
Simulation-Based Hierarchical Sizing and Biasing

of Analog Firm IPs

Farakh Javid, Ramy Iskander and Marie-Minerve Louërat

LIP6-SoC Laboratory, University of Paris VI, Paris, France

Abstract— This paper presents a simulation-based hierarchical
sizing and biasing tool for analog integrated circuits design.
The tool allows the designer to express the sizing procedure
in terms of sizing and biasing operators. These operators are
technology independent, hence the documented procedure can
be easily ran over different technologies. A procedure has been
proposed for a single-ended two-stage operational amplifier and
evaluated over 130nm, 65nm and 45nm technologies. The results
prove the efficiency of the proposed tool.

I. INTRODUCTION

The design of analog integrated circuits is still a complicated

task compared to digital one. Technology migration partic-

ularly implies redesigning the whole circuit whereas digital

circuits have complete automatic “silicon compilers” design

flow tools. Thus analog design is very time consuming, which

raises the problem of reducing time to market. Considering

mixed-signal circuits amount will increase in next years, the

development of accurate and rapid analog automation tools

becomes crucial.

Since decades efforts have been made in that direction.

Migration problem is highlighted in [1] where authors imple-

ment an automatic circuit resizing engine. Another important

topic, DC modeling, is investigated in [2]. Generally we now

distinguish three types of analog design tools : simulation-

based, knowledge-based and hybrid. The first category in-

cludes MAELSTROM [3], ANACONDA [4] or AMIGO [5].

These tools couple an optimizer with a simulator in a loop

(Fig.1) : designs are refined by trial-and-error using an iterative

time-consuming approach. The simulator acts as performances

evaluator. Second category encloses tools like OASYS [6],

FEEDS [7] or DONALD [8] where simulator is replaced by

inside approximate transistor model. Third category gathers

CAIRO+ (Creating Analog IPs Reusable and Optimized) [9]

and OCEANE [10] in which inside transistor model is the

standard transistor model of the simulator. In the two last

categories designs are analysed by experienced designers who

extract equations that describe circuit behaviour and evaluate

performances. This method is first time-consuming due to

equations extraction, then it becomes rapid and robust due

to the execution of an automated procedure including these

equations.

In this paper we present a new simulation-based hierarchical

sizing and biasing tool that employs a commercial electrical

simulator. Thus we are first ensured about the accuracy of

computation due to the very precise transistor model included

in the simulator. Secondly we can reuse previously developed

���������	�
����������

���������������������
�

������������	���	�����
 ��������
���

Fig. 1. Abstract model of analog synthesis.

sizing and biasing procedures over newer technologies. More-

over these procedures are technology independent since they

abstract the technology by a given set of predefined operators.

The paper is organized as follows : section II describes

hierarchical sizing and biasing method applied to analog

design. In section III we present our tool architecture. In

section IV we apply this tool on the sizing and biasing of

an amplifier with different technologies and transistor models.

Conclusion is given in section V.

II. HIERARCHICAL SIZING AND BIASING

A. Hierarchical Methodology

The concept of hierarchy is one of the key element in

modern digital design efficiency. Indeed a large circuit is

divided into smaller sub-circuits, hiding lower-levels details

to make circuit understanding easier. In [11] and [12] authors

point out the importance to apply this concept to analog

design.

The hierarchical sizing and biasing method, described in

[13] and [14], is used to automatically compute the DC

operating point and generate suitable design plans for an

analog circuit. A circuit is built as a hierarchy of sub-circuits,

leaf sub-circuits are called devices and higher-level sub-circuits

are called modules, each sub-circuit is represented by a de-

pendency graph. The dependency graph expresses electrical

dependencies of sub-circuit DC parameters on a selected set

of design parameters. The dependency graph of the analog

circuit is constructed, in a hierarchical bottom-up approach, by

merging graphs of children devices and modules. The graph

is converted to a directed acyclic graph (DAG) which is a

directed graph with no directed cycles. The resulting DAG is

the design plan of the analog circuit. Upon construction, the

DAG is executed in a top-down approach in order to compute

the DC operating point and the dimensions of the transistors.

Fig. 2. Parameter mappings in CAIRO+ design space.

