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ABSTRACT

Marked Timed Weighted Event Graphs (in short MTWEG), which are a sub-class of Petri nets, are widely used for modelling
practical industrial problems. In this paper, a central practical problem for the design of streaming (e.g. multimediaor
network packet processing) applications is modelled usinga MTWEG. The optimization problem tackled here consists then
on finding an initial marking minimizing the overall number of tokens for a minimum given throughput.
If the firings of the transitions are periodic, this problem is NP -complete and can be modelled using an Integer Linear
Program. A general lower bound on the minimum overall capacity is then proved. If the initial MTWEG has a unique circuit,
a polynomial time algorithm based on the resolution of a particular Diophantine equation is presented to solve it exactly. We
lastly experiment it on an industrial example.
Keywords: Timed Weighted Event Graphs, Periodic Schedule, Manufacturing System, Synchronous Dataflow, Buffer opti-
mization.

1. INTRODUCTION

Cyclic scheduling problems, in which a set of generic tasks
have to be performed infinitely often, have numerous prac-
tical applications in manufacturing systems or in the design
of digital signal processing. Thus, many theoretical studies
were devoted to these problems (for surveys, see [1, 2]).

Marked Timed Weighted Event Graphs (in short MTWEG)
G, which are a subclass of Petri Nets can be used to model
some of these problems. Tasks corresponds to transitions
with a fixed duration. Each placep = (ti, tj) has exactly
one input and one output transition: at the completion of a
firing of ti, Zi tokens are added top. At the firing oftj , Zj

tokens are removed fromp. If Zi = 1 for every transition
ti , G is a Marked Timed Event Graph (in short MTEG).

MTWEG and MTEG are widely used for modelling and
solving practical cyclic scheduling problems. In the con-
text of manufacturing systems, they are considered to
model complex assembly lines. Workshop (resp. prod-
ucts) are usually modelled by transitions (resp. tokens).
Between two successive transformations, products (i.e. to-
kens) have to be stored or have to be moved from a work-
shop to another one. These amount of products, also called
Work In Process (WIP in short), may have economical con-
sequences. Therefore, the main problem for designers is to
devise an initial configuration of WIP that allows the sys-
tem to reach a given productivity and that uses the smallest
amount of WIP.

MTWEG can also be considered for modelling data ex-
changes for streaming applications: transitions correspond
to specific treatments. Places are associated with buffers.
The total number of tokens of an initial marking is propor-
tional to the overall surface of the memories. As the whole
application has to be integrated on a single chip and sat-
isfies high quality requirements, the surface minimization
problem with throughput constraints is crucial for the de-
sign of these systems. However, designers of such systems
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usually model their system using Synchronous DataFlow
Graph [3] (in short SDF) which is an equivalent formalism.

For a given MTEG or MTWEG, the two fundamental ques-
tions are the existence of a valid schedule and the determi-
nation of the optimal throughput.

In the case of MTEG, these two problems are polynomially
solved from a long time [4, 5, 6]. Thus, the minimization
of the sum of the initial markings for a minimum given
throughput is inNP , and many authors developed efficient
heuristics and exact methods to solve it (see. as example
[7, 8, 9]). TheNP -completeness of this last problem was
proved recently in [10].

The existence of a polynomial algorithm for the liveness
and the computation of the throughput of a MTWEG (or
equivalently to a SDF) is a difficult question. Up to now,
the time complexity of all the algorithms developed to an-
swer these two fundamental questions is exponential in the
worst case [11, 12]. The consequence is that the opti-
mization problems on MTWEG are possibly not inNP :
the evaluation of the feasible solutions is not possible in
polynomial time, which limits dramatically the existence
of efficient algorithms. For example, Sauer [13] developed
an algorithm to minimize the sum of the initial markings
for a given throughput which evaluates a feasible solu-
tion using an exponential algorithm. The evaluation step
of this algorithm limits significantly the size of the in-
stances. In [14, 15], several buffer minimization problems
with throughput constraint are modelled using an Integer
Linear Program with an exponential number of equations.
More recently, in [16, 17] authors have dealed with this
problem with throughput constraint based on a state space
exploration with model checking techniques.

