistors, have begun to limit the rate at which processor 
frequency can also be increased. Although frequency increases have been a design staple for the 
last 20 years, the next 20 years will require a new approach. Basically, industry needs to develop 
improved micro-architectures at a faster rate and in coordination with each new silicon 
manufacturing process, from 45 nm, to 32 nm, and beyond”. 
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Figure 52. Intel’s 80-Tile Network-on-Chip in 65nm CMOS 

As a consequence, Intel processors with two processing cores (Intel Core Duo, Core 2 Duo, and 
Xeon x1xx series) have been commercially produced and quad-core processors (Intel Core Quad 
and Xeon) are bringing out. Intel has explained that “instead of focusing solely on performing 
individual tasks faster, we will execute many more tasks in parallel at the same time. We will also 
distribute those tasks across a grouping of cores that work in a coordinated fashion”. Intel also 
said that “the number of cores on a chip will continue to grow, launching an era of vastly more 
powerful computers. These are the machines that will deliver teraflop performance with the 
efficient capabilities needed to handle tomorrow’s emerging applications.” Intel has mentioned 
three distinct trends that motivate this shift: 

• Performance: We can no longer simply increase the clock frequency at the same rate as 
we have in the past in order to increase performance. Power and thermal requirements are 
beginning to outstrip the benefits that faster clock frequencies offer. However, because 
the trajectory of Moore’s law will continue well into the next decade, we expect to 
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continue doubling transistors every 18-24 months for the next several years. Parallel 
execution in multi-core designs will then allow us to take advantage of these greater 
transistor densities to provide greater performance. 

• Power consumption: Many simple cores can be built within the same area as a small 
number of large complex cores. In addition, power consumption can be optimized by 
using multiple types of cores tuned to match the needs of different usage models. Also, 
cores that are not busy can be powered down to reduce power consumption during idle 
times. These advanced power-saving techniques are enabled by multiple cores working in 
a coordinated fashion. 

• Rapid design cycles: Building tera-scale processors from standard, repeated tiles that are 
then integrated into a common infrastructure should allow more reuse of designs between 
generations of processors. This will also allow us to highly optimize the design of these 
tiles to further improve power utilization and performance. 

 

Figure 53. System-Level Design Potential Solutions (2005 ITRS) 

Intel’s tera-scale research prepares for tens, hundreds of cores [72]. As a testimonial, an         
80-Core processor that delivers supercomputer-like performance of 1.28 Teraflops, and use only 
181 W, has been introduced in [73]. The chip architecture contains 80 tiles arranged as a 10×8               
two-dimensional mesh topology. See Figure 52. Although such tera-scale architectures offer many 
unique opportunities through their highly integrated multi-core designs, obviously they also 
present many challenges. For example, consider inter-core communication latencies and 
bandwidth. Basically as more elements are packed onto a tera-scale chip, there is a 
correspondingly greater need for each of these units to communicate with each other. The global 
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interconnect design and micro-network architecture will play a significant role in determining the 
performance. The basic architecture of Intel’s 80-Tile design is based on the Network-on-Chip 
ideas. Each of these 80 tiles consists of a processing engine connected to a 5-port wormhole 
packet-switching router for passing data amongst the tiles with a bandwidth up to 256 GB/s. 

Even though Intel has indicated that there is no plan to bring this chip to market, without a 
doubt something like this will be produced in the coming years. Perhaps Multi-Core Processors 
(Chip-level Multi-Processor or CMP) are one of the first real industrial clients of NoCs. As 
demonstrated in Figure 53, the 2005 ITRS forecasts that by the end of this decade development 
and pre-production will be taking place for Network-on-Chip design methods. 

A.2. Systems-on-Chip, the Real Clients of NoCs 

Monstrous efforts in reducing the transistor feature size, have given the possibility of using a huge 
number of transistors in a single chip. Today’s chips may contain several microprocessors, 
physical memories, peripheral controllers (such as USB controllers), DSPs, etc. Therefore, a chip 
could be a set of various subsystems working together as different parts of a large system, hence 
called System-on-Chip. Systems-on-Chip (SoCs) provide the feasibility of a wide range of 
applications. Real-time requirements could be achieved and massively parallel processing is a 
reality. Furthermore, to address high-performance computation Multi-Processor Systems-on-Chip 
(MP-SoCs) are developed. The 2005 ITRS predicts that future applications, by the end of the next 
decade, will exploit more than 800 processing engines! See Figure 54.  

 

Figure 54. SoC Design Complexity Trends (2005 ITRS) 
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In such multi-processor (multi-core) applications, inter-core communication efficiency is surely 
an essential key to the overall system performance. So due to the growth of performance 
requiring, an efficient on-chip communication seems more indispensable than ever. In the recent 
years on-chip communication interconnection has become a broad topic of research and 
development. Communication and computation are now two completely distinct research aspects 
in SoC design. Networks-on-Chip, as a new SoC paradigm [74], is known as a prominent concept 
for on-chip communication. In fact, NoCs are the progressive evolution of classical shared busses. 
As will be clear in the following subsections, traditional communication interconnects do not 
scale when the transistor feature size reduces and/or number of components to interconnect 
increases. 

A.2.1. Scalability 

The opportunity of task-level parallelism between processing units in MP-SoCs has offered the 
possibility of a wide range of different applications accumulated in a single chip. Mobile Phones 
are exemplary of such high-performance systems. With the same equipment, we can talk to a 
friend, watch a movie, explore the Internet, hear a piece of music, play a game, or take a picture.  

 

Figure 55. The Average Latency of PI-Bus and SPIN for several numbers of cores 

This requirement will continue to grow with a better quality. The need for more number of 
high-performance hardware Intellectual Property (IP) cores incorporated on a single chip has 
emerged. However, classical on-chip interconnects cannot support anymore this type of 
applications. They don’t scale because they can only serve a limited number of cores generating 
traffic. As an example, Figure 55 (taken from [75]) illustrates the average latency of two on-chip 
interconnects versus number of connected IP cores. The first interconnect is PI-Bus [76], an       
on-chip shared bus, and the second one is SPIN, LIP6’s Network-on-Chip. SPIN outperforms     
PI-Bus only in systems with more than a dozen of cores. 
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A.2.1.1. Concurrent Communication 

Indeed the communication throughput of large-scale applications like multi-media mobile phones 
plays a key role in overall performance. The chip may require an aggregate interconnection 
bandwidth of several hundred gigabits per second. The possibility of a large number of 
simultaneous inter-core communications in a NoC-based architecture could fulfill this 
requirement. In classical interconnects such as busses the bandwidth is shared by all attached 
devices and concurrent communications is not possible. 

 

Figure 56. Concurrent Communications in (a) Bus, (b) Hierarchical Bus, and (c) NoC 
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In order to provide concurrent communications the advanced bus-based approaches recommend 
multiple and hierarchical on-chip busses. These architectures require case-specific grouping of IPs 
and the design of traversal bridges with an inherent complexity in arbitration algorithms, which 
does not make for a truly scalable and reusable interconnection. Due to the tight time-to-market, 
the success of Systems-on-Chip will rely on the ability to interconnect existing components in a    
plug-and-play fashion.  

In reality Networks-on-Chip are the result of the gradual process of the reusability and 
scalability improvement in hierarchical interconnect architectures. Wires became pipelines and 
bridges became routers. Figure 56 shows the growth in number of parallel communication 
accesses in on-chip interconnecting. In a shared bus (a) when two IP cores are communicating, for 
example according to the figure, IP7 with IP15, no other IP can begin a new connection. On the 
contrary, due to the hierarchy of local busses in (b), in addition to the data communication 
between IP7 and IP15, there is the possibility of some others like IP1 with IP3 and IP9 with IP8. 
In a NoC (c) the number of concurrent communications vastly increases and in parallel with the 
above communications, the other IPs like IP0, IP4, IP13, IP14, and IP10 could communicate, for 
example, with IP11, IP6, IP12, IP2, and IP5, respectively. 

A.2.1.2. Saturation Threshold 

A well-known behavior of traffic systems with flow control is that when the requested throughput 
approaches to a certain limit, throughput saturates. It can be explained by looking at the road 
transportation. When number of moving vehicles is not high and the traffic load is moderate, one 
can determine how long is required to arrive to the destination. But in a heavy traffic situation, it 
is not easy to predict the delay. The average speed will be reduced and a large latency may be 
imposed. In this case due to the high possibility of collision, the use of a flow control system is 
essential. For example in order to avoid contention in road junctions, traffic lights give the cars 
the right of way. The largest relative part of the total latency is due to the waiting times at red 
lights. The absence of simultaneous access ways and limited parallelism is often a cause of 
congestion.  

Data communication in computer systems shows a similar behavior. When number of 
components requiring access to the communication resources is limited, average communication 
latency is predictable. But when the offered load increases, the average latency becomes a 
bottleneck for system performance. The average latency exponentially grows to an infinite value, 
when the offered traffic load exceeds a point called saturation threshold. Scalability in NoCs 
means that the value of saturation threshold is roughly independent on the number of 
communicating units. The main motivation supporting NoC paradigm is the fact that classical 
interconnects such as shared busses have a low saturation threshold and do not scale with the 
number of connected units. They can serve a limited number of units, and beyond that the average 
communication latency strongly increases. Figure 57 (taken from [75]) illustrates the average 
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latency of PI-Bus and SPIN micro-network versus the offered load. It appears that with 32 
connected IP cores, SPIN micro-network has a latency of about 30 cycles and saturates for an 
offered load of 28%. With the same cores, for very small load, PI-Bus has a lower latency, but the 
saturation threshold is for an offered load of about 4%. 

 

Figure 57. The Saturation Threshold of SPIN vs. PI-Bus  

A.2.1.3. Quality of Service 

However, even though the saturation threshold in Networks-on-Chip is much higher than in 
previous interconnect, any interconnect will saturate if a large number of cores generate traffic 
and the average offered load exceeds saturation threshold. As the network latency becomes 
unpredictable, the quality of some delay sensitive applications which need a guaranteed latency 
will be reduced. For example a data stream from a camera to an MPEG encoder in a high quality 
video application requires high throughput with low, stable, and predictable delay. If the time 
interval between frames goes beyond a certain limit, the quality of service of the application could 
not be guaranteed. NoCs providing connection-oriented service (TDM: Time Division 
Multiplexing, VC: Virtual Channels, etc) give an opportunity for this kind of real-time 
applications. The ability of a network to provide guaranteed service to specific connections is 
often denoted as QoS or Quality-of-Service. The primary goal of QoS is to produce guaranteed 
throughput and latency, even when the network traffic reaches saturation point. 

A.2.2. Physical Issues 

As SoC complexity scales, it will be more difficult, if not impossible, to capture their 
functionality with fully deterministic models of operation [77]. In other words, system models 
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may have multiple implementations. Property abstraction, which is a key to managing complexity 
in modeling and design, will hide implementation details and designers will have to relinquish 
control of such details. Architecting at a higher abstraction level is now a key factor for system 
design. While abstract modeling and automated synthesis enables complex system design, such an 
approach increases the variability of the physical and electrical parameters. 

A.2.2.1. Wire Delay 

The shrinking of processing technology in the deep submicron domain aggravates the imbalance 
between gate delays and wire delays on chip. While gate delays decrease, wire delays, because of 
the growth of wire resistance, increase [60]. Nevertheless, since the length of local wires usually 
shrinks with traditional scaling, the impact of their delay on performance is minor. On the 
contrary, as the die size does not necessarily scale down, global wire lengths do not reduce. 
Global wires connect different functional units of a system and spread on the entire chip. The 
largest part of delays now is related to global wires. Figure 58 (taken from the 2005 ITRS) shows 
the projected relative delay for local wires, global wires, and logic gates of the near future. 
Whereas the operating frequency and transistor density need to continue to grow, global wires are 
likely to have propagation delays largely exceeding the required clock period. 

 

Figure 58. Delay for Local (Metal 1) and Global Wiring versus Feature Size 

Furthermore, as the number of components attached to shared wires increases, the load 
capacitances and consequently signal transition delays grow, degrading the operating frequency. 
A correct design that safely meets all timing constraints will require knowing the signal delays 
with a reasonable accuracy. Accurate physical design became the bottleneck for design closure.  
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All told, due to the physical wire effects of scaling, differentiating between local and global 
interconnection has become absolutely necessary and the need for global communication 
architectures supporting Systems-on-Chip requirements has emerged. In NoC design approaches 
the global wires are replaced with segmented pipelined wires (point-to-point links) connecting 
network nodes. Each functional unit in the SoC is often connected to a node in the network. 

A.2.2.2. Signal Integrity 

In addition to traditional applications, such as aircraft control, defense applications, and reliable 
computing, there are many new fields requiring high-reliable SoCs, ranging from medical 
applications to automotive control and more generally to embedded systems that are critical for 
human operation and life. System-level reliability is the probability that the system will operate 
correctly as a function of time. The expected value of the reliability function is the Mean Time To 
Failure (MTTF). Increasing MTTF more than the expected useful life of a product is an important 
design specification.  