B. Design Parameters

Transistor width is traditionally used as the variable to

optimize during synthesis. This leads to a very large design

space and waste of time in the evaluation of unfeasible circuits

[4]. This is the reason why we argue that width parameter

is not the best adapted choice concerning design parameters,

i.e. parameters fixed at the beginning by the designer. On the

contrary voltages, currents and lengths have a narrower range

that strongly reduces the design space and makes computation

faster (some minutes versus some hours [3], [9]). Moreover

since widths are calculated from these variables (Fig.2), we are

assured of the feasibility of the resulting circuit. Thus CAIRO+

employs voltages, currents and lengths as design parameters.

C. Sizing and Biasing Operators

Operators result from the inversion of transistor model

equations [15] and are applied to each device. Each operator

has a set of input parameters that correspond to designer fixed

values (first vector in Fig.2, where Veg = Vgs − Vth), and

computes several unknown parameters that are widths and

biases (second vector in Fig.2) [13]. An operator computes

either :

W = f−1(temp, IDS , L, VGS , VDS , VBS) (1)

or :

VGS = f(temp, W, L, IDS , VDS , VBS) (2)

where f is a monotonic function solvable with Newton-

Raphson algorithm. Convergence criteria are the same as those

integrated into commercial simulators. To size and bias a

complete circuit several operators are needed. In that case a

parameter computed by an operator can be an input parameter

for another operator. This dependency between parameters is

expressed by the DAG that defines a design plan for the circuit

(see previous subsection), i.e. the order in which the operators

are called. In fact each device is individually sized and biased

with the appropriate operator, the topology of the circuit being

expressed by the DAG.

Table I shows the definition of the main five classes of

the sizing and biasing operators. Let us examine one operator

such as OPV S. The OPV S operator class is source voltage.

The table shows only two versions of this operator. The first

version OPV S(Veg, VB) is called whenever Veg is known and

the reference transistor is not bulk-source connected i.e. VB

should be fixed by the designer. This operator computes VS ,

Vth and W , simultaneously, in terms of Temp, IDS , L, Veg ,

VD, VG and VB . The second version OPV S(Veg) is called

whenever Veg is known and the reference transistor is bulk-

source connected. This operator also determines VS , VB , Vth

and W , simultaneously in terms of Temp, IDS , L, Veg , VD

and VG.

TABLE I

CLASS DEFINITION OF SIZING & BIASING OPERATORS.

Operator Definition

OPVS(Veg, VB) (VS , Vth, W)⇐ Temp, IDS , L, Veg, VD, VG, VB

OPVS(Veg) (VS , VB , Vth, W)⇐ Temp, IDS , L, Veg, VD, VG

.

OPVG(Veg) (VG, VB , Vth, W)⇐ Temp, IDS , L, Veg, VD, VS

.

OPVGD(Veg) (VG, VD, VB , Vth, W)⇐ Temp, IDS , L, Veg, VS

.

OPW(VG, VS) (W, VB , Vth)⇐ Temp, IDS , L, VD, VG, VS

.

OPIDS(Veg) (IDS , VB , Vth)⇐ Temp, W, L, Veg, VD, VS

.

D. Proposed Methodology

We aim at implementing sizing and biasing operators on

top of an electrical simulator to take advantage of very precise

available transistor models, avoiding their implementation in

our tool. Another key motivation is the possibility to switch

technology by simply changing transistor models used by the

simulator.

III. CHAMS : A SIMULATOR-BASED TOOL

The architecture of CHAMS (CAIRO+ Hurricane [16]

AMS) is given in Fig.3. At the bottom we have an electrical

����������	
�������

�����	�	�������	��������

������

����������	�������

������	��������

�	�	���

��������	 ����

���������!�	��� ���������!�	���

���	�	���	 �������

Fig. 3. Architecture of CHAMS.

netlist containing only two transistors (one PMOS and one

NMOS), entirely sizable and biasable through simulator inter-

active commands. This netlist also specifies the desired target

technology. It is used by the electrical simulator launched

in batch mode. Three types of interactive commands are

evaluated : set, get and run. The first one allows to set all

transistor parameters (sizes, biases, temperature, number of

fingers). The second one enables to catch all currents, voltages

and small signal parameters values. After any set command a

simulation must be run, using run command, to compute the

DC operating point of the transistor and update all parameters

values.

Then we use expect library [17] to encapsulate the simulator

into our tool. We define a C++ control language of the

simulator that allows to automate set and get commands in

batch mode. At last we develop a C++ group of “set/get”

functions similar to object-oriented programming ideas in

order to hide simulator commands details. These functions are

used by sizing and biasing operators.