Another way to circumvent this problem is to reduce the
set of feasible solutions. Benabidet al. [18] developed a
polynomial time algorithm that computes a periodic sched-
ule for a MTWEG. This result can be regarded as a gen-
eralization of Reiter’s result for MTEG [19]. In the case

 702



of MTWEG, the existence of a periodic firing of the transi-
tions is clearly more restrictive than the liveness. Moreover,
the periodic scheduling policy is not necesseraly optimal
for the throughput criteria. However, with this assumption,
optimization problems such as the minimization of the ini-
tial markings are now inNP and efficient algorithms may
be developed (even if the problem isNP -complete). As
example, Wiggerset al. [20] developed a heuristic to solve
it.

In this paper, we study the minimization of the overall num-
ber of initial tokens in a MTWEG for a periodic schedule
with a given period. Section 2 is dedicated to basic defi-
nitions and the description of our problem. In Section 3,
we show the modelling of a car radio using a MTWEG.
Section 4 presents some important known basic results on
periodic schedules. In Section 5, we show that our problem
can be formulated using an Integer Linear Program and we
show a first general lower bound on the overall places ca-
pacities. We prove in Section 6 that, if the MTWEG is a
circuit, the determination of an optimal marking may be
solved polynomially. In Section 7, we apply our algorithm
to the example presented in Section 3. We conclude in Sec-
tion 8.

2. MODEL AND NOTATIONS

A Marked Timed Weighted Event GraphG = (T, P, ℓ, M0)
is defined by a set of placesP = {p1, . . . , pm} and a set
of transitionsT = {t1, . . . , tn}. Every placep ∈ P is
defined between two transitionsti andtj and is denoted by
p = (ti, tj). For any transitionti ∈ T , we setP+(ti) =
{p = (ti, tj) ∈ P, tj ∈ T } andP−(ti) = {p = (tj , ti) ∈
P, tj ∈ T }. Moreover, it is supposed thatG is strongly
connected: for every couple of vertices(x, y) ∈ (P ∪ T )2,
there exists a path inG from x to y.

Every placep ∈ P is initially marked byM0(p) ∈ N to-
kens. We also suppose that every transitionti is valued by
a strictly positive integerZi and a processing timeℓ(ti).
If ti is fired at timeτ , Zi tokens are removed from every
placep ∈ P−(ti). At time τ + ℓ(ti), Zi tokens are added
to every placep ∈ P+(ti).

A placep = (ti, tj) has a bounded capacityF (p) > 0 if the
number of tokens stored inp can not exceedF (p): ∀τ ≥
0, M(τ, p) ≤ F (p). A MTWEG G = (T, P, M0, ℓ, F )
is said to be a bounded capacity graph if the capacity of
every placep ∈ P is bounded byF (p). It is proved in [21]
that every placep = (ti, tj) with bounded capacity may be
replaced by a couple of places(p1 = (ti, tj), p2 = (tj , ti))
denoted by(p1, p2)c with the initial markingM0(p1) =
M0(p) andM0(p2) = F (p)−M0(p). So, in this paper, we
only consider symmetric MTWEG: every placep = (ti, tj)
is associated with a backward placep′ = (tj , ti) modelling
the limited places capacity.

It is assumed that two successive firings of the same tran-
sition cannot overlap: this is modeled by a self-loop place
p = (ti, ti), ∀ti ∈ T with M0(p) = Zi. For a sake of
simplicity, these loops are not pictured.

The instantaneaous marking of a placep ∈ P at timeτ ≥ 0
is denoted byM(τ, p). Clearly,M(0, p) = M0(p).

