
A Buffer Space Optimal Solution for

Re-establishing the Packet Order in a MPSoC
Network Processor

Daniela Genius, Alix Munier Kordon, and Khouloud Zine el Abidine

Laboratoire LIP6, Université Pierre et Marie Curie, Paris, France
{daniela.genius,alix.munier,zineelabidine.khouloud}@lip6.fr

Abstract. We consider a multi-processor system-on-chip destined for
streaming applications. An application is composed of one input and
one output queue and in-between, several levels of identical tasks. Data
arriving at the input are treated in parallel in an arbitrary order, but have
to leave the system in the order of arrival. This scenario is particularly
important in the context of telecommunication applications, where the
duration of treatment depends on the packets’ contents. We present an
algorithm which re-establishes the packet order: packets are dropped if
their earliness or lateness exceeds a limit previously fixed by experimen-
tation; otherwise, they are stored in a buffer on the output side. Write
operations to this buffer are random access, whereas read operations are
in FIFO order. Our algorithm guarantees that no data is removed from
the queue before it has been read. For a given throughput, we guarantee
a minimum buffer size. We implemented our algorithm within the out-
put coprocessor in the form of communicating finite state machines and
validated it on a multi-processor telecommunication platform.

1 Introduction

The packet order in telecommunication applications depends strongly on each
packet’s content and is subject to important variations [1]. Well known in the
networking domain under the name of packet reordering, the problem of out-of-
order arrival of packets on the output side has been underestimated for a long
time because the Transmission Control Protocol (TCP [2]) does not absolutely
require in-order delivery. The performance of TCP however is severely penalized
by useless re-sending of packets which arrive too late and are considered as lost.
A detailed analysis [3] reveals that it is insufficient to rely on TCP’s capabili-
ties alone. Recently, the phenomenon has been studied experimentally to some
extent, confirming its practical relevance [4].

For simplicity, in the following we call packet re-ordering the re-establishment
of the order among packets that arrive at the output queue.

Telecommunication applications can be considered a category of streaming
applications. Performance requirements of such applications can often only be
met by mapping onto a Multi Processor System-on-Chip (MPSoC). A task and

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 216–227, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Buffer Space Optimal Solution for Re-establishing the Packet Order 217

communication graph (TCG), describing the application in the form of a set of
coarse-grained parallel threads, can be of pipeline or of task farm flavor, or any
combination of the two. However, a price has to be paid: data may be leaving
the system in an order different from that in which they entered.

Disydent (Digital System Design Environment [5]), which we used to build
an earlier platform [6] is based upon point-to-point Kahn channels [7]. While
the original Kahn formalism is well suited for video and multimedia applications
that can be modeled by a task graph where each communication channel has
only one producer and one consumer, it is not convenient for telecommunica-
tion applications where several tasks access the same communication buffer. In
[8] we generalize the Kahn model by describing applications in the form TCG
where tasks communicate via multi-writer multi-reader (MWMR) channels, im-
plemented as software FIFOs that can be accessed by any number of (hardware
or software) reader and writer tasks. The access to such a channel is protected by
a single lock. As any reader and any writer task can access the channel provided
that it obtains the lock, the order of packets within a flow becomes completely
arbitrary.

1.1 Example Application

The first step in the treatment of packet streams, called classification, ranges
from the mere identification of the protocol (http, ftp, ...) to more in-depth
analysis of the traffic type. Classification enables traffic management through e
g. the detection of illicit traffic (peer-to-peer). Apart from its great practical in-
terest, it qualifies as an example because of its high degree of inherent parallelism
and severe throughput requirements [9].

For a large majority of networking applications it is sufficient to consider only
the header of a packet, which should consequently be stored in fast on-chip RAM.
The input task accepts on-chip and off-chip addresses from two channels. It reads

S1

I

C0

O

Classifier Scheduler

C1

C2

Cm

S0

Sn

S2

Priority queues Input
Task

Output
Task

.

.

.

.

.

.

.

.

.