All operators have been optimized to minimize the number

of calls to the simulator, which can reach several hundreds

during sizing. We point out that these operators are totally

technology independent. Knowing that more and more com-

plicated transistor models appear frequently, being able to

use them in a short time to migrate existing circuits is a

great improvement. Indeed only the netlist including the two

transistors has to be changed with corresponding existing

technology files.

The pseudo-code of OPV S(V EG) operator is given in

Fig.4 to illustrate simulator encapsulation. computeW() (line

36) is the function described by equation (1). EPSILON V and

EPSILON W (lines 44, 45) define convergence criteria.

IV. SIZING AND BIASING EXAMPLES

A design procedure using CHAMS has been written for

the sizing and biasing of a single-ended two-stage operational

amplifier (Fig.5). This circuit can be decomposed into six

devices, thus we will employ six operators. For the first

stage we have a differential pair (M1, M2), a current mirror

(M3, M4) and a biasing transistor (M5). The second stage is

composed by a load transistor (M6) and a biasing transistor

(M7). M8 is the biasing circuit transistor. We start with 130nm

technology then migrate to 65nm and 45nm.

We performed all computations with a temperature of 27◦C,

and we have :

K =
IDS,M7,M6

IDS,M5
(3)

We assume the amplifier is designed to minimize the system-

atic offset voltage Voff :

VD,M1 = VD,M2 = VG,M6

LM3 = LM4 = LM6

LM8 = LM5 = LM7

(4)

A linear performance parameter, the DC gain, is evaluated

with CHAMS using the approximate expression :

Ad0 = −

gm1

gds2 + gds4

gm6

gds6 + gds7
(5)

1 OPVS VEG (trName, nfing, temp, l, ids, veg, vg, vd, & w,
2 & vth, & vs, & vb, wmin, wmax)
3 {
4 // Declaration of intermediate variables
5 wp = 0.0 ; vsp = 0.0 ;
6 vgs = 0.0 ; vds = 0.0 ; vbs = 0.0 ;
7
8 // Set all input parameters in simulator environment
9 setTEMP(temp) ; setNFING(nfing) ;
10 setL(l) ; setW(10*wmin) ;
11 setVDS(vds) ; setVBS(vbs) ; setVGS(vgs) ;
12
13 // Call the simulator to run a DC simulation
14 run() ;
15
16 // Call the simulator to get a parameter
17 vth = getVTH(trName) ;
18
19 vs = 0.0 ; w = wmin ;
20
21 do {
22 // Update all intermediate variables
23 wp = w ;
24 vsp = vs ;
25 vb = vs = vg - veg - vth ;
26 vgs = vg - vs ;
27 vds = vd - vs ;
28 vbs = vb - vs ;
29
30 // Call the simulator to set all intermediate variables
31 setVGS(vgs) ;
32 setVDS(vds) ;
33 setVBS(vbs) ;
34
35 // Call the simulator to compute W
36 w = computeW(trName, temp, l, w, nfing, ids, vgs,
37 vds, vbs, wmin, wmax) ;
38
39 setW(w) ;
40 run() ;
41
42 vth = getVTH(trName) ;
43 }
44 while(|vs - vsp| >= EPSILON V
45 or |w - wp| >= EPSILON W)
46 }

Fig. 4. Pseudo-code of OPV S(V EG) sizing operator.

A transient parameter, slew rate, is also computed with the

following expression :

SR =
IDS,M5

Cc
(6)

with Cc = 2.9pF . Equations (3), (4), (5) and (6) express

designer knowledge.

We start by computing all widths and VG,M5 (which is equal

to VG,M7, VG,M8, and VD,M8). Then we enter these values

into the electrical netlist of the complete amplifier and run a

DC simulation. To validate CHAMS results we compare fixed

currents and voltages with those computed from simulation.

Voff

IBIAS

VIN−

Cc

VDD

VIN+ VOUT

1:K

M1 M2

M3 M4 M6

CL

M7M5

M8

REF
I

Fig. 5. Single-ended two-stage operational amplifier (Voff = 0V). Each
dashed-box is a device.