In DSM technologies, due to problems like fabrication uncertainties, crosstalk, noise 
sensitivity, temperature variation, etc, the wire models (especially long wires) are unreliable and 
failures in devices and interconnects are more probable to happen [77]. Therefore reliable SoCs 
need to be designed with specific abilities to deal with hard (permanent) and soft (transient) 
malfunctions. System-level solutions for hard errors involve redundancy, and thus require the 
online connection of a reserved unit and disconnection of the faulty unit. Solutions for soft errors 
include design techniques for error detection and correction. Networks-on-Chip can provide 
flexible solutions toward hard errors by supporting reconfigurability and seamless 
connection/disconnection of units. Also NoCs, due to their layered architectures, can detect and 
correct soft errors by layered error detection/correction methods.  

A.2.2.3. Power Dissipation 

Most of today’s electronic devices are confronted with the problem of delivering high 
performance with limited power consumption. Low power consumption is required to achieve 
acceptable autonomy in battery-powered systems such as PDAs (Personal Digital Assistants) or 
mobile phones. Moreover low-power circuits reduce the environmental impact (e.g., heat 
dissipation, cooling-induced noise) and operation cost of stationary systems. In other words, 
achieving highly energy-efficient computation is a major challenge in electronic design. 

Regarding the current projections of future silicon technologies, heat extraction and energy 
dissipation, where a major contribution is due to leakage, will lead the SoCs to incorporate 
Dynamic Power Management (DPM) techniques in various forms to satisfy energy consumption 
bounds [78]. DPM contains a set of techniques that achieve energy-efficient computation by 
selectively turning off or reducing the performance of system components when they are idle or 
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partially unexploited. In these methods the need for physical distinction between system power 
segments has emerged. Modular and reconfigurable NoCs by clusterizing the chip help to 
independently provide ideal boundaries to power domains [79]. 

A.3. Design Methodologies 

In NoC literature the term of methodology relies on a very broad design aspect, from low-level 
physical implementation to high-level abstract modeling. Problems get different senses as we 
move from one design level to another. For example system software issues do not involve 
physical problems like clock skew or long wire delays, as the physical layer has no idea about 
handling massive parallelism. 

As a consequence, the OSI (Open System Interconnection) model of layered network 
communication can be adapted for NoC usage [74]. The aim is to shield each level of the system 
from issues of other levels and thereby to allow communication between independently developed 
layers. Note that awareness of lower levels can be beneficial as it can lead to higher performance. 
In a NoC-based system the layers are more closely dependent than in a macro network and have 
often a physically related characteristic. The design of a system using Network-on-Chip 
architecture could be considered in four different layers as follows: 

• Physical (OSI: Physical): This layer is concerned with the lowest-level details of 
transmitting data on wires. It defines signal timings and all related problems like long 
wire delays, clock skew, and synchronization failure, which all are aggravated as 
technology scales down. Power consumption is one of the most important parameters at 
this level. Globally Asynchronous Locally Synchronous (GALS) design issues are also 
related to this layer of the network. Implementing the system as a synchronous circuit or 
an asynchronous one is a design decision that must be made due to the encountered 
parameters of the physical layer. 

• Network (OSI: Data Link, Network): The network layer provides a topological view of 
the communications. The main function of this layer is to determine how messages are 
routed from a source to a destination. This can be customized by the choice of routing 
algorithm, switching strategy, and flow control, which all have a great impact on the 
performance. Dead-lock, live-lock, starvation, and saturation are some critical issues 
introduced in this layer. 

• Interface (OSI: Transport): Dealing with the decomposition of messages into packets at 
the source and their assembly at the destination is the main function of the interface layer 
of a NoC. As the behavior of most network flow control policies is sensitive to packet 
size, packetization is a critical design decision. Furthermore this design level offers the 
independency versus the network implementation and translates the communication 
protocol of upper levels to the network compliant protocol. 
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• Application (OSI: Session, Presentation, Application): The application layer is concerned 
as the highest level of abstraction of the underlying communication architecture. It 
provides application specific functions exploiting the capabilities of lower level 
components, and thus the system can use these abstract communication functions without 
any concern for network details. All system software issues are related to the application 
design level of a Network-on-Chip. 

Figure 59 shows the layered-designed components of a NoC-based architecture. Typically in a 
general shared-memory MP-SoC each subsystem contains one or several processors, one or 
several physical memory banks, optional dedicated IP cores (Hardware Coprocessors, I/O 
Controllers …), etc, which may communicate together via a local interconnect. As shown all these 
components are considered in the application layer of the system.  

 

Figure 59. Layered-designed components of a NoC-based architecture 

The subsystems are connected to the network by a Network Interface Controller (NIC) which is 
the only access way. The NIC is involved in the issues of the interface layer. Thanks to this 
component, even if the architecture is physically clusterized, all processors in all clusters may 
share the same flat address space and any processor in the system can address any target or 
peripheral IP core.  

A network consists of a number of switches and so the network layer problems include the 
design of the network switches and their connectivity. Precisely, the network level of design 
defines the concept of the switches and determines the geometric topology of the system. The 
switching module of a NoC is often called router and must be implemented according to the 
physical issues. Thus, a router may belong to both network and physical layers of the system. 
Distinguishing these two layers as two separated components is not evident. 

The focus of this section is mainly on incorporating the ideas of the network architecture 
implementation. Naturally defining the basics of a NoC-based architecture lies on methodologies 
of the router design, i.e. physical and network design-levels which are two network architecture 
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dependent layers. Sometimes the interface layer could also be concerned, as needed to form an 
interface between the network architecture and the application layer components.  

The system performance is fundamentally affected by the network architecture which provides 
the communication infrastructure for the resources. The possibility of a large number of 
concurrent communications and a high aggregate throughput, a high value of saturation threshold, 
a low average latency, absence of dead-lock, live-lock, and starvation, providing in-order-delivery 
property, etc, all are directly influenced by the architectural issues.  

Relating to the network architecture, a crucial problem is the trade-off between generality and 
performance. Generality provides reusability of hardware, operating systems and development 
practices, while performance is achieved by using application-specific structures [38]. 
Nevertheless according to the fact that time-to-market is being very tight and design cost a 
nightmare, for example, LIP6 has decided to design a high performance, but general-purpose NoC 
architecture that could be used as a pre-fabricated part of any MP-SoC designs, needed by the 
future design methodology of high-level abstract modeling. 

The NoC bibliography, as a conceptual guideline, leads to update the network architectural 
ideas. SPIN micro-network presented in [33] was the first published NoC architecture. After that a 
large number of Networks-on-Chip have been proposed. Some examples are Dally’s NoC [34], 
AEthereal [35], xPipes [37], CLICHÉ [38], Nostrum [36], aSoC [43], ANoC [52], QNoC [50], 
Octagon [39] (Spidergon [40]), Nexus [51], SoCBUS [41], Chain [48], QoS [49], SoCIN [44], 
HERMES [42], BFT [45], BONE [46], Proteo [47], and MANGO [53]. To better classify NoC 
methodologies, the issues could be identified by four key properties: topology, routing algorithm, 
switching strategy, and flow control. 

A.3.1. Topology 

The network topology is the study of the arrangement and connectivity of the nodes. The 
arrangement of the nodes in a geometrical shape and their connectivity determine the physical 
topology of the network. Likewise the mapping of the flow of data between nodes in the network 
defines the logical topology that could be dynamically configured. Although usually physical and 
logical topologies are identical, in any particular network they also may be different. Anyway 
both physical and logical topologies follow the same classifications. 

The choice of a network topology opts for three aspects which are often mutually exclusive: 
performance, cost, and scalability. Typically a designer would have to make calculated trade-offs 
between these three aspects in order to find the optimum solution for each individual NoC design. 
Shared-Bus, Crossbar, Binary Tree, Fat-Tree, Butterfly Fat-Tree, Ring, 2D-Ring (Torus), Chordal 
Ring, Array, and 2D-Array (Mesh) are the most usual topologies for on-chip interconnecting. As 
stated in [80] and [81], these different topologies formally can be compared by analyzing some 
critic properties. According to the requirements of the NoC-based systems and the graph theory, 
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total number of switches, the degree of each switch, the diameter of the network, total number of 
channels, and number of bisection channels are the most important parameters for a formal 
comparison. These parameters are explained as follows: 

• Number of switches: determines the number of switches which are required to realize the 
topology. Lower number of switches means lower network overhead. 

• Switch degree: is the number of input/output ports. Lower degree for switches means 
reduced design complexity and consequently simpler circuit with lower silicon area and 
power consumption. 

• Network diameter: is the length of the maximum shortest path between any two nodes 
measured in hops. Hop is the basic switching action of the network. Lower diameter for 
the network means the possibility of lower communication latency. 

• Number of channels: determines the maximum possibility of the simultaneous 
communications in the network. Higher number of channels means higher aggregate 
throughput and lower saturation threshold. 

• Number of bisection channels: is the minimum number of channels which, if removed, 
cut the network into two equal parts. Bisection channels are a measure of bottleneck 
channels that could be used with members of one of the sub-nets communicating with 
members of the other sub-net. Higher number of bisection channels means higher 
possibility of concurrent global communications and lower global saturation threshold. 

 

Figure 60. Classical Interconnects of (a) Shared-Bus and (b) Crossbar 

The analysis results of some interconnect topologies are presented in Table 9. As shown in this 
table total number of channels in a shared-bus is 1, introducing a catastrophic feature especially 
when number of nodes to interconnect is high. On the other hand, although the equality between 
the number of channels and the number of nodes in a crossbar predicts a better behavior, the 
switch degree of crossbar is strictly high. The design complexity of a switch with the degree of N, 

(a) (b) 
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where N is number of nodes, reduces the scalability. Refer to Figure 60. Additionally the use of 
only one switch (one centralized hard macro-core) produces some serious problems, such as 
incompatibility with GALS paradigm, inflexibility in the design level of core placement, etc. 
Principally the system designers seek high granularity of system cores.  

Table 9. Formal Comparison between Usual On-Chip Interconnect Topologies 

 
Number of 
Nodes 

Number of 
Switches 

Switch 
Degree 

Network 
Diameter 

Number of 
Channels 

Number of 
Bisection 
Channels 

Shared‐Bus  N  1  N  1  1  1 

Crossbar  N  1  N  1  N  N 

Binary Tree  N = 2n  N ‐ 1  3  2 Log2 N  4 N ‐ 4  2 

Fat‐Tree (2‐ary)  N = 2n  ½ N × Log2 N 4  2 Log2 N  2 N × Log2 N  N 

Fat‐Tree (4‐ary)  N = 4n  ¼ N × Log4 N 8  2 Log4 N  2 N × Log4 N  N 

Butterfly Fat‐Tree  N = 2n  ½ N × Log2 N 2  Log2 N  N × Log2 N  ½ N 

Ring  N  N  3  ½ N  4 N  4 

2D‐Ring  N = n2  N  5  √N  6 N  4 √N 

Chordal Ring  N = 2 n  N  4  ¼ N  5 N  8 

Array  N  N  3  N  4 N ‐ 2  2 

2D‐Array  N = n2  N  5  2 √N  6 N – 4 √N  2 √N 

A.3.1.1. Tree-Based Topologies 

The binary tree as network topology (Figure 61.a) employs N-1 switches (routers) with the degree 
of 3, where N is number of nodes. Total number of channels is 4×(N-1) and the network diameter 
is 2×Log2 N. While all these parameters would show the potential of a satisfactory performance, 
the limited number of bisection channels (i.e. 2) indicates the limited possibility of simultaneous 
global communications. Tree-based topologies are often beneficial for exploiting locality of the 
communications. 

The binary fat-tree and butterfly binary fat-tree are two alternative solutions to increase number 
of bisection channels. As shown in Table 9, the fat-tree topology has twice the number of network 
channels and bisection channels of a butterfly topology, at the expense of double network 
diameter and switch degree. The links in a fat-tree are bidirectional, while a butterfly fat-tree uses 
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unidirectional connections. As can be seen in Figure 62.a, in a butterfly network for each pair of 
source and destination there is only one route and each route blocks many other routes, but in 
such a network a simple deterministic routing algorithm could be used. On the other hand, 
profiting from the diversity of routes in a fat-tree topology (Figure 62.b) that predicts a wonderful 
performance, demands an adaptive routing algorithm which as will be explained introduces some 
important issues and increases the complexity of the implementation. 

Unlike to the binary tree that may have a regular two-dimensional layout (see Figure 61.b), 
binary fat-tree (and similarly butterfly binary fat-tree) topologies have more difficulty to regularly 
lay out on a two-dimensional chip surface and as a consequence wires could not have symmetric 
lengths and number of long wires vastly grows. Perceptively, a fat-tree could be imagined as a 
multi-dimensional graph. Figure 62.c shows the layout of a 4-dimensinal binary fat-tree. Laying 
out a multi-dimensional network on a two-dimensional plane requires multi layers of wires and 
multi number of vias. 

 

Figure 61. Interconnect topology of (a) binary tree and (b) its layout 

The term of 2-ary n-dimensional fat-tree commonly indicates the structure of binary fat-tree 
topologies. With respect to the terminology of k-ary tree, where k is the number of childes 
connected to each node, the term of k-ary n-dimensional fat-tree refers to the corresponding 
topology. SPIN micro-network exploits a 4-ary n-dimensional fat-tree, which is proven in [82] to 
be the most hardware-efficient supercomputing universal network, compared to any others. As an 
instance, a 4-ary 3-dimensional fat-tree is depicted in Figure 63. This 3-dimensional graph 
corresponds to the geometric shape of diametral cube. Refer to Figure 63.b. 