For any couple of integers(a, b) ∈ N2, gcd(a, b) (resp.
lcm(a, b)) denotes the greatest common divisor (resp.least
common multiple) ofa andb. For every couple of values

(p, q) ∈ N × N⋆, we set⌈p⌉(q) =
⌈

p

q

⌉

q.

3. EXAMPLE

Let us consider a car-radio application described in [22].
The inputs of such systems are basically a MP3-reader and
a cell phone. The output is a mixed sound from these two
streams. Without any additional treatment, the output is
reintroduced in the system through the cell phone, causing
an echo effect. In order to obtain a pure speech in the cell
phone, an additional input stream, corresponding to a mi-
crophone is added.

Figure 1 presents the streams and the main treatments. The
first stream entrance, modelled byt7 is the MP3 reader.t10
corresponds to the entrance of the additional microphone.
t9 is the output.t3 is the audio echo cancellation task.t1
mixes the two input streams.t5 produces a pure speech
from the streamst3 and the cell phone.

t7 t1 t9

t5

t10

t3

MP3
Reader

Out To
Speaker

Cell
Phone

Micro-
phone

Signal to eliminate
Fig. 1: Block diagram of a car-radio application

Figure 2 shows the modelling of the whole application by
a MTWEGG. Transitionst2, t4, t6 andt8 are simple rate
convertors. Places model intermediate buffers of limited
capacity between the components.

The processing times of the transitions are usually fixed by
physical considerations and are presented by Table 1.

4. PERIODIC SCHEDULES

4.1. Schedules

LetG be a MTWEG. A schedule is a functions : T×N⋆ →
Q+ which associates, with any tuple(ti, q) ∈ T × N⋆,
the starting time of theqth firing of ti. There is a strong
relationship between a schedule and the corresponding in-
stantaneous marking. Indeed, a schedule is feasible if the
number of tokens of every placep = (ti, tj) remains non
negative at each time instant.

It has been proved in [23] that the initial marking
M0(p) of any placep = (ti, tj) may be replaced by
⌊

M0(p)
gcd(Zi,Zj)

⌋

gcd(Zi, Zj) without any influence ons. Thus,

we assume that the initial markingM0(p) of every place
p = (ti, tj) ∈ P is a multiple ofgcd(Zi, Zj).
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Tab. 1: Processing timesℓ(ti), ti ∈ T in milliseconds

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
ℓ 2.3 × 10−2 10 9.091 0.125 0.125 10 24 10 2.3 × 10−3 0.125

t7

84672

t8

35280
35280

t9

80

p7

p′7

p9

p′9

p8

p′8

p10

p′10

t10

80 80

441 441

80 80

35280

35280

35280

35280

35280

35280

441

441

35280
441

p1

p′1

p2p′2p5 p′5

p6

p′6

p3

p′3

p4

p′4

t1

t2

t3

t4

t5

t6

Fig. 2: A MTWEGG modelling a car-radio application

The throughput of a transitionti for a schedules is defined
as

λs(ti) = lim
q→∞

q

s(ti, q)
.

4.2. Periodic schedules

A schedules is periodic if there exists a vectorw =
(w1, . . . , wn) ∈ Q+n such that, for any couple(ti, q) ∈
T × N⋆, s(ti, q) = s(ti, 1) + (q − 1)wi. wi is then the
period of the transitionti andλs(ti) = 1

wi
its throughput.

The following theorem proved in [18] characterizes the pe-
riodic schedule of a strongly connected MTWEG.

Theorem 1. For any feasible periodic schedules, there
existsK ∈ Q⋆+ called thetoken flowof s such that, for

any couple of transitions(ti, tj) ∈ T 2,
wi

Zi

=
wj

Zj

= K.

Moreover,s is feasible iff, for any placep = (ti, tj) ∈ P ,

s(tj , 1) − s(ti, 1) ≥ ℓ(ti) + K(Zj − M0(p) − gcdi,j),

wheregcdi,j = gcd(Zi, Zj).