Bootstrap Task

On-chip addresses

Off-chip addresses

 Liberated on-chip
 and off-chip addresses

B

Fig. 1. Classification application task and communication graph

218 D. Genius, A. Munier Kordon, and K. Zine el Abidine

Ethernet encapsulated IP packets, cuts them into slots of equal size to fit the
on-chip memory banks, and copies these slots to on-chip and off-chip memory,
respectively. It produces a small packet descriptor containing the address of
the first slot and additional information. A classification task reads a descriptor
and then retrieves the packet from memory. The packet is deallocated if one
of various checks fails. The classification task then writes the descriptor to one
of several priority queues. The scheduling tasks ponder by the priority of the
current queue and write the descriptor to the unique output queue if eligible.
The output task constantly reads the output queue. Each time a slot is read and
sent to the buffer, its liberated address is sent to either of the two channels for
on-chip and off-chip addresses. A bootstrap task organizes the system startup.

1.2 Surface and Throughput Requirements

Memory takes up a large part of the silicon surface. This is particularly an issue
for on-chip memory in embedded platforms. A hardware solution therefore has
to cope with the problem of not impacting efficiency by algorithms too complex
to implement while saving buffer space to temporarily store packets that are not
yet allowed to leave.

In this paper we propose a buffer space-optimal packet order re-establishing
algorithm for multimedia and telecommunication oriented MPSoC platforms.
The algorithm numbers the incoming packets and enforces a strict order on
the output side. Write operations to the re-ordering buffer are random access,
whereas read operations are first-in first-out. Our hypothesis is that only very
few data arrive excessively early or late; the latter are discarded. Our algorithm
ensures that no data is removed from the buffer before it has been read. For a
given throughput, we guarantee a minimum buffer size. We present an imple-
mentation within the output coprocessor in the form of communicating finite
state machines and evaluate it experimentally.

Section 2 sums up the related work. Section 3 formulates the problem and
states it quantitatively for a typical example. The algorithm itself is presented
in Section 4. The final part of the paper describes the hardware implementation
(Section 5) and confirms by experiment that the overall performance of the
platform is preserved (Section 6). Finally, we point out directions of future work.

2 Related Work

From a purely algorithmic point of view, it is rather unusual to accept the loss
of data; in consequence we did not find any similar work from that domain – in
networking practice however, discarding of delayed packets is routinely done.

Commercial network processors often use a large number of smaller processors
for straightforward packet treatment [1]. The packet order is then re-established
by a central hardware component (see the combination of Dispatch Unit and
Completion Unit of the IBM PowerNP series [10]). Buffers within this component
are large in order to accommodate a wide variety of applications with higher or

A Buffer Space Optimal Solution for Re-establishing the Packet Order 219

lower degrees of disorder. Recent research tries to avoid a central control and
use smaller buffers.

The out-of-order arrival of packets is closely related to the load balancing
problem situated at the input side. Proposed solutions for the latter problem
include adaptive load sharing for network multiprocessors [11] and software ap-
proaches like [12]. Evidently, those techniques cannot fully control the packet
order on the output side. Among the re-ordering techniques situated on the
output side, some accept a limited degree of disorder, others impose in-order
delivery. An approach which imposes in-order delivery by combining buffering
on input and output side is shown in [13]. This approach is based on timestamps
(as opposed to sequence numbering) and results are derived for multi-stage Clos
interconnects.

The Reorder Density function presented in [14] quantifies the cumulative de-
gree of disorder in packet sequences. Like in our approach, packets are numbered
sequentially at the input side and these numbers are compared to a receive in-
dex. Reorder Density is a cumulative metric applied to large traces of observed
traffic (UDP or TCP), it is not employed to actively re-establish packet order in
a given application; this requires more knowledge of the individual application.

3 Problem Formulation

In the simplest case, streaming applications can be considered as one input and
one output task, with a treatment task in-between. When targeting very high
throughput, many tasks running in parallel, one level of interconnect is generally
insufficient to cope with the contention between various requests and responses.
A multi-level architecture regroups processors around local interconnects. In
such a NUMA (Non Uniform Memory Access) architecture, memory access times
differ greatly depending on whether a processor accesses a memory bank local
to the cluster, or on another cluster.

Let us now state the problem we wish to solve: packets leave the system in a
different order than the one in which they entered it. Intuitively, this problem
is best tackled from the output side: the output task has to ensure in-order
delivery. Classically, only packets arriving too late are penalized (cf. the time-
to-live counter in networking applications: packets are discarded if they pass too
much time within the system). In order to transmit as large a number of packets
as possible, we accept the discarding of a few which arrive excessively early.