Due to the low network diameter with O(Logk N), high number of channels with O(N×Logk N), 
and high number of bisection channels with O(N), the k-ary n-dimensional fat-tree topologies are 
the best choice from the viewpoint of connectivity and are widely used in parallel computer 
architectures [80]. However, implementing this kind of highly connected networks on a chip 
demands a complex wiring, using enormous number of long wires, particularly on various layers. 
Wiring is a limiting factor and really a major concern in NoC architecture designing.  

(b) (a) 
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Moreover, k-ary n-dimensional fat-tree topologies suffer from the fact that number of switches 
exceeds number of nodes, when number of nodes goes beyond kk (e.g. 4 in binary fat-trees), as the 
number of switches is (N×Logk N)/k. The growth in k reduces number of switches, but increases 
the degree of switches and directly affects design and wiring complexity. This event incurs an 
important network overhead. For the on-chip interconnects the network overhead strictly is more 
critical than for the off-chip networks, and the design scalability is more essential.  

 

Figure 62. Topologies of (a) butterfly fat-tree and (b) binary fat-tree (2-ary 4-dimensional) 

with (c) its 2-dimensional layout  

(b) (a) 

(c) 
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Figure 63. A (a) 4-ary 3-dimensional fat-tree with (b) its 3-dimensional perspective 

A.3.1.2. Direct Network Topologies 

The use of direct networks helps to simplify the physical implementation. Direct networks are 
those that have at least one core attached to each switching node of the network, and so switches 
(routers) may regularly spread between cores, one-to-one. Indirect networks on the other hand 
have a subset of nodes not connected to any core. All tree-based topologies (including fat-trees) 
that cores are connected only to the leaf nodes, are indirect networks. 

The ring and array are two of the simplest interconnect topologies. As they are direct networks 
the network overhead increases with O(N) and as demonstrated in Figure 64.a and Figure 64.b 
these two topologies can easily be laid out on a two-dimensional square plane. But, the low 
number of bisection channels and high value of network diameter are two limiting factors for the 
scalability. 

Chordal ring is an improved ring topology in which each node of the ring, in addition to two 
adjacent nodes, is connected to the opposite node by the chord of the ring. See Figure 64.c. the 
layout of a 16-node chordal ring is displayed in Figure 64.d. The chordal ring topology provides 
twice shorter routing path, and even for a limited number of cores the shortest compared with any 
other topologies. For example a chordal ring of 8 nodes guarantees two-hop communication 
between any pair of nodes, and a ring with 16 nodes four hops. 

Anyhow, the chordal ring is also not a scalable topology. Total number of bisection channels is 
8 and the network diameter grows with O(N). In order to achieve a scalable network topology the 
authors of [39], as shown in Figure 64.e, have proposed the hierarchical topology of 8-node 
chordal rings, called Octagon. This design is based on the use of some special bridge nodes (the 
red nodes in the figure). Remember that the hierarchy in any kind of bridge-based architectures 
(such as local busses) profits from the locality of communications. The possibility of concurrent 
global communications is reduced. 

(b) 

(a) 
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Figure 64. Direct networks of (a) array, (b) ring, and (c) chordal ring with (d) its layout and 

(e) hierarchical form 

A.3.1.2.1. Grid-Based Topologies 

To simply distinguish regular topologies which offer acceptable connectivity and utilization of 
resources in the networks, first in [83], the term of k-ary n-cube was described to provide a 
convenient notion of multi-dimensional grid-based topologies, where k is the number of nodes in 
each dimension and n is the number of dimensions. Seeing the fact that because of the              
two-dimensional square structure, a k-ary 2-cube (a two-dimensional grid-based topology) is 
straightforward to lay out on a chip, degrading the wiring complexity, two-dimensional ring 

(a) (b) 

(d) 

(c) 

(e) 
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(torus) and array (mesh) topologies seem more fulfilling for on-chip interconnecting. Additionally 
routing in this type of networks is easy and results in potentially small routers. 

In these two grid-type networks the length of wires is symmetrically limited to the distance 
between each two adjacent cores, except for those links of a torus that connect the first and last 
nodes of each row or column. Refer to Figure 65. To moderate wire lengths a torus could be 
folded. An example of a 6×6 folded torus network is given in Figure 65.c. Averagely, the length 
of wires in a mesh is shorter than in a torus or than in a folded torus. On the other hand a torus 
topology has twice the bisection channels of a mesh network, and half the network diameter, at 
the expense of a double demand of wiring.  

 

Figure 65. Regular topologies of (a) mesh and (b) torus with (c) a folded-torus example 

(a) 
(b) 

(c) 
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The choice between torus and mesh as topology of a NoC is an arguable case. Both networks 
are fully scalable, but while torus provides a better performance, regularity and better use of links 
and eventually lower network overhead advocate a preference for mesh. For example, as a result 
of longer wires , in [36] a folded torus is rejected in favor of a mesh with the argument that it has 
longer delays between routing nodes, and in [34] based on the claim that it has more wire 
transmission power dissipation. The authors of [44] have also argued that a mesh is a more 
economic approach as the degree of switches on the borders could be reduced to 4, and on the 
corners to 3. According to the current and future needs and respecting the new deep submicron 
technology trends, it seems that to choose a topology for a general-purpose Network-on-Chip, one 
has to opt for a more regular form with shorter wires that shares the links more efficiently, that is 
a mesh. 

To complete the talk, it is useful to notice that due to probable heterogeneity and irregularity of 
SoCs using modules with varying size and communication requirements, the best choice of an 
application-specific topology often is an irregular form of topologies, derived by mixing different 
forms, in a hierarchical, hybrid or asymmetric fashion. Irregular topologies scale non-linearly with 
regards to area and power. These are usually based on the concept of localizing communications 
and exploiting the most efficient solutions for small local-private networks. 

A.3.2. Routing Algorithm 

Routing is the process of selecting paths in the network between a source and a destination. The 
regular topologies of general-purpose Networks-on-Chip allow an algorithmic routing, as opposed 
to static, statistic, or stochastic routings which need often to use a Look-Up Table (LUT). The 
routing algorithm restricts the set of possible path to a small set of legal paths. Minimal 
algorithms determine the shortest paths between each two nodes of the network. Depending on the 
topology, there are many different routing algorithms providing different guarantees and offering 
different performance trade-offs, such as predictability versus average performance, switch design 
complexity and speed versus channel utilization, robustness versus aggressiveness [74]. 

Algorithmic routing can either be determined at the source or with a distributed manner by 
routers along the path. In source routing the entire route of a packet is decided by the source node 
which has to be aware of the network’s topology. It encapsulates the exact node-to-node itinerary 
of a packet in the header. As the packet traverses the network this information is used by each 
node on the path to navigate the packet towards the destination. Seeing that this method results in 
potentially smaller routers, source routing represents a cheap solution for NoCs. However, there is 
the problem of the routing information overhead. For a network with a diameter of k, a packet 
would require k routing information summarized in the header of packet. As the network grows 
the header overhead may become too high, that is the loose of scalability. 

In contrast, the header of a packet in distributed routing has to include only the destination 
coordinates. Each node examines the destination address and decides along which channel to 
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forward the packet. Distributed routing can be either deterministic or adaptive. In deterministic 
routing the path is determined just with regard to the source and destination positions, and often 
there is only one path between each pair of nodes. An adaptive routing on the other hand tries to 
adapt the route according to the current traffic conditions and eventual contentions.  

While deterministic routings are the best choice for uniform or regular traffic patterns, the 
adaptive approaches are preferable in presence of irregular traffic or in networks with unreliable 
nodes and links. As a consequence of involving dynamic arbitration mechanisms an adaptive 
routing can route packets around blocked nodes and channels. This ability is essential for fault 
tolerance and brings about a significant improvement of the network performance, but at the 
expense of a more complex design that possibly works slower. Moreover, since packets may 
arrive to the destination in different ways and with different latencies an adaptive routing could 
not guarantee the order of packets. To achieve in-order-delivery property which is an essential for 
some applications, a network at the network interfaces requires implementing either a hardware 
reordering module or an end-to-end flow control mechanism. These requirements increase design 
complexity, and likely decrease communication latency. 

A.3.2.1. Routing Blockage 

When we talk about network performance in terms of latency and throughput, without being 
expressed in words we assume that all messages finally arrive to destinations, even with large 
delays. Nevertheless in a badly-designed network, it is possible that some packets never reach the 
destinations. Concerning this problem, routing algorithms must avoid two major issues: live-lock 
and dead-lock, as described as follows. 

• Live-Lock: As a real-world example, live-lock occurs when two people meet in a narrow 
corridor, and each tries to be polite by moving aside to let the other pass, but they end up 
swaying from side to side without making any progress because they always both move 
the same way at the same time [84]. Likewise, in network architecture level, live-lock 
explains the situation that even after passing through an infinite number of nodes the 
packet will not arrive to the destination. A live-lock free routing algorithm has to 
guarantee forward progress of each packet, where after each hop the packet in one step 
closer to its destination. Live-lock is a less common situation, but it may be expected in 
networks where back-stepping is allowed, e.g. during contention detecting and resolving 
by non-minimal adaptive algorithms. Figure 66.a shows an example of live-lock in a 
mesh topology. The red dashed-line presents the desired path of red packet from node 5 to 
node 10 and the blue dashed-line display the path required by the blue packet to go from 
node 1 to node 9. Imagine the situation that two packets at the same time arrive to node 7 
and want to pass through node 9. In order to remove the contention, the red packet is led 
to take another path, in which it traverses nodes 3, 2, 6, and again enters node 7. 
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Similarly, the blue packet comes back to node 7 by passing through the nodes of 8, 4, and 
3. As the tragedy could be repeated constantly, two packets never reach their destinations. 

• Dead-Lock: As a real-world example, dead-lock occurs when two people meet in a 
narrow corridor, and each waits for the other to move aside first, but they end up waiting 
without making any progress because they make a paradox. Similarly, in network 
architecture level, dead-lock defines the situation when permanently two or more packets 
are each waiting for another to release a shared channel in a circular dependency. An 
example of routing-dependent dead-lock in mesh topologies is presented in Figure 66.b. 
The red packet, which desires to go from node 7 to node 2 (red dashed-line), is blocked at 
node 9 (red solid-line) because the path is already occupied by the green packet that 
requires arriving to node 3, traversing node 9 (see green lines). The green packet, itself, is 
blocked at node 5 and waits for the release of the channel between node 5 and 4, allocated 
to the blue packet. The later cannot make any forward progress due to channel occupation 
by the brown packet that needs to reach node 10 via node 8. Since the path between node 
8 and 9 previously is associated to the red packet, the brown packet also cannot move 
forward. Unluckily, cyclic dependencies on shared channels here testify the existence of a 
paradox and cause dead-lock. 

 

Figure 66. Examples for two routing blockages of (a) Live-Lock and (b) Dead-Lock 

Dead-lock can occur in a variety of situations in different layers of a network. For example at 
the network interfaces a head-on dead-lock may happen, if the system is based on bidirectional 
communications, constituted by a pair of request and response messages. Each request is 
correlated to a replied response. Imagine the situation that two nodes try to send a request to each 
other and each begins to send before either receives. Obviously if they both attempt to complete 
their own requests (i.e. receiving the related response) before receiving any other request, neither 
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will make forward progress. In fact as no request will be received, no response will be produced. 
See Figure 67.a. 

 

Figure 67. Example of message-dependent dead-locks (a) at network interfaces and (b) 

within the network 

A network may also be the place of a similar message-dependent dead-lock. Supposing there is 
a limited number of paths between each pair of nodes, to reach an individual destination all kinds 
of packets (e.g. requests and responses) share same channels and can be blocked one behind the 
other. To better understand, Figure 67.b shows an example in which there is only one route 
between each two nodes. Let’s assume that node 4 has sent a request to node 1. At the same time 
node 2 sends another request to node 4. This request could not be received unless node 4 has 
previously received the response of its request. But the response (red dashed-line) is blocked at 
node 3, behind the request of node 2 (blue solid-line). It is clear that here there is a dead-lock. 

Considering the fact that dead-lock occurs when some processes share a specific type of 
mutually exclusive resource, a classical method of dead-lock prevention proposes to provide 
several resources to be associated to each process, if possible. Correspondingly, if request and 
response packets use two independent groups of channels, the absence of the occurrence of any 
dead-lock based on request-response dependencies, inside the network will be guaranteed. A 
simple (but expensive) solution is to double the network, one for requests and other for responses. 
That is to say using two completely separated networks and allocating one type of packets to each 
of them, break cyclic message dependencies inside the network. However, from the viewpoint of 
cost the use of Virtual Channels (VCs) may be a more reasonable approach. In a network with 
virtual channels packets are assigned to different virtual channels, but with separate physical 
buffer queues. Therefore, even if a packet is stalled, another is enabled to pass, using its own 
buffer space. 

Seeing that in this kind of message-dependent dead-locks there is no routing involved, they 
might be considered out of the responsibility of the network architecture and could be concerned 
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at upper layers, for example, by ensuring that nodes can continue to receive requests even while 
they have not received the responses yet. Networks typically involve problems imposed by their 
architecture design, a benefit offered by layered design methodology. 