C1 C2 C3 C4 C5 C6 C7 C8

67 60 59

54

57

56

43

42

62

65

66

58

55

46

41

63

64

61 48

50

53

52

1

3

5

7

51

49

18

16

14

12

9

6

4

2

10

11

13

15

17

20

21

40

47

45

44

39

37

36

35

22

34

33

32

31

30

28

27

26

25

24

8

19

23

29

38

AMP/IBIAS

AMP/L_CM_M6

AMP/TEMP AMP/L_DP

AMP/VEG_DP

AMP/VDD

AMP/VEG_CM

veg_cm

ids_cm

IDS_CM(IBIAS)

l_cm_m6

temp

CM/TEMP

CM/L

CM/VEG

CM/IDS

ids_dp

IDS_DP(IBIAS)

l_dp

veg_dp

vdd

0

AMP/VINCM

AMP/VSS

AMP/L_M8_M5_M7

AMP/VEG_M5

vss

vincm

DP/IDS

DP/VEG

DP/L

DP/TEMP

M3,M6,CM/VS,VB

M3,M4/TEMP

M3,M4/L

M3,M4/VEG

M3,M4/IDS

AMP/VOUTCM

veg_m5

ibias

AMP/K

l_m8_m5_m7

M1,M2/IDS

M1,M2/VEG

M1,M2/L

M1,M2/TEMP

CM,M3/VG,VD

M6/VG

DP,M1/VD

OPVGD(VEG)

ids_m6

NI(K,IBIAS)

vsp

ids_m7

I(K,IBIAS)

M5/VEG

M5,M8/L

M5/IDS

M5,M8/TEMP

DP,M1/VS

M5/VD

M7/TEMP

M7/L

M6,M7/VD

M5,M8/W

M6/IDS

M6/L

M6/TEMP

M7/IDS

M8,VD

M8,M5,M7/VG

OPVG(VEG)

CM,M3,M4/W

OPVGD(VEG)

DP,M1,M2/W

OPVS(VEG,VB)

M7,W

OPW(VG,VS)

M6/W

OPW(VG,VS)

M8/IDS

OPIDS(VG,VS)

DP,M1/VG

DP,M1/VB
M8,M5,M7/VS,VB

Fig. 6. Electrical parameters dependency graph for single-ended two-stage
operational amplifier : rectangle nodes are the known parameters, bold circle
nodes with dotted arrows (8, 19, 23, 27, 29, 38) are the operators and other
nodes are temporary variables used for parameter propagation.

Results are listed in Tables III, IV, V and VI where W is the

total width of the transistor and M the number of fingers. DC

gain, slew rate (both computed by CHAMS and simulation),

transition frequency FT and phase margin (both obtained with

simulation) are given in Tables VII and VIII.

A. Design Procedure

For the amplifier of Fig.5, the dependency between electrical

parameters is expressed by the graph in [13] that is shown

in Fig.6. For the current mirror, OPV GD(Veg) computes

W3, W4 and VG/D,CM in nodes (C5,10) and (C8,8). For

the differential pair, OPV S(Veg, VB) computes W1, W2 and

VS,DP in nodes (C8,19) and (C6,22). For transistor M5,

1 SIZING PROCEDURE ([design parameters]) {
2
3 netlist = ”np mos.netlist” ; // Netlist name
4
5 // Transistors names in the netlist
6 name n = ”X trN” ;
7 name p = ”X trP” ;
8
9 start() ; // Start the simulator
10
11 // Load the two-transistors netlist
12 load(netlist) ;
13
14 // Step 1) Current Mirror : M3,M4
15 [w cm,vg cm,vd cm,vb cm,vth cm] =
16 OPVGD VEG(name p,[design parameters]) ;
17
18 // Step 2) Differential Pair : M1,M2
19 [w dp,vs dp,vth dp] =
20 OPVS VEG VB(name n,[design parameters],vd cm) ;
21
22 // Step 3) M5
23 [w m5,vg m5,vb m5,vth m5] =
24 OPVG VEG(name n,[design parameters],vs dp) ;
25
26 // Step 4) M8
27 [ids m8,vb m8,vth m8] =
28 OPIDS VG VS(name n,[design parameters],w m5) ;
29
30 // Step 5) M6
31 [w m6,vb M6,vth m6] =
32 OPW VG VS(name p,[design parameters],vd dp) ;
33
34 // Step 6) M7
35 [w m7,vb m7,vth m7] =
36 OPW VG VS(name n,[design parameters],vg M5) ;
37
38 // Quit the simulator
39 stop() ;
40 }

Fig. 7. Pseudo-code of the design procedure.

TABLE II

INPUT PARAMETERS VALUES.