For our example, the throughput of the output must be

equal to44.1kHz, thus
1

w9
= 44.1ms−1. SinceZ9 = 80,

we getK =
w9

Z9
= 2.83.10−4ms.

For any placep = (ti, tj) ∈ P , let us denote byH(p) =
M0(p) + gcdi,j − Zj andL(p) = ℓ(ti). For a circuitc,

H(c) =
∑

p∈c H(p) andL(c) =
∑

p∈c L(p). Theorem 2
expresses a necessary and sufficient condition for the ex-
istence of a periodic schedule deduced from Bellman-Ford
algorithm [24].

Theorem 2. There exists a periodic schedule iff, for every
circuit c of G, H(c) > 0.

The minimum feasible token flowKopt of K is then:

Kopt = max
c∈C(G)

L(c)

H(c)
(1)

whereC(G) denotes the set of circuits ofG.

Numerous polynomial and pseudo-polynomial algorithms
were developed to computeKopt (see. as example [25,
26]). An experimental study of these algorithms can be
found in [27].

5. GENERAL PROBLEM

It is assumed here thatG is a strongly connected MTWEG.
The general problem is first presented and modelled by an
Integer Linear Program. A lower bound of the overall ca-
pacity is then proved.

5.1. Problem formulation

Let G = (T, P, ℓ, M0) be a symmetric MTWEG and a to-
ken flowK ∈ Q+. The general problem tackled here is to
find an initial markingM0(p), p ∈ P such that:

1. The overall capacity
∑

p∈P F (p) =
∑

p∈P M0(p) is
minimum.

2. There exists a periodic schedule with a token flow at
most equal to K.

The problem may be formulated by the following Integer
Linear ProgramΠ(K):

min
(

∑

p∈P M0(p)
)



















∀p = (ti, tj) ∈ P, s(tj , 1) − s(ti, 1) ≥ ℓ(ti)+
K (Zj − M0(p) − gcdi,j)

∀p = (ti, tj) ∈ P, M0(p) = kij · gcdi,j

∀p = (ti, tj) ∈ P kij ∈ N
∀ti ∈ T, s(ti, 1) ≥ 0

The first inequality expresses the necessary and sufficient
condition associated with a placep on the first starting
times of a feasible periodic schedule following Theorem 1.
The second equality comes from the restriction ofM0(p),
p = (ti, tj) ∈ P to multiples ofgcdi,j = gcd(Zi, Zj).
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5.2. A general lower bound on the overall capacity

Lemma 1. Let (p, p′)c be a couple of place withp =
(ti, tj) andp′ = (tj , ti). Let also the value

F ⋆
K(p, p′) =

ℓ(ti) + ℓ(tj)

K
− 2gcdi,j + (Zi + Zj).

Then, for every feasible solutionM⋆
0 of Π(K), M⋆

0 (p) +

M⋆
0 (p′) ≥ ⌈F ⋆

K(p, p′)⌉
(gcdi,j).

Proof. Let the circuitc = (ti, p, tj, p
′, ti). Then,L(c) −

KH(c) = ℓ(ti)+ℓ(tj)−K(Zi +Zj −M⋆
0 (p)−M⋆

0 (p′)−
2gcdi,j). If M⋆

0 is feasible, we getL(c)−KH(c) ≤ 0 and

thusM⋆
0 (p) + M⋆

0 (p′) ≥
ℓ(ti) + ℓ(tj)

K
− 2gcdi,j + (Zi +

Zj). SinceM⋆
0 (p) andM⋆

0 (p′) are divisible bygcdi,j we
get the result.

For every couple of places(p, p′)c ∈ P 2, (p′, p)c is also a
circuit. Theorem 3 is a simple outcome of Lemma 1:

Theorem 3. B =
∑

(p,p′)c∈P 2, p=(ti,tj)
1
2 ⌈F

⋆
K(p, p′)⌉

(gcdi,j)

is a lower bound on the overall capacity of a MTWEGG
for a maximum fixed token flowK ∈ Q+.