A.3.2.2. Dead-Lock Free Routing Algorithms 

Turn-Model routing, presented in [85], is an interesting approach to provide dead-lock freedom in 
packet routing for a two-dimensional mesh topology. This method claims that a dead-lock free 
routing algorithm can be constructed by restricting some of eight possible route turns, which form 
two simple cycles, as shown in Figure 68.a.  

 

Figure 68. Adaptive Turn-Model Routings: (a) all eight possible route turns, (b) West-First, 

(c) Negative-First, (d) North-Last, and (e) dead-lock allowable model 

A minimal set of restriction gives a maximal adaptiveness to the algorithm. 3 of the 4 different 
ways to eliminate one turn in each cycle (12 of the 16 if rotations are taken into account) prevent 
cyclic dependencies. These three dead-lock free adaptive routing algorithms are displayed in 
Figure 68.b, c, and d. All 12 possible solutions consist of the rotations of these three unique 
models. Figure 68.e shows the fourth turn-model that a cyclic dependency is allowed and so it is 
not a dead-lock free solution. 

The first dead-lock free algorithm is named West-First because there is no turn allowed into 
west direction and therefore if a packet needs to go west it must do before making any other turn. 
Similarly, in Negative-First there is no way to turn from a positive direction to a negative 
direction, thus a packet must go as negative as its need before heading in either positive direction. 
Finally, North-Last prohibits turning out of north direction, so the packet must make all its other 
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adjustment before heading in this direction. Each of these three algorithms allows very complex, 
even non-minimal routes. But as explained before, an adaptive routing algorithm usually is not a 
recommended solution for cost-constrained NoC architectures. 

Intuitively, constructing other types of routing algorithms should be possible by eliminating 
more than two turns. 2 of the 12 (6 of the 36 with regard to rotations) different ways of 
eliminating two turns in each cycle give applicable routing algorithms, which are demonstrated in 
Figure 69.a and b. 

 
Figure 69. Turn-Models of (a) Up-First-X-Next and (b) X-First with (c) deterministic 

algorithm for Up-First-X-Next and (d) deterministic algorithm for X-First 

In the first approach, Up-First-X-Next (Figure 69.a), two types of turns are prohibited: turning 
to up direction and turning out of down direction. Therefore, if a packet needs to go up, it must do 
before taking any other direction. On the other side, if the packet requires going down, it has to 
make all its left or right (X direction) adjustments, before heading to this direction. This method is 
enabled to allow non-minimal partially adaptive routes. Nevertheless, a minimal Up-First-X-Next 
is a fully deterministic routing algorithm. Refer to Figure 69.c. 

 X-First routing algorithm routes packets first along X direction and then along Y direction as 
there is no turn from Y direction to X direction. Potentially, X-First is a minimal routing and can 
be determined by a simple and deterministic algorithm. See Figure 69.d. This dimension-ordered 
routing algorithm is sufficient simple to be implemented in low price hardware and its optimal use 
of channels has led to be the most popular routing mechanism in general-purpose NoC 
architectures. A general concept of dead-lock free minimal deterministic dimension-ordered 
routing algorithms is proposed in [83] to be applied in any k-ary n-cube network topology, by 
travelling the correct distance in the highest order dimension, then the next dimension and so on. 

(c) (d) 

     if ΔY > 0 then Up 

else if ΔX > 0 then Right 

else if ΔX < 0 then Left 

else if ΔY < 0 then Down 

     if ΔX > 0 then Right  

else if ΔX < 0 then Left 

else if ΔY > 0 then Up 

else if ΔY < 0 then Down 

(a) (b) 



112  Appendix A – Networks-on-Chip 
 

 

A.3.3. Switching Strategy 

While routing algorithm defines a route between source and destination nodes, switching strategy 
determines how the data of a message traverses this route. Switching has been defined as just the 
transport of data, when routing is the intelligence behind [86]. Basically two switching strategies 
exist: circuit switching and packet switching. 

In circuit switching a route from a source to a destination is established prior to data transport 
and exclusively reserved until the message is completely transferred. As at the phase of path 
establishment two communicating nodes are being connected point-to-point, circuit switching is 
always a connection-oriented mechanism requiring a logical or physical connection before data 
transmission. As an example we can indicate the phone systems that set up a circuit through 
possibly many routers for each call. 

The reduced need for buffers at the intermediate nodes could be an advantage of circuit 
switching. This policy is beneficial for moving a lot of data through and in particular when 
communication latency has to be guaranteed. But an advanced operation is required which 
increases the initial latency. In addition it tends to be unpleasant for any traffic that might cross or 
share a portion of the reserved route, even when data transferring is not in sight. 

As an alternative strategy, in packet switching data is not transmitted on a predefined circuit. 
The message is broken to a sequence of packets. A packet logically consists of a header (which 
includes routing and perhaps sequencing information), data payload, and possibly a trailer. The 
header reserves the routing channel of each router, the data payload will then follow the reserved 
channel and the trailer will later release the channel reservation. Packets are individually and 
independently routed through the network, and at the destination the packets are assembled into 
the original message. In order to ease packet assembling if a message is divided into several 
packets, the order of packets at arrival must be same as departure. The in-order-delivery property 
is an essential opportunity that should be provided by any NoC using packet switching. 

Packet switching may potentially be the cause of a bother shown in Figure 70. Suppose node 1 
is transferring a long message to node 3. The message is divided into 6 different packets (red 
squares) which are individually sent through the network in a sequence, passing node 4. At the 
same time node 2 intends to send another message to node 3 too. The series of separate packets of 
this message (blue squares) are also travelling the network via node 4. Seeing that the path from 
node 4 to node 3 is shared by two messages, the packets of message blue may arrive at node 3 in 
between packets of message red. Observe that in packet switching strategy there is no any 
dedicated path.  

The out-of-series arrival of packets can induce a serious problem for the upper layer. Clearly if 
node 3 accepts only packets of the message being received, i.e. red packets, and does not receive 
any other packet, the first blue packet (blue square 1) will be stalled at node 3 and will block the 
route, resulting in a dead-lock. Remember the case of request-response (message-dependent) 
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dead-locks explained previously. Although the use of Virtual Channels (VCs) could partially 
reduce the occurrence probability of such dead-locks, it is not a concrete solution because due to a 
set of limiting factors there can be a limited number of virtual channels, while number of packets 
which arrives possibly out-of-series is not limited. 

 

Figure 70. Example of Out-of-Series Arrival of Packets 

A way that potentially resolves this problem is that the source sends whole message as a single 
packet. It is a solution but may have side effects on the network performance. If a packet is too 
large it may block several channels and prohibit other packets to traverse. Message granularity is 
crucial to decide. Determining the right packet size to make optimum use of the network 
resources is an important responsibility of the network interface layer. In fact all packetization 
related decisions concern this level of design and often are application specific. 

Anyway, the wide majority of NoC architectures are based on packet switching, due to the fact 
that it is fundamentally a cost-effective solution and often allows better utilization of network 
resource, because buffers and channels are only occupied while a packet is traversing them. 
Usually packet switching is used to provide best effort service, as opposed to guaranteed service. 
Best effort service does not give any performance guaranties in terms of latency and effective 
throughput, but instead it is averagely better. Packet switching is originally a connection-less 
communication mechanism and there is no any advanced planning and operation. 

Furthermore, packetization may offer an effective way to deal with errors in communications. If 
data is sent on an unreliable channel in packets, error containment and recovery are easier, 
because the effect of errors is contained by packet boundaries, and error recovery can be carried 
out on a packet-by-packet basis [77]. Error correction can be achieved by using standard Error 
Correcting Codes (ECCs) that add redundancy to the transferred information. Typically ECC is 
included in the trailer of packet. Packet size and number of outstanding packets are some 
examples of several parameters that can be adjusted depending on the goal of achieving maximum 
performance at a specified residual error probability. 
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A.3.4. Flow control 

Flow control strategies can be used in different layers of a network-based system. In network 
architecture level a flow control has been defined as the mechanism that determines how and 
when each portion of packets, moves from a hop to another along the path. The minimum unit of 
information that can be transferred across a hop at a time is called flow control unit or, in 
abbreviation, flit. A flit may be as small as physical unit (phit) or as large as whole packet. 

The mechanism of flow control, in particular, is necessary when two or more packets attempt to 
use the same channel, at the same time. One could be stalled in place, diverted into buffers, or led 
to an alternate route. Flow control needs specific requirements on the design of routers. It also 
mainly influences the communication performance. Commonly there are three different flow 
control strategies, which are: 

• Store-and-Forward: in store-and-forward policy a flit is a complete packet. So an 
incoming packet is accepted only when there is enough space available to store it entirely 
in buffers and furthermore the packet is not forwarded to the next hop until the whole 
contents have been received. This strategy is an elegant way to achieve optimal utilization 
of channels resulting in a high saturation threshold, because only one channel is occupied 
when a packet is stalled. The expense is the increase of network overhead as each router 
has to be able to store entire packet in physical buffers. Additionally, this mechanism 
incurs a delay per hop proportional to the packet size, or precisely equal to the time 
required to receive the packet completely. Whereas communication latency increasingly 
will be implicated by number of hops on the path, the store-and-forward approach is 
impractical in large-scale Networks-on-Chip. 

• Virtual Cut-Through: similar to the store-and-forward strategy, in virtual cut-through 
policy a flit is also the entire packet. A router cannot forward a packet unless the next 
node has enough space available to store the packet completely. But to forward the 
packet, unlike store-and-forward, it is not required the whole packet to be received by the 
router. As packets may be forwarded as soon as the header of packet is received, the 
communication latencies decrease. However the virtual cut-through approach is to store 
the stalled incoming packet into a buffer, so the behavior under contention degrades to 
that of store-and-forward flow controlling. 

• Wormhole: in wormhole flow control method a packet itself is split into several flits. A 
flit is forwarded to the next hop when there is enough space available at the receiving 
point to accept. The need of buffering is reduced to the least ability of storing a single flit. 
The wormhole and virtual cut-through strategies benefit from the same policy in which it 
is not required to complete receiving before sending. However, depending on the flit size, 
the latency within the routers under contention in the wormhole mechanism may not be 
that of the virtual cut-through, because forwarding progresses as soon as the next hop has 
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enough space available to accept a flit and not the whole packet. In wormhole flow 
control strategy, one packet may occupy several intermediate channels at the same time, 
because the packet is spanned along a long path. Increasing the storage capacity of the 
routers allows gathering the packet flits and thereby a lower number of channels will be 
occupied by a packet. But on the other hand when routers are capable to store several 
flits, the header of packet that contains packet information may be stalled inside a buffer 
queue. This probable event disables content-aware packet routing algorithms, such as 
some adaptive routings which route depending on the type and contents of packets. 
Nevertheless, thanks to the low communication latency and small required buffer queue, a 
large number of NoC architecture implementations are based on wormhole packet 
switching in which a flit consists of a phit. 

The implementation of flow control differs depending on the type of the flow control strategy 
and the design of the router, but the main idea is the same: data is to be transferred from one 
storage stage to another. The key point is that storage at the destination stage may not be available 
to accept the transfer, so data must be retained at the source stage until the destination is ready. 
The organization of data transmission within the router has a significant impact on the router 
performance. Traditionally this organization is considered as two separated concerns: storage 
strategy that determines where data is to be retained and output scheduling that defines when 
retained data can be out. 

A.3.4.1. Storage Strategy 

In most of NoC architectures, the silicon area of buffers is the main part of the router area. It is a 
major concern to minimize the need of buffering, under given performance requirements. The 
issue is not just how effectively the buffer resources are utilized, but how the buffering effects the 
utilization of other components [80]. For example, sharing a centralized buffer queue allow better 
utilization of these resources than partitioning the storage among router ports, but if some ports 
need to access the queue simultaneously, sharing the buffer on demand can hurt channel 
utilization, as buffer queue can only serve one request at a time. Moreover a single congested 
output port can block the queue and thereby prevent other traffic from moving through the router. 

A.3.4.1.1. Input Buffering 

An approach of non-centralized buffering is to provide independent FIFO buffers with each input 
port. See Figure 71. One problem with the simple input buffered approach is the occurrence of 
Head-Of-Line (HOL) blocking. Suppose that two ports have packets destined for the same output 
port. One of them will be scheduled onto the output and the other will be stalled. The packet just 
behind the blocked packet may be destined for one of the unused outputs, but it will not be able to 
move forward. Queuing theory analysis shows that the expected utilization in steady state with 
input buffering is 60% [87]. 
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Figure 71. Internal data path of a router using Input Buffering 

A.3.4.1.2. Output Buffering 

A natural enhancement is to expand the input FIFOs to provide an independent buffer for each 
output port. See Figure 72. Packets are arranged according to destined output port on arrival. It is 
a question of perspective whether FIFOs are associated with the input or the output ports. If 
viewed as output buffering, the key property is that the router has enough internal bandwidth that 
simultaneously each output port can receive a packet from every input port. As a consequence the 
router does not introduce additional contention effects internally. With a regular traffic on the 
inputs, the outputs can be driven at essentially 100%.  