Let us suppose that an infinite number of packets are to be reordered. At
each time instant i ∈ N, a packet arrives and is denoted by σ(i). σ is clearly a
bijective function from N to N. The packet arriving at time i ∈ N is on time if

Table 1. A sequence of packets σ

i 0 1 2 3 4 5 6 7 8

σ(i) 1 2 0 3 6 8 4 7 5

220 D. Genius, A. Munier Kordon, and K. Zine el Abidine

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

-600 -400 -200 0 200 400 600

pa
ck

et
 d

es
cr

ip
to

rs

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

-600 -400 -200 0 200 400 600

pa
ck

et
 d

es
cr

ip
to

rs

Fig. 2. Disorder for 10 (left) and 15 clusters (right) of 4 processors each

σ(i) = i. It is late (Resp.early) if σ(i) < i (Resp.σ(i) > i). A (finite) example is
presented by Table 1. Packet 7 is on time. Packet 4 is late and packet 8 is early.

Let us consider the introductory example of classification running on a generic
clustered MPSoC featuring SoCLib [15] components based on the VCI shared
memory paradigm and a two-level interconnect. Our platform contains a vari-
able number of small programmable RISC processors (MIPS R3000). Application
specific coprocessors are only used for the I/O of packet streams, they can be
easily exchanged to treat other kinds of streams. Channels are all blocking; if an
overflow occurs, packets are discarded from an internal buffer of the input co-
processor. As a consequence, no packet once numbered by the input coprocessor
is lost.

Consider histograms of two configurations for flows of 54 byte packets
(Figure 2). The x-axis shows the earliness/lateness of packets, the y-axis gives
the number of packets with identical earliness/lateness. We represent earliness
and lateness by calculating i−σ(i) such that negative values represent earliness
and positive values represent lateness. The graphs confirm our initial hypothesis
that few packets arrive excessively early or late. We observe that the disorder is
growing with the number of clusters.

4 Re-ordering Algorithm

The following strong hypotheses underlie our algorithm:

1. Packets are discarded if their earliness/lateness exceeds a given limit.
2. The throughput has to be preserved.
3. The buffer space required is minimal.

Our algorithm determines the minimal buffer size required to keep all packets
whose earliness/lateness stays within the fixed limits. In the following we present
our algorithm and prove its correctness.

Two integer values Δa and Δr are fixed and correspond respectively to the
maximal earliness and the maximal lateness guaranteed, determined by experi-
mentation as shown above. Every packet σ(i) such that σ(i) ∈ {i − Δr, · · · , i +
Δa} must be reordered. Other packets may be ignored. For the previous example

A Buffer Space Optimal Solution for Re-establishing the Packet Order 221

with values Δa = 2 and Δr = 2, every packet except 5 and 8 must be reordered.
So, the output of the reorder algorithm must be the sequence of integers from 0
to 8 without these two values. An array S[0 · · ·N − 1] of size N may to be used
to reorder the sequence with three main characteristics:

1. Values may be written in S using random access memory. For any index
j ∈ {0, · · ·N − 1}, a value may be written in S[j].

2. S is emptied as a FIFO queue. Index h ∈ {0, · · · , N − 1} is initialized to
a given value h0. After each reading of S[h], the next value of h is h + 1
mod N .

3. Size N of S must be minimum.

Theorem 1. The size of S must verify N ≥ Δa + Δr.

Proof. Let us consider the following sequence of Δa + Δr packets: for every
i ∈ {0, · · · , Δr − 1}, σ(i) = Δa + i. For every i ∈ {Δr, · · · , Δa + Δr − 1},
σ(i) = i − Δr. Clearly, the earliness of packets σ(i) with i ∈ {0, · · · , Δr − 1} is
Δa. The lateness of those for i ∈ {Δr, · · · , Δa + Δr − 1} is Δr. Thus all of them
must be reordered.

At time Δr, all packets Δa + i for i ∈ {0, · · · , Δr − 1} must be yet stored in
S. Then, since S is a FIFO queue for output, all other packets must be stored
before, hence the result.