Parameter BSIM3V3 (130nm) BSIM4 PSP
& BSIM4 (65nm) (45nm) (45nm)

VDD (V) 1.2 0.99 1.1

VSS (V) 0.0 0.0 0.0

LM1,M2 (nm) 340 280 280

LM3,M4,M6 (nm) 340 130 130

LM5,M7,M8 (nm) 340 190 190

IDS,M5 (µA) 30 25 25

IDS,M7 (µA) 150 125 125

Veg,M1 (V) 0.12 0.05 0.05

Veg,M3 (V) -0.12 -0.1 -0.12

Veg,M5 (V) 0.1 0.08 0.08

Vin,CM (V) 0.6 0.495 0.55

Vout,CM (V) 0.6 0.495 0.55

TABLE III

CHAMS VERSUS SIMULATION RESULTS (BSIM3V3 130NM).

Parameter M1, M2 M3, M4 M5 M6

IDS (µA) CHAMS 15.0 -15.0 30.0 -150.0

IDS (µA) Simulation 14.999 -14.999 29.999 -150.0

Veg (V) CHAMS 0.12 -0.12 0.1 not given

Veg (V) Simulation 0.12 -0.119 0.1 -0.12

VGS (V) 0.481 -0.473 0.453 -0.473

VDS (V) 0.607 -0.473 0.118 -0.6

VBS (V) -0.118 0.0 0.0 0.0

Vth (V) 0.361 -0.353 0.353 -0.353

Vdsat (V) 0.119 -0.119 0.105 -0.119

gm (mA/V) 0.190 0.190 0.398 1.902

gds (µA/V) 2.271 2.227 68.667 17.756

Cgd (fF) 1.038 2.588 3.615 24.557

W (µm)/M CHAMS 2.072/4 6.320/2 6.640/4 62.196/20

OPV G(Veg) computes VBIAS = VG,M5
and W5 in node

(C7,27) and (C7,33). Despite that VBIAS is not a given

design parameter, it is automatically computed in the graph.

For transistor M8, imposing the constraint : W8 = W5,

OPIDS(VG, VS) computes IDS,M8 in node (C8,38). For

transistor M6, OPW (VG, VS) computes W6 in node (C8,29).

For transistor M7, OPW (VG, VS) computes W7 in node

(C8,23).

The pseudo-code of the design procedure is given in Fig.7.

[design parameters] are the parameters fixed by the designer

(Table II). We first declare the two-transistors netlist and the

name of N and P transistors in this netlist. Then we start the

simulator and load this netlist. Operators then compute lists of

all unknown parameters. To illustrate electrical parameters de-

pendency we have for instance OPV G(Veg) (lines 23, 24) that

uses VS,DP that is previously computed by OPV S(Veg, VB)
(lines 19, 20).

We highlight that the same design procedure is used for

various technologies (characterized among other parameters

by Lmin, Vdd, Vth) and transistor models (BSIM3V3, BSIM4,

PSP).

B. BSIM3V3 Model (130 nm)

We use the input parameters listed in Table II. As we can

see in Table III, simulator finds same IDS and Veg (compared

to those fixed as input parameters) with widths computed

by CHAMS. All transistors operate in saturation region, that

is especially crucial for M5 that acts as a current source.

Moreover values computed by CHAMS in Table III are the

same that those computed by CAIRO+ in [15] for the same

circuit and input parameters.

C. BSIM4 Model (65 nm)

We use the same input parameters (first column in Table

II). Gain and transition frequency are reduced (Table VII) and

widths are twice smaller compared to 130nm technology. Gain

curves of the amplifier are plotted in Fig.8.

TABLE IV

CHAMS VERSUS SIMULATION RESULTS (BSIM4 65NM).

Parameter M1, M2 M3, M4 M5 M6

IDS (µA) CHAMS 15.0 -15.0 30.0 -150.0

IDS (µA) Simulation 15.013 -14.977 29.998 -150.009

Veg (V) CHAMS 0.12 -0.12 0.1 not given

Veg (V) Simulation 0.12 -0.119 0.099 -0.119

VGS (V) 0.441 -0.307 0.430 -0.307

VDS (V) 0.733 -0.307 0.158 -0.6

VBS (V) -0.158 0.0 0.0 0.0

Vth (V) 0.321 -0.187 0.330 -0.187

Vdsat (V) 0.150 -0.123 0.137 -0.123

gm (mA/V) 0.146 0.178 0.328 1.772

gds (µA/V) 2.444 7.563 35.847 39.398

Cgd (fF) 0.208 1.086 1.166 8.479

W (µm)/M CHAMS 0.768/4 3.889/2 2.536/4 35.589/20

TABLE V

CHAMS VERSUS SIMULATION RESULTS (BSIM4 45NM).