However profiting from the advantages of such a design requires a large amount of buffer 
storage. For a router with degree of N, number of required FIFOs is N2, while input buffering 
needs only N buffer queues. Additionally, different from store-and-forward and virtual              
cut-through, wormhole flow control policy does not benefit sufficiently from output buffering, 
because this strategy could not be enough beneficial if the depth of each FIFO is not enough to 
store the whole packet. Remember that wormhole routing tends to be used as a low cost flow 
control strategy. Indeed the choice between input buffering and output buffering is once again the 
choice between cost and performance. 
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Figure 72. Internal data path of a router using Output Buffering 

A.3.4.1.3. Virtual Channels  

The use of Virtual Channels (VCs) provides an alternative way of organizing the internal buffers 
of the router. In virtual channel buffering instead of assigning a buffer queue to each pair of ports, 
a buffer will be assigned to the incoming packet, when the header flit arrives, and will be reserved 
until the trailer flit has been transmitted. As displayed on Figure 73, the flow across the router is 
split on arrival (at an input port) into distinct channel buffers. These are multiplexed together 
again onto the output ports. If one of these channels is blocked, the others can advance toward the 
outputs. In fact such a multiple buffer queue virtually provides multiple separate channels. 
Through virtual channels a network can be divided into multiple disjoint logical networks. 

There are a number of advantageous uses of virtual channels. Among them are: avoiding a 
various kind of deadlocks as virtual channels are not mutually dependent on each other, 
improving network performance as virtual channels minimize the possibility of stalls, and 
providing differentiated services as virtual channels can be used to implement such services (e.g. 
Quality-of-Service) by allowing high priority data streams to overtake those of lower priority or 
by providing guaranteed latencies on dedicated connections [86].  
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Figure 73. Internal data path of a router using Virtual Channel Buffering 

However the implementation of virtual channels results in an area, power, and possibly latency 
overhead. As number of virtual channels increase, the multiplexing becomes more complicated, 
requiring additional hardware complexity and potentially increasing latency. Furthermore the 
sharing of router bandwidth may also increase latency and decrease effective throughput. If one of 
the physical channels along the path is shared by many packets (virtual channels), that channel 
becomes a bottleneck and the effective throughput of the entire path is divided by the number of 
packets traversing the shared channel. The trade-off between increased network aggregate 
throughput and longer communication latencies should be considered when deciding whether to 
use virtual channels [88]. 

A.3.4.2. Output Scheduling  

Whereas buffering strategies allow multiple packets per output port to be considered as candidates 
of forwarding, the need of an output scheduling algorithm that determines the priority order of 
candidate packets to advance emerges. In fact the scheduling algorithm gives a priority order to 
each packet, and then the output ports select the highest-ordered packets to be forwarded. 
Regarding the other aspects of the router design, there is a variety of solutions with different 
implementation complexity and different performance characteristics.  
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The scheduling algorithm increases the router latency and thus it should do the job as fast as 
possible. Clearly static priority (using a simple priority encoder) and random priority are the 
simplest with excellent average performance results. But they can cause indefinite delays. 
Basically output scheduling is to avoid defect of blocking a packet so long. The starvation 
prevention is the main concern that must be considered in a scheduling algorithm. Starvation is 
produced when a packet can never leave a node because the required output port is always 
occupied by the other packets with higher proprieties. 

Deadline scheduling (e.g. oldest-first) is an efficient starvation free solution that prioritizes the 
packets according to how long they have been waiting. Oldest-first (first-come first-served) tends 
to have the same average latency as random assignment, but significantly reduces the variance in 
latencies [89].  

Another simple effective starvation free algorithm is round-robin scheduling, in which packets 
take the highest priority circularly, one after the other. The round-robin policy is an attempt to 
treat all packets equally and provide each of them an equal share of the channel capacity. As 
round-robin scheduling is easy to implement, it can be used as a dominant alternative in NoCs 
using best-effort traffic. For best-effort traffic the main concern is to provide the property of 
fairness that has to guarantee if a request is issued it will be granted after that a finite number of 
other requests have been granted. 

A.4. Trade-Off between Cost and Performance 

By now, a lot of people have proposed Networks-on-Chip as a solution for large-scale on-chip 
interconnection. Today, NoCs are one of the most popular academic research fields. As a 
testimonial, at the 10th international conference on Design, Automation, and Test in Europe 
(DATE’07) the area of Networks-on-Chip was a particular hot topic with the highest number (56) 
of received papers. It's a nice step in the right direction, because there are still a lot of problems to 
be solved. Unfortunately the overhead of proposed NoC-based approaches, generally, has not 
allowed industry to turn toward NoC technologies, even though it has already been proven that 
NoCs significantly improve the overall system performance.  

Cost-Performance trade-off is a major issue in NoC-based architecture design [90] and 
determines whether NoCs are blessing or nightmare [91]. While communication throughput vastly 
improves, NoCs incur increasing communication latency. In a Network-on-Chip, due to the 
network topology and its architecture, there are a large number of simultaneous communication 
media and the aggregate network throughput is truly high. But, compared for example with shared 
busses, it needs more time to route data through the network routers and interfaces. The 
communication latency is critical for end-to-end system performance. Recall that the main 
motivation for using Networks-on-Chip is to achieve performance. As said Alain Greiner, we 
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would not pay for a Ferrari when in a heavy traffic, with a bicycle we arrive to the university, 
faster and evidently cheaper. 

Additional silicon area and power consumption, the result of replacing simple classical 
communication architectures like shared-busses by Networks-on-Chip which have a more 
complex circuit, increasingly impact the design cost. Chip design is typically characterized by 
tight cost constraints, preferentially before high performance demands. As a consequence, routers 
and network interfaces of a NoC are more resource constrained than those in the computer 
networks (off-chip). For example, in spite of the fact that Quality-of-Service seems an essential 
feature for real-time applications, one could fundamentally question the need for hardware 
implementation of QoS in NoCs [54]. The latency and throughput guaranteed by QoS are the 
offered opportunities, but they come at a price in terms of area and power overhead and reduced 
average performance.  

A.5. Future Challenges 

Although some optimization efforts are still needed, seemingly in the future the research will not 
anymore focus on NoC architecture design and implementation. For instance two-dimensional 
mesh topology is being accepted as a general platform, while application-specific architectures 
will use an irregular topology. Or, deterministic routing algorithms accompanied with a wormhole 
packet-switching mechanism are being used by all general-purpose high-performance networks. 

Apparently the future investigation will be about high-level abstract modeling, application 
mapping, programming models, reconfiguration algorithms, as well as formally verification 
methods. As future Systems-on-Chip will consist of hundreds and even thousands of 
computational subsystems, the simulation-based solutions could not be utilized anymore as 
functional verification methods. 

Time-to-Market is being very tight and as a result, the future SoCs should be highly 
programmable. A general NoC-based MP-SoC design could be used as hardware framework for 
various category of multi-core systems. The current programming codes which are based on the 
sequential processors have to be adapted to the massively parallel processing.  

Moreover, FPGAs which represent another embodiment of Networks-on-Chip, are being large 
and ever increasing sector of the semiconductor market. Within advanced FPGA architectures, 
both hardware computing elements and interconnects are programmable. 

In addition to all these programmable applications, it must be taken into account the exigency 
of some other kind of systems which need to be managed by runtime techniques such as Dynamic 
Power Management (DPM) and hard-error detection. As a consequence, the use of different types 
of reconfiguration algorithms in such architectures appears to be unavoidable. Among them are 
reconfigurable routing algorithms, reconfigurable threading models, etc. 
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A.6. Industrial Perspective 

Until now, a general use of NoC-based Multi-Processor Systems-on-Chip (MP-SoC) has not been 
practically feasible. The overhead of using such systems and their inadequate performances has 
exceeded the advantages. Maybe Cell Processor [92] developed by Sony, Toshiba, and IBM is 
one of the first multi-processor designed around a NoC that commercially has been produced. It is 
built as a general-purpose processor for a computer, even though it is primarily targeted for 
Sony’s Playstation 3. Accompanied by memories and I/O controllers, Cell Processor consists of 
nine processors connected together by a high-throughput, segmented micro-network in a dual ring 
topology. 

As a testimonial for this claim that commercial use of NoC-based solutions will appear in the 
near future, we can consider the research investment of the most important semiconductor 
industries on the NoC technology. For instance, Philips research laboratory (NXP) has invested a 
great deal of resources into their AEthereal NoC architecture [93]. A Philips principle research 
scientist, in [94] has concluded that “Networks-on-chip have great promise to lift existing 
platform-based design to communication-centric design. NoCs do so by 1-Addressing deep 
submicron challenges (global wires, global timing closure, etc.), and 2-Offering a structured view 
on communication between IPs inspired by protocol stacks”. 

Recently, STMicroelectronics has announced the on-chip interconnect technology details of 
which the company has developed to meet the increasingly demanding needs of current and future 
SoC designs [95]. The new technology, called ST-NoC, is derived from its research in NoC 
technologies. They have declaimed that the availability of an effective NoC architecture is a 
crucial factor for cost-effective SoC solutions for next-generation convergence products and, in 
particular, NoC technology will play a major role in improving design productivity.  

Moreover, the appearance of a number of start-up companies seeking to commercialize       
NoC-based ideas, in the recent years, emphasizes the urge of using NoC technologies in 
commercial products. Arteris is a French start-up company founded in 2003 by a group of 
semiconductor industry veterans. The company’s focus is on Networks-on-Chip, the next 
generation of challenges associated with Systems-on-Chip design. Arteris calls itself ‘The 
Network-on-chip Company’ and its products comprise a suite of tools for generating and 
debugging a NoC and a library of configurable NoC components. 

Another example is Silistix, a venture-funded start-up spun-out of the University of 
Manchester. The company focuses on the development and deployment of self-timed CHip-Area 
INterconnect (CHAIN) [48] technology for on-chip communication. As they said NoC is an 
example of a CHAIN system. CHAIN was demonstrated in a smart card implementation. Silistix 
distributes CHAINworks, a suite of software tools for the design and synthesis of customized     
on-chip interconnect using asynchronous (clock-less / self-timed) circuits. 
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All told, it is conjectured that Networks-on-Chip will be the backbone of all Systems-on-Chip 
of significant complexity design with new Deep Submicron technologies [77]. NoCs will be also 
an integral part of SoC platforms dedicated to specific application domains, and programming 
platforms with NoCs will be simpler due to regularity and predictability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix B 

 Asynchronous Circuits 

Historically asynchronous circuits were used at the earliest days of the digital electronics, in the 
50s, even before synchronous circuits. In reality all electronic systems are fundamentally 
asynchronous in nature [2]. By the careful insertion of localized timing relationships and storage 
elements, an asynchronous system can be adapted to appear to behave synchronously. In other 
words, the synchronous circuit design method was born to facilitate the asynchronous circuit 
difficulties by proposing to use a global timing reference signal named Clock. With the arrival of 
the integrated circuits, the synchronous design became popular and the dominant design style, due 
to the simple, easy-to-check, and one-sided timing constraint that it provides. Gradually the 
asynchronous circuit design paradigm returned to the academic research areas. Various details of 
different aspects of asynchronous design can be found in [96]. 

B.1. Weakness 

The complexity of asynchronous design accounts for the apparent hesitation of industry to adopt 
such techniques. In synchronous design, every processing stage only needs to complete its activity 
in less than the duration of the clock cycle time and a designer does not have to worry about the 
dynamic state of the circuit. But in asynchronous design a great deal of attention has to be given 
to the dynamic state of the circuit. To exploit data-dependent evaluation, extra completion 
detection logic is necessary that sometimes is not evident and adds a more difficult design 
process. 

Another issue is the test. The requirement for very high reliability of electronic systems in 
critical applications (for example in military and nuclear industries) imposes a rigorous test to 
detect fabrication faults. Testability is an inherent feature of today’s electronic devices. 
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Unfortunately asynchronous systems are difficult to test due to the non-deterministic behavior of 
some elements, such as arbiters which make a mutual exclusive decision. 

As synchronous design techniques are widely used and have been taught in universities for over 
three decades, most system designers are thus not familiar with asynchronous design techniques. 
As a result, almost all industrial CAD tools have been developed for synchronous systems and 
asynchronous design cannot employ them. The lack of suitable CAD tools is probably the main 
reason that asynchronous logic paradigm still remains mostly in the universities rather than in the 
industry. 

B.2. Strong Points 

In asynchronous architectures there is no global signal that needs to be distributed with minimal 
phase skew across the circuit. The absence of a global clock and consequently its distribution 
network has several benefits: 

• Power dissipation: The total amount of energy dissipated within a clock distribution 
network in synchronous circuits is dramatic. For example it is stated in [2] that the clock 
distribution network at 600 MHz dissipates more than 44% of the total power consumed 
by an Alpha Microprocessor of 350nm technology. In addition to the high load of clock 
lines, one other important cause of this power dissipation is the fact that all parts of a 
synchronous circuit have to be clocked even if they are not involved in the current 
operation and are in idle state. Note that in order to reduce clock power dissipation some 
strategies such as Clock-Gating [68] are highly applicable to the design of effective clock 
distribution networks. But the implementation of such techniques is not easy to do and 
needs additional control logic and zero idle-state power consumption could not be 
achieved (only around 20-30% is often achievable). The power consumption not only 
affects the cost of energy, but also increases the packaging cost of the system, in order to 
remove the generated heat. Thanks to the absence of global clock signal, asynchronous 
circuits promise to have zero idle-state power consumption.   