4.1 Algorithm

The size of the array S is fixed to its minimum N = Δa+Δr. The idea is to store,
at each step i ∈ N, the value σ(i) in S[σ(i) mod N] if σ(i) ∈ {i−Δr, · · · , i+Δa}
and to output the value stored (if any) in S[hi] with hi = (i−Δr) mod N . Now,
in order to optimize the use of S, the output of S[hi] must be done before the
storage of σ(i) in S. This is always possible for σ(i) ∈ {i−Δr+1, · · · , i+Δa}, but
not for σ(i) = i−Δr. In this case, hi = σ(i) mod N and the storage in S must
be done before; we call this the border condition. The algorithm in pseudo-code
follows:

h := −Δr mod N , i := 0
While (true)

If (σ(i) = i − Δr) then
S[h] := σ(i)

Output (S[h])
h := (h + 1) mod N
If σ(i) ∈ {i − Δr + 1, · · · , i + Δa} then
S[σ(i) mod N] := σ(i)

i := i + 1
EndWhile

Table 2 presents an execution of the algorithm for the example presented by
Table 1. The size of the intermediate buffer is fixed to N = Δa + Δr = 4.

222 D. Genius, A. Munier Kordon, and K. Zine el Abidine

Table 2. An execution for the sequence presented by Table 1. S [0 · · · 3] is the state of
the intermediate array at the end of each iteration.

i S [0] S [1] S [2] S [3] Output Comments

0 . 1 . . .
1 . 1 2 . .
2 . 1 2 . 0
3 . . 2 3 1
4 . . 6 3 2
5 . . 6 . 3 8 rejected
6 . . 6 . 4
7 . . 6 7 .
8 . . . 7 6 5 rejected
9 7
10

Before the loop, h = 2. For i = 0 and i = 1, σ(0) = 1 and σ(1) = 2 are stored
in S. Since S[2] and S[3] are empty for respectively i = 0 and i = 1, there is no
output. For i = 2, σ(2) = 0 = 2 − Δr and h = 0. Thus, σ(2) is stored in S[0]
and directly sent to the output. For i = 3 and i = 4, output is respectively S[1]
and S[2]. σ(3) = 3 and σ(4) = 6 are stored also in S[3] and S[2]. For i = 5, S[3]
is sent to the output and σ(5) = 8 < 5 + 2 is rejected. For i = 6 and i = 7, S[0]
and S[1] are both empty and there is no output. σ(6) = 4 and σ(7) = 7 are both
stored in S. For i = 8, σ(8) = 5 < 8 − 2 and thus, 5 is rejected. The buffer S is
then emptied.

The next theorem proves the correctness:

Theorem 2. Every packet σ(j) with σ(j) ∈ {j −Δr, · · · , j + Δa} is ordered by
the algorithm at iteration σ(j) + Δr.

Proof. By contradiction, let j be the smallest integer such that σ(j) ∈ {j −
Δr, · · · , j + Δa} is not ordered by the algorithm at iteration i = σ(j) + Δr.

1. If σ(j) = j − Δr, then i = j and the value σ(i) is sent at iteration j, a
contradiction.

2. Let us assume now that σ(j) ∈ {j−Δr +1, · · · , j+Δa}. At iteration i, S[hi]
does not contain σ(j). Thus, σ(j) was sent before or covered by another
packet.
– If σ(j) was already sent, then it was at least at the iteration i − (Δr +

Δa) = σ(j)−Δa. But, σ(j) ∈ {j−Δr+1, · · · , j+Δa}, thus σ(j)−Δa ≤ j.
If σ(j) − Δa < j, then σ(j) was sent before being stored in S, which is
impossible. So, σ(j)−Δa = j and σ(j) is sent at the iteration j. By the
algorithm, we get that σ(j) = j − Δr, a contradiction.

– Let us suppose now that σ(j) was covered by another packet σ(k) before
being sent by the algorithm. This value is sent at iteration σ(j) + Δr,
so j < k ≤ σ(j) + Δr. Since σ(k) was stored, we get that σ(k) ∈ {k −
Δr, · · · , k + Δa}. Lastly, since σ(j) and σ(k) were stored in the same
place in S, we get that σ(j) mod N = σ(k) mod N .

A Buffer Space Optimal Solution for Re-establishing the Packet Order 223

Let us prove that σ(k) = σ(j)+N . Indeed, since σ(j)−σ(k) ≤ j +Δa −
(k − Δr) = (j − k) + N , j < k and σ(j) mod N = σ(k) mod N , we
get that σ(j) < σ(k). As σ(k) ≤ k + Δa and k ≤ σ(j) + Δr, we get that
σ(k) ≤ σ(j) + N . As σ(j) mod N = σ(k) mod N , we conclude that
σ(k) = σ(j) + N .