6. A polynomial special case

Let us consider here thatG is a double circuit ofn transi-
tions defined asc = (t1, p1, t2, p2, . . . , tn, pn, tn+1) with
t1 = tn+1 andc′ = (tn+1, p

′
n, tn, . . . , t2, p

′
1, t1). It is also

assumed thatgcd(Z1, . . . , Zn) = 1. This assumption is
not restrictive: if it is not true, it is proved in [23] that the

integersZi, ti ∈ T can be replaced by
Zi

gcd(Z1, . . . , Zn)
without any influence on the existence and the token flow
of a periodic schedule.

We first present a simplification of the ILP presented in the
last section by eliminating the starting times of the first fir-
ings of the transitions. Then, we improve the lower bound
presented previously. Lastly, we introduce a new system
S and we show that, every solution ofS gives an optimal
solution. We also give some hints for the resolution ofS in
polynomial-time.

6.1. Simplification of the linear program

By the Bellman-Ford algorithm, there exists a solution
M0(p), p ∈ P for Π(K) if every circuitc verifiesL(c) −
KH(c) ≤ 0. Thus, the system may be simplified by elimi-
nating the starting times of the first firing of the transitions
as follow:

1. For the first circuitc,

L(c) − KH(c) =
∑n

i=1 ℓ(ti)

+K

n
∑

i=1

(Zi−M0(pi)−gcdi,i+1) ≤ 0.

Thus,
n

∑

i=1

M0(pi) ≥
1

2

n
∑

i=1

F ⋆
K(pi, p

′
i)

and then, since the numbers of tokens are integer val-
ues,

n
∑

i=1

M0(pi) ≥

⌈

1

2

n
∑

i=1

F ⋆
K(pi, p

′
i)

⌉

.

2. Similarly, we get for the circuitc′,
n

∑

i=1

M0(p
′
i) ≥

⌈

1

2

n
∑

i=1

F ⋆
K(pi, p

′
i)

⌉

.

3. By Lemma 1, circuits(ti, pi, ti+1, p
′
i, ti), i ∈

{1, . . . , n} induces

M0(pi) + M0(p
′
i) ≥ ⌈F ⋆

K(pi, p)⌉
(gcdi,i+1) .

So, the systemΣ(K) to solve for a symmetric circuit is:

min
(

∑

p∈P M0(p)
)























∑n

i=1 M0(pi) ≥
⌈

1
2

∑n

i=1 F ⋆
K(pi, p

′
i)

⌉

∑n

i=1 M0(p
′
i) ≥

⌈

1
2

∑n

i=1 F ⋆
K(pi, p

′
i)

⌉

∀i ∈ {1, . . . , n}, M0(pi) + M0(p
′
i) ≥ ⌈F ⋆

K(pi, p
′
i)⌉

(gcdi,i+1)

∀p = (ti, tj) ∈ P, M0(p) = kij · gcdi,j

∀p = (ti, tj) ∈ P, kij ∈ N

6.2. A lower bound of the overall capacity

From the two first equations, we get
n

∑

i=1

M0(pi) +

n
∑

i=1

M0(p
′
i) ≥ A,

with A = 2 ×
⌈

1
2

∑n

i=1 F ⋆
K(pi, p

′
i)

⌉

. So A is a
lower bound of the overall capacity. Moreover,B =
∑n

i=1 ⌈F
⋆
K(pi, p

′
i)⌉

(gcdi,i+1) is also a lower bound by The-
orem 3.

So, max(A, B) is a lower bound of the overall capacity.
However, this bound may be improved ifA > B:

Lemma 2. If A > B, thenA = B + 1.