• Silicon area: The use of a huge number of clocked gates in high-scale architectures 
requires a huge number of clock buffers distributed across the clock distribution network, 
in order to provide sufficient fan-out. The disappearance of the clock distribution network 
in asynchronous circuits means disappearance of these clock buffers and consequently the 
release of a large amount of silicon area of the eventual components adjusting skews, 
such as Phase Locked Loops (PLL) or Delay Locked Loops (DLL). 

• Scalability: The growth in number of components in a synchronous circuit means an 
increase in size of the chip and consequently in size of the clock distribution network, 
which is a limiting factor due to the physical issues explained before. Scaling number of 
modules in an asynchronous circuit has no impact. 
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• Modularity: The most common way to improve the performance of a synchronous 
system is to increase the frequency of the global clock (if physical limitations allow), 
while it will affect all parts of the system and usually requires a redesign for most of the 
system. In contrast, increasing performance of an asynchronous system can be achieved 
by locally modifying only the most critic part of the circuit and the rest of the system 
remains the same.  

• Average-Case performance: The highest possible clock frequency in a synchronous 
system is limited by the worst-case combination of some parameters, such as power 
supply variation, temperature variation, transistor speed variation (e.g. due to the 
fabrication uncertainty), data-dependent operations, and data propagation delays. 
Typically, the worst-case combination is encountered very infrequently and the system 
performance usually is less than what it could be. Asynchronous circuits automatically 
adjust their speed of operation according to the current conditions and they are not 
restricted by a fixed clock frequency. Their operating speed is determined by actual local 
latencies rather than global worst-case and so the overall system performance refers to the 
average performance of local parts. 

• Reliability: Even if a synchronous circuit operates in a frequency restricted by worst-case 
combination of several parameters, an unpredicted variation, for example in supply 
voltage, temperature, or fabrication process parameters, could cause a grave malfunction 
of the system. As a serious advantage, asynchronous circuits may offer robustness 
towards these types of variation. Normally the design of an asynchronous system is based 
on matched delays and can even be insensitive to circuit and wire delays. 

• Rapid technological migration: Integrated circuits will often be implemented in several 
different fabrication technologies during their life-time. The delay insensitivity of certain 
asynchronous circuits gives a favorable ability to move more quickly from a prior 
technology to a new one. Asynchronous delay-insensitive IP cores previously designed 
could be instantiated in a new system using a new technology, by a plug-and-play 
fashion. The system will properly work, without any new timing constraint. The 
technological migration in synchronous design often emerges the need of a new timing 
analysis and requires likely a new design of some new critical path. 

• Electromagnetic compatibility: This feature refers to the ability of an electrical device 
to work satisfactorily in its electromagnetic environment without influencing the 
surrounding devices, or being influenced by the surrounding devices. Electromagnetic 
Compatibility (EMC) is achieved by addressing the reduction of unintentional generation 
of electromagnetic energy in order to avoid the propagation of such energy towards the 
external environment. The global synchronization of a clocked system causes most of the 
switching activity to occur at the same instant. This effect concentrates the radiated 
energy emissions of the circuit at the harmonic frequencies of the clock. Asynchronous 
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circuits produce distributed interference spread across the entire frequency spectrum [97], 
because there are phase differences between the activities in different parts of the circuit 
and signals tend to tick at random points in time. In systems which use radio 
communication this feature can be a significant advantage. 

• Uniform power spectrum: Hardware implementations of cryptographic algorithms are 
an essential part of modern digital systems. A cryptographic algorithm transforms 
plaintext information into ciphertext form with the help of a secret cipher key. The 
security provided by the algorithm is equal to its ability to protect the cipher key. Any 
cipher implementation unintentionally leaks information from a variety of runtime 
sources like power consumption, electromagnetic radiation, or even temperature 
variation. All these information sources are known as side channels. It was shown that 
parts of the cipher key can be extracted by processing side channel information [98]. For 
example side channel attacks that sample the power consumption of a cryptographic 
device while it operates and later use statistical methods to extract portions of the cipher 
key have proven to be extremely successful. These side channel attacks are known as 
Differential Power Analysis (DPA) attacks. Power dissipation highly depends on the 
switching activities produced by changes of data signals. The power spectrum of an 
asynchronous circuit is more uniform than that of a synchronous circuit. Lake of a global 
timing reference induces distributed switching activity spread across the entire operation 
time. Additionally, asynchronous circuits comprising dual or multi-rail data encoding can 
be balanced to reduce data dependent emissions. As a result of these abilities, recently 
asynchronous design methodologies became attractive to designers looking for methods 
to reduce the susceptibility of cryptographic hardware against DPA attacks [99]. 

In spite of all above mentioned promising features offered by asynchronous circuits, the lack of 
suitable CAD tools and design complexity is a strong limitation. A viable compromise is the use 
of hybrid systems that benefit from appropriate advantages of both synchronous and 
asynchronous design techniques. A system using an asynchronous NoC to provide GALS 
architectures exploiting synchronous IPs is the obvious example of such hybrid solutions. 

B.3. Design Methodologies 

Fundamentally in a synchronous circuit all components share a common and discrete notion of 
time, as defined by the global clock signal. In contrast in asynchronous circuits there is no 
common and discrete time. Instead, the circuits use handshaking between their components in 
order to perform the necessary synchronization, communication, and sequencing of the     
operations [62]. As an example of synchronous circuits Figure 74.a shows a data pipeline. The 
propagation of data between the pipeline stages is controlled by the clock signal. Typically a 
rising edge of the clock designates valid data at the input of a pipeline stage, while for the rest of 
time the data can propagate the eventual combinational circuits in between.  
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The equivalent asynchronous design shown in Figure 74.b represents an alternative solution. 
The clock signal is replaced by a handshake mechanism between each two adjacent pipeline 
stages. The handshaking is implemented based on simple request-acknowledge protocol. A 
pipeline stage may store a new data value from its predecessor only if the successor has stored the 
data value that the stage currently is holding. The sates of the previous and the following stages 
are signaled by the incoming request (Req) and acknowledge (Ack) signals respectively. Note that 
in order to provide full transparency, the combinational circuits between pipeline stages often 
participate in the handshaking. 

 

Figure 74. Two equivalent (a) Synchronous and (b) Asynchronous circuits of a data pipeline 

B.3.1. Circuit Classification 

Principally the asynchronous design methodologies can be classified on the assumptions 
commonly made with regard to the delays in gates and wires. The bounded delay models assume 
that the delay in all circuit components and wires is bounded (and even in somewhere known). 
Since it is the same delay model actually used for synchronous circuits, in this model circuits are 
designed in a similar way to synchronous circuits. On the other side in the unbounded delay 
model the delays are generally unknown. As a result, unbounded delay models lead to operate 
correctly whatever the distribution of delays. 

B.3.1.1. Delay-Insensitive Circuits 

In delay-insensitive (DI) circuits arbitrary delays are assumed for both gates and wires and the 
operation of the circuit is independent of the delays. In the design of delay-insensitive circuits the 
concept of acknowledgment has been introduced where every signal transition should be 
acknowledged by other signal transitions. This condition stops unseen transitions from occurring. 
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Such circuits are extremely robust, but unfortunately their class is rather small due to the heavy 
restrictions [100].  

 

Figure 75. Asynchronous Pipeline Control Unit: (a) Circuit and (b) Signal Transitions 

Figure 75.a displays an important example of delay-insensitive circuits that can be used as the 
control unit of the asynchronous pipelines illustrated in Figure 74.b. The behavior of the design is 
shown in Figure 75.b in a timing diagram of signal transitions. In the figure the curved arrows 
indicate the required sequence of transitions (the dashed blue arrows shows the behavior of the 
circuit’s environment, i.e. the previous and next stage control units). There is no implicit 
assumption about the delay between successive transitions. Req-Out and Ack-in will be set to 1, 
when (and only when) Req-in is 1 (i.e. the predecessor has a data to be transferred) and Ack-out is 
0 (i.e. the successor is ready to accept a new data transferring), and will be set to 0 when (and only 
when) Req-in is 0 (i.e. the predecessor has finished the data transferring) and Ack-out is 1 (i.e. the 
successor has accepted the request of data transferring). 
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Figure 76. Muller C-elements: Implementations, Symbols, and Specifications 
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The block indicated by a dark gray square in the circuit of Figure 75.a plays an important role 
in the design of such circuits. In reality this part of the circuit is used for both synchronizing 
events and holding states. Due to this state-holding block the circuit remains at the previous state 
until required transitions of both inputs occur, independent of their delays.  

Figure 76.a shows an atomic implementation of this module, called Muller C-element. When 
both inputs are 0 the output is set to 0, and when both inputs are 1 the output is set to 1. For other 
input combinations the output does not change. Consequently, when the output changes its state 
from 0 to 1 or from 1 to 0, one may conclude that both inputs are now at 1 or 0, respectively. In 
contrast, in the asymmetric variants of the C-element, illustrated in Figure 76.b, some inputs may 
only affect either the rising or falling output transition, not both. The Muller C-elements are 
fundamental components that are extensively used in asynchronous designs. 

B.3.1.2. Quasi-Delay-Insensitive Circuits 

In order to make wider the range of the asynchronous circuits that correctly can be designed and 
implemented in a CMOS technology, Quasi-Delay-Insensitive (QDI) circuits were introduced. In 
this delay model the delay of gates and wires is still considered to be arbitrary, but it is assumed 
that the delays of all branches of an interconnecting wire are identical. For example if d2 equals 
d3, the circuit fragment illustrated in Figure 77 is quasi-delay-insensitive and all other delays (dA, 
dB, dC, and d1) can be arbitrary. Most circuits that are referred to in the literature (incorrectly) as 
delay-insensitive are only quasi-delay-insensitive [62]. 

 

Figure 77. Gate and Wire Delays of a circuit fragment 

B.3.1.3. Speed-Independent Circuits 

In Speed-Independent (SI) circuits, while gate delays still exhibit arbitrary values, wire delay is 
considered to be zero, or in practice negligible compared to gate delays. The speed-independent 
model allows more implementation alternatives than quasi-delay-insensitive circuits, but it 
requires delay assumptions that can be difficult to realize in practice. However, although in large 
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circuits that wire delays are significant and thus technology mapping is almost impossible, for 
small circuits where all the wires are very short the speed-independent assumption is valid. 

B.3.2. Handshake Protocols 

Most information signaling mechanisms in asynchronous circuits are based on handshake 
protocols involving requests, which are used to initiate an action, and corresponding 
acknowledgments, used to signal completion of that action. In a Push model the sender initiates 
the action and pushes the information in the same direction as the request signal. A Pull model, on 
the other hand, implies that the receiver initiates the action and pulls the information in the same 
direction as the acknowledge signal. The flow direction of handshake signals in Push and Pull 
models is illustrated in Figure 78. 

 

Figure 78. Flow Direction of Handshake Signals in (a) Push and (b) Pull Model 

The strict alternation of the request and acknowledge handshake signals provides all the 
necessary sequence controls for events in the system. There are several choices of how these 
alternating events are dealt with. Two choices have been predominant that will be described here. 

B.3.2.1. Four-Phase Protocol 

Four-phase handshake protocol uses the level of signals to indicate events, hence called also level 
signaling. A high level of the request signal signifies the need for a new data transferring, and a 
high level of the acknowledge signal indicates the acceptance of the request. The handshake 
signals can easily be used to drive level-controlled latches, and as a consequence the four-phase 
handshake protocol is very simple in the implementation of control logic.  

Assuming both the request (Req) and acknowledge (Ack) signals are initially low, as illustrated 
in Figure 79, in both push and pull variants of four-phase protocol the sequence of events exhibits 
a Return-To-Zero (RTZ) waveform. There are four transitions (two on Req and two on Ack) 
involved in the completion of each handshaking, and it is necessary that the signals return to the 
same level (zero) as they were in before the handshaking. While the required transitions for 
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returning to the original state (falling to zero) typically incur the loss of power, the advocates of 
this protocol argue that these transitions are often hidden by overlapping them with other actions 
in the circuits and thereby they do not usually cause the performance degradation.  

 

Figure 79. Four-Phase Handshake Protocol in (a) Push and (b) Pull Model 

B.3.2.2. Two-Phase Protocol 

Two-phase handshake protocol is a transition signaling and therefore events are indicated by 
transitions of the handshake signals, i.e. the rising and equivalently falling edges of the request 
signal represents the need for a new data transferring, and the rising and falling edges of the 
acknowledge signal implies the acceptance of the request. The level of these signals is not 
important.  

The sequence of events using two-phase handshake protocol in both of the push and pull 
models, as shown in Figure 80, illustrates a Non-Return-to-Zero (NRZ) waveform. As a 
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consequence this handshake protocol results in potentially higher performance and lower power 
dissipation. But, the implementation of components that respond to signal transitions often is 
more complex and likely requires more logic. 

 

Figure 80. Two-Phase Handshake Protocol in (a) Push and (b) Pull Model 

B.3.3. Data Encoding 

In synchronous circuits data is typically represented as simple binary encoded signals, where each 
wire represents a single bit of information. The opposite, a further dimension in asynchronous 
design is the choice of data encoding schemes. 

