
A Generic Hardware / Software Communication Middleware for Streaming
Applications on Shared Memory Multi Processor Systems-on-Chip

Alain Greiner, Etienne Faure, Nicolas Pouillon, Daniela Genius
LIP6, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France

Tel.: +33-1-44-27-7124, Fax: +33-1-44-27-7280,
{alain.greiner, etienne.faure, nicolas.pouillon, daniela.genius}@lip6.fr

Abstract

Streaming applications, such as packet switching or
video and multimedia processing, require high through-
put, that can be obtained by exploiting the applica-
tion coarse grain parallelism, and mapping the parallel
multitasks application on a multiprocessor system on
chip (MPSoC). The seamless migration of a task from
software to hardware implementation requires an uni-
fied communication intrastructure. We present in this
paper the Multi-Writer Multi-Reader (MWMR) commu-
nication middleware and the associated protocol, ini-
tially designed for telecom and packet processing ap-
plications. Our middleware provides both a software
API (for software tasks), and a generic, programmable
hardware controller with a DMA capability (that can
be used with dedicated hardware coprocessors). We
demonstrate on a multitask application (motion JPEG
decoder) that this generic communication infrastruc-
ture can be used in video or multimedia applications,
and it implements the KPN (Kahn Process Network) se-
mantics more efficiently than previous implementations.

1. Introduction

Performance requirements on streaming applica-
tions for multimedia and networking are constantly in-
creasing, and can only be met by using Multi Processor
Systems-on-Chip (MPSoC) hardware architectures. To
take advantage of the parallelism offered by such archi-
tectures, the system designer must exhibit the intrinsic
coarse grain parallelism of the application. This dif-
ficult task can be simplified by an efficient and flexi-
ble infrastructure to support inter-task communications.
For sake of modularity, portability and task reuse, and to
ease the work of the programmer, we focus on a chan-
nelized communication mechanism where the applica-

tion software is not in charge of addressing the shared
communication buffers. In this paper we present the
MWMR communication middleware, that implements a
generic, multi writer, multi reader communication chan-
nel, which can be used transparently by a software task
or by an hardware coprocessor.

The proposed approach is restricted to parallel ap-
plications that can be statically described as a set of
parallel tasks communicating with each other through
point to point communication channels. Two possible
approaches exist in order to express the coarse grain
parallelism : the sequential application can be split into
functional sub-tasks that execute different processing
on the same stream of data (pipeline parallelism), or
the sequential application can be replicated into many
clones, where all the tasks do the same job on different
pieces of data (task farm parallelism).

In applications processing packets, the task farm
parallelism is frequently combined with non blocking
read/write primitives, and several tasks can access the
same communication channel. This leads to a global
non deterministic behavior as the output packets order
depends on the speed of the different tasks. This is con-
venient for telecom application such as classification,
QoS or IP packet forwarding as explained in [4].

In video or multimedia applications, the data or-
dering is critical. The pipeline parallelism is frequently
combined with blocking read/write primitives to imple-
ment a coarse-grain parallel application respecting the
KPN (Kahn Process Network) semantics [6].

The MWMR middleware presented in this paper
supports both computation models, and supplies the
system designer with an unified framework for com-
munication between software tasks (running on one or
several general purpose processor), and hardware tasks
(implemented as one or several dedicated hardware ac-
celerators).

In this paper, we demonstrate that the MWMR
communication middleware — initially designed for



telecom applications — can efficiently support video
and multimedia applications. Performance of the
MWMR channel are compared to a reference KPN im-
plantation for a pipelined MJPEG decoder application.

2. Related work

Inter-task communications can be done through
message passing like in STepNP [9], or modeled in the
form of data flow graphs like in Ptolemy [3]. Syn-
chronous languages like Lustre and ESTEREL [2] al-
low the description of task parallelism, but the deter-
minism in the synchronous model depends on compu-
tation times.

Kahn Process Networks (KPN [6]) propose a
model of parallelism that is independent on the latency
of the computation tasks. In this model, communica-
tions are assured by infinite, point-to-point, FIFO chan-
nels with non-blocking writes and blocking reads. Parks
showed in [8] that FIFO depth can be reduced to a finite
value without losing the KPN properties. According to
this restriction, the KPN formalism has been adopted
for example by YAPI [5] and SWGen [10], the latter
also based on SystemC specifications. To deal with the
problem of choosing between multiple input channels,
YAPI introduces the select function, which makes the
model nondeterministic. A recent implementation of
YAPI is Disydent [1].

Recently, the work on ESPAM [7] examined the
mapping of streaming media applications to shared
memory MPSoC architectures. It uses a variety of
bounded KPN channels, but it supports only general
purpose processors (no hardware coprocessors).

3. MWMR middleware

The MWMR middleware defines a generic commu-
nication channel as a software buffer located in on-chip
shared memory. It behaves like a circular buffer. Each
channel can have any number of writers and any num-
ber of readers. A channel is characterized by its width
(the size in bytes of a single item that can be stored in
the buffer) and its depth. Read and write operations in
a MWMR channel must refer to an integer number of
items.