Now, since σ(k) ≤ k+Δa, we get σ(j)+N ≤ k+Δa ≤ σ(j)+Δa +Δr

and thus k = σ(j) + Δr. Now, as σ(j) = σ(k) − N , we obtain that
k = σ(k) − Δa, so σ(k) = k + Δa.

Notice that σ(k) is written in S at the index σ(k) mod N = (k−Δr)
mod N = hk. So, at the iteration k, S[hk] is sent and then σ(k) is written
in S[hk]. So, σ(k) can not cover any packet, a contradiction.

4.2 Extension

The algorithm may be easily extended if the numbering of the packets is not
infinite. Indeed, let us suppose that the packets are numbered cyclically from
0 to n − 1 with n ≥ N . Then, the packet numbered by 0 must be stored in S
just after the packet n − 1, thus we must have n mod N = 0. Now, under this
assumption, the main modification of the algorithm remains in the acceptation
test of σ(i). Cyclic intervals defined as follows permit to modify it properly. Let
x and y be two integers in {0, · · ·n − 1}. A cyclic interval from x to y is noted
by {x, y} mod n and is defined as: if x ≤ y then {x, y} mod n = {x, x+1, · · · , y}.
Otherwise, {x, y} mod n = {x, x + 1, · · · , n − 1, 0, · · · , y}. The acceptation test
becomes σ(i) ∈ {i − Δr + 1, i + Δa} mod n.

5 Hardware Implementation

We implement the re-ordering algorithm within a cycle accurate bit accurate Sys-
temC model of the output coprocessor. The sequence number σ(i) is encoded
in 20 bits of the packet descriptor produced by the input coprocessor. Only
these descriptors transit the MWMR channels, implemented in shared memory
[8]. The major difficulty now consists in the translation of the “pen and paper”
algorithm into communicating automata which observe the SoCLib communica-
tion protocol VCI (Virtual Component Interconnect [16]).

The output coprocessor has one incoming VCI interface for chunks of packets
and one incoming and two outgoing MWMR interfaces for packet descriptors
and liberated on-chip and off-chip addresses, respectively. It re-assembles packets
and re-establishes the packet order. The re-ordering buffer of configurable size
M only needs to keep Δa + Δr ≤ M descriptors at a given time. In practice,
Δa,Δr and M are powers of two. The re-ordering buffer is then read in a FIFO
manner; write operations are random access at position σ(i) mod N , where N
is the buffer size.

As the VCI protocol decouples requests to the interconnect from responses,
two finite state machines have to be implemented which communicate with each
other via signals and by interrogating each other’s state registers. The transi-
tions of the simplified finite state machine in Figure 3.b which sends the VCI

224 D. Genius, A. Munier Kordon, and K. Zine el Abidine

IDLE

DESC

BORDER

READ

SEND

COND

DISCARD

MWMR ROK

TRUE FALSE

MWMR ROK

FALSE
TRUE

RSP_FSM=IDLE

RSP_FSM=IDLE

VCI_ CMDACK

VCI_CMDACK

VCI_CMDACK

VCI_CMDACK

IDLE

DESC RSPVAL

PACKET

WRITE

FIFO WOK

RSPVAL

WOK

MWMR ROK

CMD_FSM DISCARDCMD_FSM SEND .

CMD_FSM SEND + CMD_FSM DISCARD

RSPVAL + EOP

. EOP

Fig. 3. (left) CMD FSM: VCI requests (right) RSP FSM: VCI responses

commands (thus CMD FSM as opposed to the RSP FSM for the VCI responses)
reflect exactly the steps of our algorithm. A unique FSM reads the MWMR in-
terface, retrieves the descriptor currently pointed by h, then either places it in
the re-ordering buffer or discards it. In consequence, packets leave at the cadence
of descriptor arrivals.