B.3.3.1. Bundled-Data Encoding 

The term of bundled-data refers to a situation where the data signals use normal binary encoding 
(the same way as in a conventional synchronous system), and where separate request and 
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acknowledge wires are bundled with the data signals. The bundled-data encoding technique relies 
on an inherent timing assumption, in which the delay in data path must be less than the delay in 
wires signaling the data readiness, i.e. request in push model, and acknowledge in pull model. 

Bundled-data encoding is very popular due to the similar area requirements to those of 
synchronous homologues. Additionally the synthesis of a data path can be done using standard 
synchronous tools. However the main difficulty with this data encoding in large circuits with long 
wires is that extra design effort is required in order to verify that the delay of the request (or 
acknowledge) signal matches the delays of data signals under all possible conditions. 

B.3.3.2. Dual-Rail Encoding 

Dual-rail encoding uses two wires to represent a single bit of information. The transfer of each bit 
will involve activity on only one of the two wires. Due to the fact that in dual-rail encoding it is 
possible to determine when a new data is valid (by detecting a level for 4-phase protocol, or an 
edge for 2-phase protocol, on one of the two rails), a separate handshake signal wire to convey 
data readiness is thus not necessary. Refer to Figure 81. 

 

Figure 81. Dual-rail encoded data sequence example in (a) 4-phase and (b) 2-phase protocols 
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Dual-rail data encoding is a delay-insensitive code because, as said, the validity information is 
carried along every bit in the data word, and thereby the receiver is enable to unambiguously 
detect the word completion, regardless of delays. As an example, Figure 82 shows a circuit 
suitable for detecting the presence of a valid 4-bit data word using 4-phase handshake protocol 
(level signaling). 

 

Figure 82. Dual-rail data word completion detector in four-phase handshake protocol 

The main issue with dual-rail encoding is that it results in a significant overhead in the excess 
wiring, extra power dissipation, and large area, due to the duplication of logic functions and the 
supplementary circuit of completion detection. 

B.3.3.3. n-of-m Encoding 

The general term of n-of-m represents a delay-insensitive data encoding which use actions on n of 
the m wires in a group to indicate one of a set of possible codes. Dual-rail data encoding, 
described above, is an example of n-of-m encoding, where m and n equal 2 and 1 respectively.  

 

Figure 83. One-of-four encoded data sequence example in 4-phase handshake protocol 
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One-of-four data encoding is another popular example. Compared with dual-rail, one-of-four 
encoding scheme reduces the switching activity of the system. In this case four wires are used to 
transmit two bits of data in parallel, using only one active signal to designate a valid code symbol. 
Figure 83 illustrates the one-of-four encoded form of the dual-rail encoded data sequence shown 
in Figure 81.a. It can be observed that one-of-four encoding generates roughly 50% fewer signal 
transitions. 

More complex codes which use more than one active wire in each group (i.e. n > 1) may offer 
better utilization of the available wires. For example a 2-of-7 encoding employs seven wires to 
transmit four bits using only two active signals per symbol, while dual-rail and one-of-four data 
encoding requires eight wires to transmit the same number of bits. In general, k bits could be 
designated by 2k codes, where total number of codes that could be transmitted with m wires using 
n-of-m encoding is: 

Total Number of Codes
)!(!

!
nmn

m
−

=  

However, n-of-m encoding mechanisms, where n>1, results in larger arithmetic and completion 
detection circuits and conversion between encoded from a single wire scheme is more expensive 
that make them unattractive for implementation on silicon. 

B.3.4. Metastability 

The metastability is likely encountered when a bistable system with hysteresis must determine an 
ordering of two asynchronous inputs that occur almost simultaneously. For example a C-element 
can be in metastable state if its two inputs change at the same time but to the opposite value. See 
Figure 84.a. In asynchronous circuits the choice of a correct handshake protocol prevents 
transitions probably causing the metastability. 

 

Figure 84. Metastability in (a) C-element and (b) circuit fragment arbitrating between two 
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However, in any kind of the asynchronous handshake protocols when two request signals are 
contending to be the first, there is not a way to avoid the metastability. The circuit fragment 
shown in Figure 84.b is popularly used to arbitrate between two mutually exclusive request 
signals. These cross-coupled NAND gates enable one input to block the other. But if both requests 
arrive approximately at the same time the circuit likely becomes metastable with both outputs. 

 

Figure 85. Mutual Exclusion (MUTEX) Component 

Recall that the probability that the metastable state continue decreases exponentially with time. 
This is accommodated in a synchronous system by waiting for a predefined period (a clock cycle 
for example) before using outputs susceptible to be in the metastable state. Thereby, the 
possibility of failure is reduced to an acceptable value. Asynchronous design uses the alternative 
approach of waiting until the metastability has been totally resolved. As shown in Figure 85, it 
can be achieved by using a metastability filter attached to the mutual exclusion (MUTEX) circuit, 
preventing the undefined (undesirable) value of the outputs to pass into the rest of the system. If 
the rare occasional long delay can be tolerated then arbitration between contending signals can be 
failure free. 

B.3.5. Signal Transition Graph 

To specify an asynchronous circuit there is a number of techniques available. But, for most of 
them, sadly, there is not a synthesis route. As a commonly used technique for which a synthesis 
way currently exists, the behavior of the intended circuit and its environment can be described as 
signal transition graphs. A Signal Transition Graph (STG) [101] is a Petri Net [102] and it can be 
seen as a formalization of a timing diagram. Unfortunately, defining an STG is not easy to make 
for large systems. One may use this technique for the construction of small modules. Larger 
designs can then be created from compositions of these small components. 

An STG is a graph composed of directed arcs and two types of nodes: transitions and places. 
Some places can be marked with tokens and the STG can be executed by firing transitions. A 
transition is enabled to fire if there are tokens on all of its input places, and an enabled transition 
must eventually fire. When a transition fires, a token is removed from each input place and a 

G0 

G1 R0 

R1 
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token is added to each output place. A transition is labeled with either a ‘+’ (representing a rising 
signal) or a ‘-’ (representing a falling signal). Dependencies and causalities are represented in the 
STG using the notations shown in Figure 86. 

 

Figure 86. STG Notations 

B.3.5.1. Implementations using State-Holding Elements 

During operation each variable (internal states and output signals) in the circuit will go through a 
sequence of 0, followed by one or more states where it is excited to be reset, followed by a 
sequence of 1, followed by one or more states where it is excited to be set. The starting point for 
the implementation of an STG using state-holding elements is to determine the Boolean equations 
for the set and reset signals of the circuit variables. Figure 87 shows the implementation template 
using a standard Muller C-element (as a state-holding element). Note that there are a number of 
alternative solutions for implementing variables using a state-holding device. It is obvious that for 
all reachable states the set and reset functions for a signal z must never be active at the same time. 

 

Figure 87. Implementation Template using standard Muller C-element 

The idea of using a state-holding device for each variable (each non-input signal) can be 
formalized as follows [62]: 

• An excitation region, ER, for a variable z is a maximally-connected set of states in which 
the variable is excited: 

o ER(z+) denotes a region of states where z is excited to be 1 
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o ER(z-) denotes a region of states where z is excited to be 0 

• A quiescent region, QR, for a variable z is a maximally-connected set of states in which 
the variable is not excited: 

o QR(z+) denotes a region of states where z is 1 

o QR(z-) denotes a region of states where z is 0 

For a given circuit the state space can be divided into one or more regions of each type. 

• The set function for a variable z: 

o Must contain all states in the ER(z+) regions 

o May contain states from the QR(z+) regions 

o May contain states not reachable by the circuit 

• The reset function for a variable z: 

o Must contain all states in the ER(z-) regions 

o May contain states from the QR(z-) regions 

o May contain states not reachable by the circuit 

• In order to avoid hazards, a product term in the set or reset function of a variable must 
only be entered through a state where the variable is excited 

B.3.5.2. Initialization 

Initialization is an important aspect of circuit design. Since the circuits generally use state-holding 
elements or circuitry with feedback loops, it is necessary to actively force the circuit into a well 
defined initial state. Consequently the designer has to extend the circuit with an extra signal 
which, when active, sets (or causes) all state-holding constructs into the desired state. It is 
assumed that initialization signal is asserted for long enough to cause the desired actions before it 
is de-asserted. 

The initialization of an asynchronous circuit based on handshake components, can be achieved 
by an implicit approach that exploits the function of the circuit to propagate initial signal values 
into the circuit. Sometimes we have to add the initialization signal to the relevant Boolean 
equations explicitly, and occasionally the modified logic equations need further logic 
decomposition. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix C 

 Basic Cells of Asynchronous Circuits for SXLIB 

SXLIB is the design rule independent CMOS standard cell library of the ALLIANCE package 
developed in LIP6 [65]. It is supposed to be used with a usual standard cells place and route tool. 
Each object in the library has, for static ones, or produces, for dynamics ones, three views: 

• The behavior, specified in VHDL data flow form 
• The net-list, in terms of transistor interconnections 
• The symbolic layout, that describes the cell topology 

To include the specific basic cells of asynchronous circuits, used in the designs described in this 
thesis, SXLIB has been completed. The new cells will be presented as follows: 

C.1. Muller C-element

− Behavior Model in VHDL 

LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
USE IEEE.numeric_std.ALL; 
 
ENTITY cmuler IS 
PORT( 
  i0    : IN STD_LOGIC; 
  i1    : IN STD_LOGIC; 
  q     : OUT STD_LOGIC; 
  vdd   : IN STD_LOGIC; 
  vss   : IN STD_LOGIC 
); 
END cmuler; 
 
ARCHITECTURE RTL OF cmuler IS 
  SIGNAL mem    : STD_LOGIC; 
BEGIN 
  q <= transport mem after 10 ps; 
  PROCESS ( i1, i0 ) 
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  BEGIN 
    IF ((i0 AND i1) = '1') 
    THEN mem <= '1'; 
    ELSIF ((NOT(i0) AND NOT(i1)) = '1') 
    THEN mem <= '0'; 
    END IF; 
  END PROCESS; 
END RTL; 

− Transistor Net-List in Spice 

* INTERF i0 i1 q vdd vss 
 
.subckt cmuler 1 2 7 4 8 
 
* NET 1 = i0 
* NET 2 = i1 
* NET 4 = vdd 
* NET 7 = q 
* NET 8 = vss 
 
xtr_00008 3 2 5 4 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00007 4 1 3 4 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00006 7 5 4 4 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00005 5 7 4 4 plvt tometer=1 L=0.28U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
xtr_00004 6 2 5 8 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
xtr_00003 8 1 6 8 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
xtr_00002 7 5 8 8 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
xtr_00001 8 7 5 8 nlvt tometer=1 L=0.64U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
 
.ends cmuler 

− Physical Layout 
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C.2. Muller Upper Asymmetric C-element 

− Behavior Model in VHDL 

LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
USE IEEE.numeric_std.ALL; 
 
ENTITY pcmuler IS 
PORT( 
  i     : IN STD_LOGIC; 
  pi    : IN STD_LOGIC; 
  q     : OUT STD_LOGIC; 
  vdd   : IN STD_LOGIC; 
  vss   : IN STD_LOGIC 
); 
END pcmuler; 
 
ARCHITECTURE RTL OF pcmuler IS 
  SIGNAL mem    : STD_LOGIC; 
BEGIN 
  q <= transport mem after 10 ps; 
  PROCESS ( pi, i ) 
  BEGIN 
    IF ((i AND pi) = '1') 
    THEN mem <= '1'; 
    ELSIF (NOT(i) = '1') 
    THEN mem <= '0'; 
    END IF; 
  END PROCESS; 
END RTL; 

− Transistor Net-List in Spice 

* INTERF i pi q vdd vss 
 
.subckt pcmuler 2 1 4 3 6 
 
* NET 1 = pi 
* NET 2 = i 
* NET 3 = vdd 
* NET 4 = q 
* NET 6 = vss 
 
xtr_00007 7 4 3 3 plvt tometer=1 L=0.28U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
xtr_00006 4 7 3 3 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00005 3 2 7 3 plvt tometer=1 L=0.1U W=0.87U AS=0.1305P AD=0.1305P PS=2.05U PD=2.05U 
xtr_00004 6 4 7 6 nlvt tometer=1 L=0.64U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
xtr_00003 4 7 6 6 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
xtr_00002 6 2 5 6 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
xtr_00001 5 1 7 6 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
 
.ends pcmuler 
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− Physical Layout 
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C.3. Muller Lower Asymmetric C-element 

− Behavior Model in VHDL 

LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
USE IEEE.numeric_std.ALL; 
 
ENTITY ncmuler IS 
PORT( 
  i     : IN STD_LOGIC; 
  ni    : IN STD_LOGIC; 
  q     : OUT STD_LOGIC; 
  vdd   : IN STD_LOGIC; 
  vss   : IN STD_LOGIC 
); 
END ncmuler; 
 
ARCHITECTURE RTL OF ncmuler IS 
  SIGNAL mem    : STD_LOGIC; 
BEGIN 
  q <= transport mem after 10 ps; 
  PROCESS ( ni, i ) 
  BEGIN 
    IF (i = '1') 
    THEN mem <= '1'; 
    ELSIF ((NOT(ni) AND NOT(i)) = '1') 
    THEN mem <= '0'; 
    END IF; 
  END PROCESS; 
END RTL; 