Proof. Clearly,

A = 2 ×

⌈

1

2

n
∑

i=1

F ⋆
K(pi, p

′
i)

⌉

≤

⌈

n
∑

i=1

F ⋆
K(pi, p

′
i)

⌉

+ 1.

and
⌈

n
∑

i=1

F ⋆
K(pi, p

′
i)

⌉

≤

n
∑

i=1

⌈F ⋆
K(pi, p

′
i)⌉

(gcdi,i+1) = B.

so, lemma holds.

Theorem 4. Let the indexj ∈ {1, . . . , n} such that
gcdj,j+1 is minimum. IfA > B, then the minimal over-
all capacity for a token flowK is equal to or greater than
B + gcdj,j+1.

Proof. If the overall capacity of any couple of places
(pi, p

′
i) is exactly⌈F ⋆

K(pi, p
′
i)⌉

(gcdi,i+1), then the overall
capacity isB. If A > B, this solution is then not feasible.
So, there is at least a couple(pi, p

′
i)c with i ∈ {1, . . . , n}

such thatM0(pi) + M0(p
′
i) > ⌈F ⋆

K(pi, p
′
i)⌉

(gcdi,i+1). So
a new lower bound of the capacity isB + gcdj,j+1. By
Lemma 2,B + gcdj,j+1 ≥ B + 1 = A, and theorem fol-
lows.
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6.3. Building another linear system

The idea here is to build a simpler systemS and to prove
that an optimum solution forΣ(K) can be deduced from
every solution ofS.

Let us define the sequenceAi, i ∈ {1, . . . , n} as follows:

• If B ≥ A, we setAi = ⌈F ⋆
K(pi, p

′
i)⌉

(gcdi,i+1) for
everyi ∈ {1, . . . , n};

• Else, letj ∈ {1, . . . , n} such thatgcdj,j+1 is min-

imum. We setAj =
⌈

F ⋆
K(pj , p

′
j)

⌉(gcdj,j+1)
+

gcdj,j+1 and Ai = ⌈F ⋆
K(pi, p

′
i)⌉

(gcdi,i+1) for every
i ∈ {1, . . . , n} − {j}.

Let

Q =

n
∑

i=1

Ai

be the value of the overall capacity andC =
⌊

Q
2

⌋

. We also

note, for everyi ∈ {1, . . . , n}, ai = gcdi,i+1. Let us define
the systemS as follows:

SystemS:







C =
∑n

i=1 aixi

∀i ∈ {1, . . . , n}, xi ∈ N

∀i ∈ {1, . . . , n}, 0 ≤ aixi ≤ Ai

Theorem 5. Let x⋆
i , i ∈ {1, . . . , n} be a solution ofS.

Then, the initial markingM⋆
0 defined as,∀i ∈ {1, . . . , n},

M⋆
0 (pi) = aix

⋆
i andM⋆

0 (p′i) = Ai − aix
⋆
i is an optimum

solution ofΣ(K).

Proof. For every i ∈ {1, . . . , n}, M⋆
0 (pi) and M⋆

0 (p′i)
are clearly divisible bygcdi,i+1. Moreover,M⋆

0 (pi) +

M⋆
0 (p′i) = Ai ≥ ⌈F ⋆

K(p, p′i)⌉
(gcdi,i+1). Thus, the third

inequality ofΣ(K) is fulfilled for every couple of places.

Two subcases must be considered:

1. If B ≥ A, then
Q

2
=

B

2
≥

A

2
. Thus, since

A

2
is an

integer value,C =

⌊

Q

2

⌋

≥
A

2
. Now,

n
∑

i=1

M⋆
0 (pi) = C ≥

A

2
=

⌈

1

2

n
∑

i=1

F ⋆
K(pi, p

′
i)

⌉

and the first inequality ofΣ(K) is fullfilled.
On the same way,

n
∑

i=1

M⋆
0 (p′i) =

⌈

Q

2

⌉

≥

⌈

1

2

n
∑

i=1

F ⋆
K(pi, p

′
i)

⌉

and the second inequality ofΣ(K) is also verified.
Lastly, the overall capacity isQ =

∑n

i=1 Ai = B,
thus it is minimum.