Parameter M1, M2 M3, M4 M5 M6

IDS (µA) CHAMS 12.5 -12.5 25.0 -125.0

IDS (µA) Simulation 12.495 -12.495 24.999 -125.001

Veg (V) CHAMS 0.05 -0.1 0.08 not given

Veg (V) Simulation 0.05 -0.099 0.08 -0.1

VGS (V) 0.365 -0.414 0.398 -0.414

VDS (V) 0.445 -0.414 0.130 -0.495

VBS (V) -0.13 0.0 0.0 0.0

Vth (V) 0.315 -0.314 0.318 -0.313

Vdsat (V) 0.115 -0.112 0.128 -0.112

gm (mA/V) 0.153 0.140 0.245 1.397

gds (µA/V) 3.524 7.952 66.589 66.61

Cgd (fF) 0.567 0.389 1.611 3.661

W (µm)/M CHAMS 1.354/4 1.029/2 1.546/4 9.750/20

TABLE VI

CHAMS VERSUS SIMULATION RESULTS (PSP 45NM).

Parameter M1, M2 M3, M4 M5 M6

IDS (µA) CHAMS 12.5 -12.5 25.0 -125.0

IDS (µA) Simulation 12.499 -12.499 24.999 -125.0

Veg (V) CHAMS 0.05 -0.12 0.08 not given

Veg (V) Simulation 0.049 -0.119 0.08 -0.12

VGS (V) 0.399 -0.513 0.421 -0.513

VDS (V) 0.436 -0.513 0.151 -0.55

VBS (V) -0.151 0.0 0.0 0.0

Vth (V) 0.349 -0.393 0.341 -0.392

Vdsat (V) 0.13 -0.163 0.143 -0.163

gm (mA/V) 0.242 0.162 0.407 1.616

gds (µA/V) 4.136 6.337 25.3 60.062

Cgd (fF) 0.03 0.007 0.232 0.051

W (µm)/M CHAMS 5.64/4 2.748/2 4.971/4 26.952/20

D. BSIM4 Model (45 nm)

All input parameters (second column in Table II) have

been lowered compared to previous values. Veg,M1 is strongly

reduced in order to cope with VDD decrease.

E. PSP Model (45 nm)

We observe significant differences in widths (Tables V and

VI) and performances (Table VIII) between these last two

transistor models. This is due to the differences in technology

parameters between BSIM4 and PSP 45nm models. Indeed the

MOS transistor modeled with BSIM4 has a thinner gate oxyde

and therefore lower VDD, than the MOS transistor modeled

with PSP.

V. CONCLUSION

In this paper, we presented a new simulation-based tool for

analog integrated circuits design using sizing and biasing oper-

ators. The tool implements simulator encapsulation, allowing

easy use of different transistor models. Sizing and biasing was

successfully performed in less than one minute on a single-

ended two-stage operational amplifier using a unique design

procedure with BSIM3V3 (130nm), BSIM4 (65nm and 45nm)

and PSP (45nm) transistor models.

TABLE VII

PERFORMANCES FOR BSIM3V3 130NM AND BSIM4 65NM.

Parameter BSIM3V3(130nm) BSIM4(65nm)

Ad0 (dB) CHAMS (eq.(5)) 65.67 50.91

Ad0 (dB) Simulation 65.61 49.99

Ft (MHz) Simulation 10.04 7.42

Phase Margin (degrees) Simulation 77.90 80.93

Slew Rate (V/µs) CHAMS (eq.(6)) 10.3 10.3

Slew Rate (V/µs) Simulation 11.9 11.8

TABLE VIII

PERFORMANCES FOR BSIM4 45NM AND PSP 45NM.