The CMD FSM checks the state register of the RSP FSM and starts working
when this arrives in its IDLE state. It advances to the DESC state when the FIFO
reading the incoming descriptor from the MWMR wrapper contains at least
one packet descriptor. It then stores it in a register and goes to the BORDER
state. If the border condition is satisfied, i e. the packet lateness is i − Δr, the
descriptor is written to the re-ordering buffer S at position h. Our algorithm
assures that the re-ordering buffer can always be written. Only in the next state
READ a descriptor is read from the buffer; this is either the one written in
the BORDER state or one stored at position h in a previous COND state. The
transition from the BORDER to the SEND state is unconditional. In the SEND
state, if the read pointer h points to a valid descriptor, i e. S[h] is not empty,
the CMD FSM starts emitting the adequate commands in order to retrieve the
packet through the VCI port and awaits the corresponding acknowledgments
(VCI CMDACK); the FSM iterates over all slots of a packet. We simplified this
part in one state as the corresponding mechanisms have already been presented
in earlier work. Otherwise, the FSM advances directly to the COND state where

A Buffer Space Optimal Solution for Re-establishing the Packet Order 225

it checks the general condition of the algorithm. The FSM decides either to keep
or to discard the packet by testing whether the maximum earliness/lateness is
comprised between i − Δr and i + Δa.

If the packet is to be kept, its descriptor previously stored in the DESC state
is read from its register and stored in the re-ordering buffer at position S[σ(i)
mod N] and the FSM goes back to the IDLE state; else it goes on to the next
state in order to deallocate the memory used by this packet (again, iterating
over all slots of a packet, simplified by a single DISCARD state).

The RSP FSM (Figure 3.b) is activated when the CMD FSM passes in either
the SEND or the DISCARD state. It then accepts VCI requests (RSPVAL signal)
for both kept and discarded packets, reconstitutes the packet by retrieving the
slots from memory (PACKET state), writes them to a file or Ethernet (WRITE
state) and in both cases sends liberated slot addresses to the corresponding
channels for on-chip and off-chip addresses (FIFO state). The transition from
the WRITE state to the FIFO state is unconditional.

Note that a single VCI interface retrieves both the packets which are kept and
those which are discarded.

6 Test and Validation

We dimensioned our two-level clustered platform according to the results on
number of processors, cache size, mapping obtained in [9]. The aim of our setup
is to achieve a situation where both of the following conditions apply:

1. No packets are lost for a throughput imposed on the input side.
2. No packets are lost due to lack of space in the re-ordering buffer.

All ALU operations, including the expensive ones like modulo and integer divide,
have to be simulated independently in order to derive a realistic measure of the
slowdown of the output coprocessor. We connect input and output processor
directly by a single MWMR channel. The re-ordering buffer within the output
coprocessor was dimensioned at 2K words. These experiments (see Figure 4)

rbuffer fill
state (%)

no. of additional
cycles

packets
discarded

no packets
discarded

10

20

30

40

50

13
17

28

21

1

9

28

460459458457456455454

Fig. 4. Cost of the hardware implementation: cycles that can be added to simulate
arithmetic operations without discarding packets. For an increasing number of cycles
(x-axis), the fill state of the re-ordering buffer (y-axis) gradually increases.

226 D. Genius, A. Munier Kordon, and K. Zine el Abidine

179

139

238

221
357

322 321

361

458

530

lateness
earliness

no.
packets

Fig. 5. Earliness and lateness: re-ordering buffer sizes for 6, 9, 10, 12 and 15 clusters

showed that for the current implementation of the output coprocessor, 459 clock
cycles can be added before the throughput requirement of the input coprocessor
is no longer matched by the output coprocessor (which means that the input
coprocessor starts discarding packets); we add a waiting loop accordingly.

Figure 5 shows the impact of the number of clusters on the re-ordering buffer
size. Our aim is that no packets are discarded due to excessive earliness or
lateness. The minimum buffer size that allows re-ordering of packets where all
packets are kept and retransmitted is the power of two superior to the sum
of maximum earliness and lateness: 512 descriptors (4 Kbytes) in the first two
cases, 1K descriptors (8Kbytes) otherwise. As can be seen, the buffer space has
not only been proved minimal, it is quite small in practice. If chip surface and
energy consumption impose stronger limitations, the buffer can be kept smaller.
The number of packets discarded can then be determined experimentally.

7 Conclusion and Future Work

We propose an order re-establishing algorithm for a buffer of minimal size sit-
uated on the output side of a stream processing platform and show that the
additional hardware does not significantly slow down the output coprocessor.