A communication channel being a shared
ressource, concurrent accesses must be protected :
even in the case of one single producer and one single
consumer, the variable defining the channel status (i.e.
the number of stored items) can be modified by both the
producer and the consumer. Each channel is protected
by a specific lock, implemented as a spin-lock. This
choice was driven by the need of a simple protocol as

the MWMR protocol must be implemented by both the
software API, and by a hardware FSM in case of an
hardware coprocessor.

The MWMR protocol is a 5-steps protocol:

1. Get the lock (read operation).

2. Test the status of the channel (read operation).

3. The actual data transfer (several successive read or
write operations).

4. Update status and pointer (write operation).

5. Release the lock (write operation).

Non blocking read or write operations return the
number of items actually transferred after an attempt to
do the transfer. The calling task is in charge of deciding
what to do if all the data have not been transferred. This
kind of access function can be used in telecom applica-
tions that don’t rely on in-order packet delivery.

These non blocking operations have been used to
implement blocking access functions, that can be used
to implement KPN semantics.

The read and write blocking functions loop until
the transfer is done. If a transfer cannot be completed,
the calling software task is unscheduled, but remains
eligible and will be be rescheduled later.

The MWMR protocol has been implemented as a
software C API, on top of the POSIX threads API. This
API can be used by a software task running on a pro-
grammable processor. The same 5 steps (non blocking)
MWMR protocol has been implemented in a generic
hardware controller, that can be used by any coproces-
sor to access transparently one or several MWMR chan-
nels. One single MWMR hardware controller provides
up to 8 independent (input or output) communication
channels It acts as a DMA controller, directly accessing
the memory. It contains a small hardware FIFO buffer
for each channel it is connected to. This allows to use it
as a cache for the coprocessor : The MWMR hardware
controller tries to get data from the MWMR channel be-
fore they are requested by the coprocessor. Finally, the
non blocking access strategy prevents from dead-lock
issues.

The MWMR middleware is able to emulate the
KPN communication channel behavior, as to reproduce
the KPN semantics, the task and communication graph
must have only one producer and one consumer per
channel.

4. The Motion JPEG decoder

To evaluate the efficiency of the MWMR middle-
ware for video applications, we compare the perfor-



mances of the same parallel application, a Motion-
JPEG decoder, using two different communication mid-
dlewares: the first experiment uses the Disydent [1] im-
plementation of the KPN, and the second experiment
uses the MWMR channels.

The Task and Communication Graph correspond-
ing to this application is a 7-steps pipeline.

The task TG (traffic generator) is implemented as
a dedicated hardware coprocessor (RF receiver) per-
forming the analog to digital conversion, and writing
the compressed MJPEG data into the system’s memory.
Similarly, the task RAMDAC is implemented as another
hardware coprocessor: it reads the decompressed data
in the system memory, and generates the video signal.
Both the TG and RAMDAC coprocessors access the
system memory through two dedicated MWMR hard-
ware controllers. All other tasks are implemented as
software threads.

The target architecture is a single chip containing
the TG & RAMDAC coprocessors, a variable number
of general purpose processors (MIPS32), and two em-
bedded memory banks. All processors and coproces-
sors share the same address space, and the hardware
components communicate through a shared system bus,
implemented as a full cross-bar. The hardware archi-
tecture used to run the MJPEG application is a cycle-
accurate virtual prototype that has been modeled with
the SoCLib platform [11].

Figure 2. Motion JPEG decoder architecture

Figure 2, depicts an architecture containing 5
MIPS32 RISC processors, which will allow us to map
up to one software task per processor.

5. Experimental results

The two main differences between the MWMR
channel and the DPN channel lies in the type of lock
used, and in the scheduling behavior in case of block-
ing access.

MWMR channels use a spin-lock, where a task
which cannot obtain the lock is busy waiting. Spin-
locks are implanted with a dedicated hardware compo-

nent that supports atomic test and set operations. The
requesting task tries to get the lock until it obtains it.
If the channel is not available (buffer empty for a read
or buffer full for a write), the task is unscheduled but
remains eligible.

DPN channels use a POSIX Mutex. If a task cannot
get the Mutex, or if the channel is not available, it goes
from the runnable state to the waiting state, and will re-
sume only when the resource is released. This requires
a system call, as the operating system is in charge of
waking up the waiting tasks. The purpose of this more
sophisticated mechanism is to avoid waking a task that
is waiting for a resource when the resource is not avail-
able.

If we allocate one task per processor, the Mutex
mechanism is expected to be penalized as there is no
other task to elect and thus the processor is idle when a
task is waiting to access a communication channel.

In this experiment, the communication channels
connecting software tasks have been successively im-
plemented as DPN channels and MWMR channels.
Task migration is not allowed, which means that the
tasks are statically mapped on the processors.

We have examined three variants, using one, two
and five processors. In the first mapping, all tasks run on
the same processor. For two processors, one processor
runs the IDCT task, while the other processor runs the
4 remaining tasks, as the IDCT consumes as much CPU
time as the four other tasks. For five processors, we put
one task on each processor.