− Transistor Net-List in Spice 

* INTERF i ni q vdd vss 
 
.subckt ncmuler 2 1 5 4 7 
 
* NET 1 = ni 
* NET 2 = i 
* NET 4 = vdd 
* NET 5 = q 
* NET 7 = vss 
 
xtr_00007 3 1 6 4 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00006 4 2 3 4 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00005 5 6 4 4 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00004 6 5 4 4 plvt tometer=1 L=0.28U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
xtr_00003 5 6 7 7 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
xtr_00002 7 5 6 7 nlvt tometer=1 L=0.64U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
xtr_00001 7 2 6 7 nlvt tometer=1 L=0.1U W=0.33U AS=0.0495P AD=0.0495P PS=0.97U PD=0.97U 
 
.ends ncmuler 
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− Physical Layout 
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C.4. Muller Generalized C-element 

− Behavir Model in VHDL 

LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
USE IEEE.numeric_std.ALL; 
 
ENTITY npcmuler IS 
PORT( 
  i     : IN STD_LOGIC; 
  pi    : IN STD_LOGIC; 
  ni    : IN STD_LOGIC; 
  q     : OUT STD_LOGIC; 
  vdd   : IN STD_LOGIC; 
  vss   : IN STD_LOGIC 
); 
END npcmuler; 
 
ARCHITECTURE RTL OF npcmuler IS 
  SIGNAL mem    : STD_LOGIC; 
BEGIN 
  q <= transport mem after 10 ps; 
  PROCESS ( ni, pi, i ) 
  BEGIN 
    IF ((i AND pi) = '1') 
    THEN mem <= '1'; 
    ELSIF ((NOT(i) AND NOT(ni)) = '1') 
    THEN mem <= '0'; 
    END IF; 
  END PROCESS; 
END RTL; 

− Transistor Net-List in Spice 

* INTERF i ni pi q vdd vss 
 
.subckt npcmuler 2 3 1 6 5 8 
 
* NET 1 = pi 
* NET 2 = i 
* NET 3 = ni 
* NET 5 = vdd 
* NET 6 = q 
* NET 8 = vss 
 
xtr_00008 9 6 5 5 plvt tometer=1 L=0.28U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
xtr_00007 6 9 5 5 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00006 5 2 4 5 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00005 4 3 9 5 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00004 8 6 9 8 nlvt tometer=1 L=0.64U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
xtr_00003 6 9 8 8 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
xtr_00002 8 2 7 8 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
xtr_00001 7 1 9 8 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
 
.ends npcmuler 
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− Physical Layout 
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C.5. MUTEX 

− Behavior Model in VHDL 

LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
USE IEEE.numeric_std.ALL; 
 
ENTITY mutex IS 
PORT( 
  r0    : IN STD_LOGIC; 
  r1    : IN STD_LOGIC; 
  g0    : OUT STD_LOGIC; 
  g1    : OUT STD_LOGIC; 
  vdd   : IN STD_LOGIC; 
  vss   : IN STD_LOGIC 
); 
END mutex; 
 
ARCHITECTURE RTL OF mutex IS 
  SIGNAL x1     : STD_LOGIC; 
  SIGNAL x0     : STD_LOGIC; 
BEGIN 
  g0 <= x0; 
  g1 <= x1; 
  x0 <= transport (NOT x1 and r0) or (not r1 and r0) after 10 ps; 
  x1 <= transport (    x1 AND r1) or (not r0 and r1) after 10 ps; 
END RTL; 

− Transistor Net-List in Spice 

* INTERF g0 g1 r0 r1 vdd vss 
 

 
.subckt mutex 2 8 5 4 1 9 

 
* NET 1 = vdd 
* NET 2 = g0 
* NET 4 = r1 
* NET 5 = r0 
* NET 8 = g1 
* NET 9 = vss 

 
xtr_00012 7 6 1 1 plvt tometer=1 L=0.1U W=1.32U AS=0.198P AD=0.198P PS=2.95U PD=2.95U 
xtr_00011 1 4 7 1 plvt tometer=1 L=0.1U W=1.32U AS=0.198P AD=0.198P PS=2.95U PD=2.95U 
xtr_00010 2 6 7 1 plvt tometer=1 L=0.1U W=0.51U AS=0.0765P AD=0.0765P PS=1.33U PD=1.33U 
xtr_00009 6 7 8 1 plvt tometer=1 L=0.1U W=0.51U AS=0.0765P AD=0.0765P PS=1.33U PD=1.33U 
xtr_00008 1 7 6 1 plvt tometer=1 L=0.1U W=1.32U AS=0.198P AD=0.198P PS=2.95U PD=2.95U 
xtr_00007 6 5 1 1 plvt tometer=1 L=0.1U W=1.32U AS=0.198P AD=0.198P PS=2.95U PD=2.95U 
xtr_00006 7 4 3 9 nlvt tometer=1 L=0.1U W=1.05U AS=0.1575P AD=0.1575P PS=2.41U PD=2.41U 
xtr_00005 3 6 9 9 nlvt tometer=1 L=0.1U W=1.05U AS=0.1575P AD=0.1575P PS=2.41U PD=2.41U 
xtr_00004 9 6 2 9 nlvt tometer=1 L=0.1U W=1.05U AS=0.1575P AD=0.1575P PS=2.41U PD=2.41U 
xtr_00003 8 7 9 9 nlvt tometer=1 L=0.1U W=1.05U AS=0.1575P AD=0.1575P PS=2.41U PD=2.41U 
xtr_00002 9 7 10 9 nlvt tometer=1 L=0.1U W=1.05U AS=0.1575P AD=0.1575P PS=2.41U PD=2.41U 
xtr_00001 10 5 6 9 nlvt tometer=1 L=0.1U W=1.05U AS=0.1575P AD=0.1575P PS=2.41U PD=2.41U 
 
.ends mutex 
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− Physical Layout 

 

 

 

 

 

 

 

 

 

 

 

 



 C.6. RS Flip-Flop  151 
 

 

C.6. RS Flip-Flop 

− Behavior Model in VHDL 

 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
USE IEEE.numeric_std.ALL; 
 
ENTITY rsf_x0 IS 
PORT( 
  nres  : IN STD_LOGIC; 
  nset  : IN STD_LOGIC; 
  nq    : OUT STD_LOGIC; 
  q     : OUT STD_LOGIC; 
  vdd   : IN STD_LOGIC; 
  vss   : IN STD_LOGIC 
); 
END rsf_x0; 
 
ARCHITECTURE RTL OF rsf_x0 IS 
  SIGNAL me_m   : STD_LOGIC; 
BEGIN 
  nq <= transport NOT(me_m) after 10 ps; 
  q <= transport me_m after 10 ps; 
  PROCESS ( nres, nset ) 
  BEGIN 
    IF (NOT(nset) = '1') 
    THEN me_m <= '1'; 
    ELSIF ((NOT(nres)  ) = '1') 
    THEN me_m <= '0'; 
    END IF; 
  END PROCESS; 
END RTL; 

− Transistor Net-List in Spice 

* INTERF nq nres nset q vdd vss 
 
.subckt rsf_x0 5 2 3 6 1 8 
 
* NET 1 = vdd 
* NET 2 = nres 
* NET 3 = nset 
* NET 5 = nq 
* NET 6 = q 
* NET 8 = vss 
 
xtr_00008 1 3 6 1 plvt tometer=1 L=0.1U W=1.32U AS=0.198P AD=0.198P PS=2.95U PD=2.95U 
xtr_00007 6 5 1 1 plvt tometer=1 L=0.1U W=1.32U AS=0.198P AD=0.198P PS=2.95U PD=2.95U 
xtr_00006 1 6 5 1 plvt tometer=1 L=0.1U W=1.32U AS=0.198P AD=0.198P PS=2.95U PD=2.95U 
xtr_00005 5 2 1 1 plvt tometer=1 L=0.1U W=1.32U AS=0.198P AD=0.198P PS=2.95U PD=2.95U 
xtr_00004 7 3 6 8 nlvt tometer=1 L=0.1U W=1.05U AS=0.1575P AD=0.1575P PS=2.41U PD=2.41U 
xtr_00003 8 5 7 8 nlvt tometer=1 L=0.1U W=1.05U AS=0.1575P AD=0.1575P PS=2.41U PD=2.41U 
xtr_00002 4 6 8 8 nlvt tometer=1 L=0.1U W=1.05U AS=0.1575P AD=0.1575P PS=2.41U PD=2.41U 
xtr_00001 5 2 4 8 nlvt tometer=1 L=0.1U W=1.05U AS=0.1575P AD=0.1575P PS=2.41U PD=2.41U 
 
.ends rsf_x0 
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− Physical Layout 
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C.7. Latch 

− Behavior Model in VHDL 

LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
USE IEEE.numeric_std.ALL; 
 
ENTITY latch IS 
PORT( 
  nl    : IN STD_LOGIC; 
  i     : IN STD_LOGIC; 
  q     : OUT STD_LOGIC; 
  vdd   : IN STD_LOGIC; 
  vss   : IN STD_LOGIC 
); 
END latch; 
 
ARCHITECTURE RTL OF latch IS 
  SIGNAL latch_m        : STD_LOGIC; 
BEGIN 
  q <= transport latch_m after 10 ps; 
  PROCESS ( i, nl ) 
  BEGIN 
    IF (NOT(nl) = '1') 
    THEN latch_m <= i; 
    END IF; 
  END PROCESS; 
END RTL; 

− Transistor Net-List in Spice 

* INTERF i nl q vdd vss 
 
.subckt latch 2 1 6 3 7 
 
* NET 1 = nl 
* NET 2 = i 
* NET 3 = vdd 
* NET 6 = q 
* NET 7 = vss 
 
xtr_00007 6 5 3 3 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00006 5 6 3 3 plvt tometer=1 L=0.28U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
xtr_00005 5 1 4 3 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00004 4 2 3 3 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00003 7 6 5 7 nlvt tometer=1 L=0.64U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
xtr_00002 6 5 7 7 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
xtr_00001 4 2 7 7 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
 
.ends latch 
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− Physical Layout 
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C.8. Magic 

− Behavior Model in VHDL 

LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
USE IEEE.numeric_std.ALL; 
 
ENTITY magic IS 
PORT( 
  set   : IN STD_LOGIC; 
  res   : IN STD_LOGIC; 
  ck    : IN STD_LOGIC; 
  q     : OUT STD_LOGIC; 
  vdd   : IN STD_LOGIC; 
  vss   : IN STD_LOGIC 
); 
END magic; 
 
ARCHITECTURE RTL OF magic IS 
  SIGNAL mem    : STD_LOGIC; 
BEGIN 
  q <= transport mem after 10 ps; 
  PROCESS ( ck, res, set ) 
  BEGIN 
    IF ((set AND NOT(res)) = '1') 
    THEN mem <= '1'; 
    ELSIF (res = '1') 
    THEN mem <= '0'; 
    ELSIF  ((ck = '1') AND ck'EVENT) 
    THEN mem <= '0'; 
    END IF; 
  END PROCESS; 
END RTL; 

− Transistor Net-List in Spice 

* INTERF ck q res set vdd vss 
 

.subckt magic 7 6 1 8 10 13 
 
* NET 1 = res 
* NET 6 = q 
* NET 7 = ck 
* NET 8 = set 
* NET 10 = vdd 
* NET 13 = vss 
 
xtr_00020 5 6 10 10 plvt tometer=1 L=0.28U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
xtr_00019 6 5 3 10 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00018 3 1 10 10 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00017 10 9 4 10 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00016 4 12 5 10 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00015 9 1 2 10 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00014 2 14 10 10 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00013 10 8 11 10 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00012 11 7 14 10 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00011 10 9 14 10 plvt tometer=1 L=0.28U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
xtr_00010 10 7 12 10 plvt tometer=1 L=0.1U W=1.77U AS=0.2655P AD=0.2655P PS=3.85U PD=3.85U 
xtr_00009 13 5 6 13 nlvt tometer=1 L=0.1U W=0.33U AS=0.0495P AD=0.0495P PS=0.97U PD=0.97U 
xtr_00008 6 1 13 13 nlvt tometer=1 L=0.1U W=0.33U AS=0.0495P AD=0.0495P PS=0.97U PD=0.97U 
xtr_00007 13 9 5 13 nlvt tometer=1 L=0.1U W=0.33U AS=0.0495P AD=0.0495P PS=0.97U PD=0.97U 
xtr_00006 13 1 9 13 nlvt tometer=1 L=0.1U W=0.33U AS=0.0495P AD=0.0495P PS=0.97U PD=0.97U 
xtr_00005 9 14 13 13 nlvt tometer=1 L=0.1U W=0.33U AS=0.0495P AD=0.0495P PS=0.97U PD=0.97U 
xtr_00004 13 8 14 13 nlvt tometer=1 L=0.1U W=0.33U AS=0.0495P AD=0.0495P PS=0.97U PD=0.97U 
xtr_00003 13 9 14 13 nlvt tometer=1 L=0.64U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
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xtr_00002 13 7 12 13 nlvt tometer=1 L=0.1U W=0.69U AS=0.1035P AD=0.1035P PS=1.69U PD=1.69U 
xtr_00001 13 6 5 13 nlvt tometer=1 L=0.64U W=0.15U AS=0.0225P AD=0.0225P PS=0.61U PD=0.61U 
 
.ends magic 
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