In the current version of the algorithm, packets leave the re-ordering buffer
at the same cadence as they arrive; moreover each time an empty table entry is
found, nothing is sent. Our mechanism is thus not work-conserving in the sense
of [3] because it does not guarantee that a packet always leaves the system as
soon as the outgoing Ethernet link becomes idle. An optimized version of the
algorithm allows several contiguous cases of the re-ordering buffer to be liberated.
It remains to be proved by implementation whether the increased complexity of
implementation outweighs the improved potential throughput.

Our algorithm enforces a strict order, while per-flow re-ordering would be suf-
ficient in many cases. It would moreover be interesting to compare statistics on
the number of packets re-sent because they were discarded by our algorithm and

A Buffer Space Optimal Solution for Re-establishing the Packet Order 227

packets re-sent when using TCP without re-ordering in a real-world networking
environment. It is straightforward to generalize our mechanism to other appli-
cations requiring in-order delivery while allowing to skip data, like for example
video streaming.

References

1. Comer, D.: Network System Design using Network Processors. Prentice Hall,
Englewood Cliffs (2003)

2. Postel, J.B., Garlick, L.L., Rom, R.: Transmission Control Protocol Specification.
Technical report, Stanford Research Institution, Menlo Park (1976)

3. Bennett, J.C.R., Partridge, C., Shectman, N.: Packet reordering is not pathological
network behavior. IEEE ACM Transactions on Networking 7, 789–798 (1999)

4. Bellardo, J., Savage, S.: Measuring packet reordering. In: ACM SIGCOMM Internet
Measurement Workshop, pp. 97–105. ACM Press, New York (2002)

5. Augé, I., Pétrot, F., Donnet, F., Gomez, P.: Platform-based design from parallel
C specifications. CAD of Integrated Circuits and Systems 24, 1811–1826 (2005)

6. Berrayana, S., Faure, E., Genius, D., Pétrot, F.: Modular on-chip multiprocessor
for routing applications. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.)
Euro-Par 2004. LNCS, vol. 3149, pp. 846–855. Springer, Heidelberg (2004)

7. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information Processing 1974: Proceedings of the IFIP Congress, pp.
471–475. North-Holland, New York (1974)

8. Faure, E., Greiner, A., Genius, D.: A generic hardware/software communication
mechanism for Multi-Processor System on Chip, targeting telecommunication ap-
plications. In: Proceedings of the ReCoSoC workshop, Montpellier, France (2006)

9. Genius, D., Faure, E., Pouillon, N.: Deploying a telecommunication application on
a multiprocessor system-on-chip. In: Workshop on Design and Architectures for
Signal and Image Processing, Grenoble, France (2007)

10. Allen, J.R., et al.: IBM PowerNP network processor: Hardware, software, and ap-
plications. IBM Journal of Research and Development 47, 177–193 (2003)

11. Kencl, L., Boudec, J.Y.L.: Adaptive load sharing for network processors. IEEE
ACM Transactions on Networking 16, 293–306 (2008)

12. Chen, B., Morris, R.: Flexible control of parallelism in a multiprocessor PC router.
In: USENIX Annual Technical Conference, Berkeley, CA, pp. 333–346 (2001)

13. Iyer, S., McKeown, N.: Making parallel packet switches practical. In: Proceedings
of IEEE INFOCOM 2001, pp. 1680–1687. IEEE, Los Alamitos (2001)

14. Banka, T., Bare, A.A., Jayasumana, A.P.: Metrics for degree of reordering in packet
sequences. In: LCN, pp. 333–342. IEEE Computer Society, Los Alamitos (2002)

15. SoCLib Consortium: The SoCLib project: An integrated system-on-chip modelling
and simulation platform. Technical report, CNRS (2003), http://www.soclib.fr

16. VSI Alliance: Virtual Component Interface Standard (OCB 2 2.0). Technical
report, VSI Alliance (2001)

http://www.soclib.fr

	A Buffer Space Optimal Solution for Re-establishing the Packet Order in a MPSoC Network Processor
	Introduction
	Example Application
	Surface and Throughput Requirements

	Related Work
	Problem Formulation
	Re-ordering Algorithm
	Algorithm
	Extension

	Hardware Implementation
	Test and Validation
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