We measured the time needed to uncompress 10
JPEG pictures. Results are summarized in Table 1. The
times are measured in number of cycles. MWMR chan-
nels have a better performance than DPN channels for
all mapping, even for a monoprocessor architecture.

The reason is that the use of Mutex locks has a too
big overhead compared to its benefits. A context switch
takes around 300 cycles, whereas the cost of a DPN
communication is around 700 cycles. When all tasks
run on the same processor, there are 3 possibilities out
of 4 of choosing a task that cannot execute. This ac-
counts in the worst case for 3 * 300 = 900 cycles. As
expected, for less tasks per processor, MWMR has an
even stronger advantage.

NB CPU 1 2 5
DPN 35 343 000 26 488 000 17 871 000
MWMR 26 568 000 19 682 000 11 273 000
speedup 25% 26% 37%

Table 1. Decoding 10 JPEG images

In this experiment all communication buffers had
a capacity of 4Kbytes. We tried to reduce the buffer



Figure 1. Task and Communication Graph of Motion JPEG

size to check that the conclusions drawn above were not
modified, as smaller buffers increase the risk for a task
to be blocked, due to full or empty channels.

NB CPU 1 2 5
1024 words 35 343 000 26 488 000 17 871 000
128 words 40 474 000 30 211 000 19 277 000
64 words 45 860 000 34 017 000 19 894 000

Table 2. Decoding 10 images: DPN channels

FIFO depth 1 CPU 2 CPU 5 CPU
1024 words 26 568 000 19 682 000 11 273 000
128 words 28 984 000 21 529 000 10 121 000
64 words 31 590 000 23 448 000 9 975 000

Table 3. Decoding 10 images: MWMR channels

Tables 2 and 3 confirm the better performance of
MWMR channels.

6. Conclusion

The MWMR communication middleware defines
an unified, channelized, communication infrastructure
for parallel multithreaded software applications run-
ning on shared memory MPSoC hardware architectures.
Seamless communication between software tasks run-
ning on programmable processors and hardware copro-
cessors (I/O peripherals or hardware accelerators) is na-
tively supported.

It has been initially designed to fit the requirements
of streaming telecom applications, but we demonstrate
that the MWMR middleware can also be used in video
or multimedia applications, as it provides an efficient
implementation of the KPN semantics. In the case of
the Motion JPEG application, it provides a speedup
between 25% and 35% compared to a reference im-
plementation of KPN. This performance improvement
is mainly the result of a communication protocol well
suited for multiprocessor architectures, that uses spin-
locks in place of Mutex and keeps tasks in runnable
state after an unsuccessful access.

References

[1] I. Augé, F. Pétrot, F. Donnet, and P. Gomez. Platform-
based design from parallel C specifications. CAD of In-
tegrated Circuits and Systems, 24(12):1811–1826, Dec.
2005.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. L.
Guernic, and R. de Simone. The synchronous languages
twelve years later. Proceedings of the IEEE, Special is-
sue on Embedded Systems, 91(1):64–83, 2003.

[3] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt.
Ptolemy: a framework for simulating and prototyping
heterogeneous systems. pages 527–543, 2002.

[4] D. Genius and E. Faure and N. Pouillon. Deploy-
ing a Telecommunication Application on Multiproces-
sor Systems-on-Chip. In Design and Architectures for
Signal and Image Processing (DASIP’2007), Nov 2007.

[5] E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y.
Brunel, W. M. Kruijtzer, P. Lieverse, K. A. Vissers, and
G. Essink. Yapi: application modeling for signal pro-
cessing systems. In 37th conference on Design automa-
tion, pages 402–405, New York, 2000. ACM Press.

[6] G. Kahn. The semantics of a simple language for par-
allel programming. In J. L. Rosenfeld, editor, Infor-
mation Processing ’74, pages 471–475. North-Holland,
NY, 1974.

[7] H. Nikolov, T. Stefanov, and E. F. Deprettere. System-
atic and automated multiprocessor system design, pro-
gramming, and implementation. IEEE Trans. on CAD of
Integrated Circuits and Systems, 27(3):542–555, 2008.

[8] T. M. Parks. Bounded scheduling of process networks.
PhD thesis, U. of California at Berkeley, CA, USA,
1995.

[9] P. G. Paulin, C. Pilkington, E. Bensoudane,
M. Langevin, and D. Lyonnard. Application of a
multi-processor soc platform to high-speed packet
forwarding. In DATE’04, pages 58–63, Washington,
DC, USA, 2004. IEEE Computer Society.

[10] H. Posadas, F. Herrera, P. Sánchez, E. Villar, and
F. Blasco. System-level performance analysis in sys-
temC. In DATE, pages 378–383. IEEE Computer Soci-
ety, 2004.

[11] SoCLib Consortium. The SoCLib project: An integrated
system-on-chip modelling and simulation platform.
Technical report, CNRS, 2003. http://www.soclib.fr.


	Introduction
	Related work
	MWMR middleware
	The Motion JPEG decoder
	Experimental results
	Conclusion