2. Let us suppose now thatB < A. Then, by Theorem
4, A = B + 1 and

Q

2
=

B + aj

2
=

aj − 1

2
+

A

2
.

Sinceaj ≥ 1 and
A

2
is an integer,

C =

⌊

Q

2

⌋

≥

⌈

1

2

n
∑

i=1

F ⋆
K(pi, p

′
i)

⌉

,

Since
∑n

i=1 M⋆
0 (pi) = C and

∑n

i=1 M⋆
0 (p′i) =

⌈

Q
2

⌉

,

the two first inequalities ofΣ(K) are verified.
Lastly, the overall capacity equalsQ = B + ai and is
minimum by Theorem 4, which completes the proof.

The systemS can be regarded as a special case of a linear
diophantine equation. Such an equation can be solved in
polynomial time by applying(n − 1) times the extended
euclidean algorithm. However due to space constraint, we
have not reported here our algorithm (and its proof) that
computes a solution forS in polynomial time. The inter-
ested reader might refer to [28].

7. APPLICATION TO THE CAR-RADIO

Table 2 summarizes the values obtained for our example.

Tab. 2: Optimal initial markings for the MTWEG pictured
by Figure 2

Buffers ai F ⋆

K

˚

F ⋆

K

ˇ(ai) M⋆

0 (pi) M⋆

0 (p′
i
)

(p1, p′1) 80 70560 882a1 113a1 769a1

(p2, p′2) 35280 67353.048 2a2 0 2a2

(p3, p′3) 441 67353.048 153a3 55a3 98a3

(p4, p′4) 441 882 2a4 2a4 0
(p5, p′5) 441 70560 160a5 160a5 0
(p6, p′6) 80 70560 882a6 882a6 0
(p7, p′7) 7056 225792 32a7 0 32a7

(p8, p′8) 80 70560 882a8 0 882a8

(p9, p′9) 80 160 2a9 0 2a9

(p10, p′10) 441 67353.048 153a10 0 153a10

The initial marking for the places from the circuitc =
(t1, p1, t2, . . . , t6, p6, t1) was computed using the algo-
rithm developed here. We obtained for the lower bounds
B = 350595 and A = 347270. Since B > A,

Q = B = 350595 and C =

⌊

Q

2

⌋

= 175297. The

vectors obtained for the three steps arêX = (215 ·
C, 0,−39 · C, 0, 0, 0), X̄ = (113, 0, 0, 0, 57, 1764) and
X⋆ = (113, 0, 55, 2, 160, 882).

For any couple of places(pi, p
′
i) ∈ P which are not in

c, the minimum capacity of the buffer is⌈F ⋆
K(pi, p

′
i)⌉

(ai).
These buffers are initially empty, soM⋆

0 (pi) = 0. If we set
M⋆

0 (p′i) = ⌈F ⋆
K(pi, p

′
i)⌉

(ai), we obtain a feasible solution
for the systemΣ(K). Thus, it is an optimal initial marking.

If we compare our numerical results to [22], our results are
slightly better. As example, for the couple(p3, p

′
3), they

get a capacity of158a3, which is not minimum. More-
over, they supposed that a buffer is either initially full or
empty, which limits solutions space and allows them to cut
circuits. Lastly, time complexity of their algorithm is un-
known.
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8. CONCLUSION

We have developed in this paper a polynomial time algo-
rithm for the minimization of the overall number of tokens
for a minimum throughput. We proved that this problem
can be modelled using an Integer Linear Program. A perti-
nent lower bound of the overall number of tokens is easily
deduced from this formulation. We also proved then that
if the initial MTWEG has a unique circuit, the problem
considered is equivalent to a specific Linear Diophantine
problem solvable by a polynomial time algorithm. This
last algorithm was considered to solve exactly a practical
application.
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[5] P. Chrétienne, “Les réseaux de petri temporisés,”
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