Parameter BSIM4 (45nm) PSP (45nm)

Ad0 (dB) CHAMS (eq.(5)) 45.06 51.1

Ad0 (dB) Simulation 44.77 50.93

Ft (MHz) Simulation 7.42 11.94

Phase Margin (degrees) Simulation 79.4 74.7

Slew Rate (V/µs) CHAMS (eq.(6)) 8.6 8.6

Slew Rate (V/µs) Simulation 10.1 10.2

REFERENCES

[1] S. Hammouda, H. Said, M. Dessouky, M. Tawfik, Q. Nguyen,
W. Badawy, H. Abbas, and H. Shahein. ”Chameleon ART: a non-
optimization based analog design migration framework”. Design Au-

tomation Conference, pages 885–888, July 2006.
[2] F. Leyn, G. Gielen, and W. Sansen. ”An efficient DC root solving

algorithm with guaranteed convergence for analog integrated CMOS
circuits”. International Conference on Computer-Aided Design, pages
304–307, November 1998.

[3] M. Krasnicki, R. Phelps, R. A. Rutenbar, and L. R. Carley. ”MAEL-
STROM: Efficient Simulation-based Synthesis for Custom Analog
Cells”. Proc. of Design Automation Conference, pages 945–950, June
1999.

[4] R. Phelps, M. Krasnicki, R. A. Rutenbar, and L. R. Carley. ”ANA-
CONDA: Simulation-based Synthesis of Analog Circuits Via Stochastic
Pattern Search”. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pages 703–717, June 2000.

10
0

10
2

10
4

10
6

10
8

10
10

10
12

−80

−60

−40

−20

0

20

40

60

80

Frequency (Hz)

G
a

in
 (

d
B

)

BSIM3V3 (130nm)

BSIM4 (65nm)

10
0

10
2

10
4

10
6

10
8

10
10

10
12

−80

−60

−40

−20

0

20

40

60

80

Frequency (Hz)

G
a

in
 (

d
B

)

BSIM4 (45nm)

PSP (45nm)

Fig. 8. Comparison of amplifier gain for different technologies and transistor
models.

[5] R. Iskander, M. Dessouky, M. Aly, M. Magdy, N. Hassan, N. Soliman,
and S. Moussa. ”Synthesis of CMOS Analog Cells Using AMIGO”.
Design, Automation and Test in Europe, pages 297–302, 2003.

[6] R. Harjani, R.A. Rutenbar, and L.R. Carley. ”OASYS: A Framework
for Analog Circuit Synthesis”. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, pages 1247–1266, December
1989.

[7] K.K Wee and R.J. Mack. ”Towards expandable and generalised analogue
design automation”. International Symposium on Circuits and Systems,
pages 359–362, June 1994.

[8] K. Swings, G. Gielen, and W. Sansen. ”An intelligent analog IC design
system based on manipulation of design equations”. Custom Integrated

Circuits Conference, May 1990.

[9] R. Iskander, D. Galayko, M-M. Louërat, and Andreas Kaiser.
”Knowledge-Aware Synthesis Using Hierarchical Graph-Based Sizing
and Biasing”. IEEE International Midwest Symposium on Circuits and

Systems, pages 984–987, August 2007.

[10] J. Porte. OCEANE, http://www-asim.lip6.fr/recherche/oceane.

[11] B.A.A. Antao and A.J. Brodersen. ”Techniques for synthesis of analog
integrated circuits”. Design and Test of Computers, pages 8–18, March
1992.

[12] R.A. Rutenbar, G.G.E. Gielen, and J. Roychowdhury. ”Hierarchical
Modeling, Optimization, and Synthesis for System-Level Analog and
RF Designs”. Proceedings of the IEEE, vol. 95(No. 3):640–669, March
2007.

[13] R. Iskander, M-M. Louërat, and A. Kaiser. ”Automatic DC Operating
Point Computation and Design Plan Generation for Analog IPs”. Analog

Integrated Circuits and Signal Processing Journal, vol. 56:93–105,
August 2008.

[14] R. Iskander, M-M. Louërat, and A. Kaiser. ”Hierarchical Graph-Based
Sizing for Analog Cells Through Reference Transistors”. Ph.D. Research

in MicroElectronics and Electronics, pages 321–324, July 2006.

[15] Ramy Iskander. ”Knowledge-aware synthesis for analog integrated

circuit design and reuse”. PhD thesis, University of Paris 6, France,
July 2008.

[16] C. Alexandre, H. Clement, J-P. Chaput, M. Sroka, C. Masson, and
R. Escassut. ”TSUNAMI: An Integrated Timing-Driven Place And
Route Research Platform”. Proceedings of the 2005 Design, Automation,

and Test in Europe, pages 920–921, 2005.

[17] EXPECT, http://expect.nist.gov/ .

