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Abstract— This paper proposes a method to introduce BAW
resonators in the loop of a Continuous-Time Sigma-Delta modu-
lator. The method is based on the equivalence between the Noise-
Transfer-Function of a conventional bandpass Discrete-Time
Sigma-Delta and the Noise-Transfer-Function of a Continuous-
Time BAW-based Sigma-Delta modulator with FIRDACs. The
method is general and can be applied to BAW resonators with
and without cancellation of the anti-resonance frequency. The
Noise-Transfer-Function and the Signal-Transfer-Function of the
BAW-based Sigma-Delta modulator are analyzed and compared
with their Discrete-Time counterpart.

I. INTRODUCTION

Nowadays, efforts are made to develop Software-Defined-
Radio receivers which aim to directly digitize the RF signal
from the antenna in order to obtain an easily programmable
multi-standard receiver. One solution to achieve this goal is to
use a RF front-end circuit based on bandpass Σ∆ modulator
[1] (Fig.1). At RF frequencies, integrated LC resonators are
usually used as loop filters in the Σ∆ modulator. Integrated
LC resonators have a low quality factor which degrades the
Signal-to-Noise Ratio (SNR), [2]. A circuit for quality factor
enhancement is then needed to avoid SNR degradation [2].
This circuit increases noise, non-linearity and power consump-
tion.

In [3] it is proposed to include a SAW resonator in a Σ∆
modulator loop. SAW resonators are passive components that
naturally have high quality factor, thus they won’t require
additional power. However their main drawback is their non
compatibility with CMOS technology. As a consequence the
modulator described in [3] is implemented with an off-chip
SAW resonator.

In this paper we propose to include a BAW resonator
inside a Σ∆ modulator loop. BAW resonators have very
high quality factors and are process compatible with silicon
technologies [4], [5]. A systematic design procedure based on
loop gain equivalence between a Discrete Time (DT) bandpass
Σ∆ modulator and a Continuous Time (CT) bandpass Σ∆
modulator with BAW resonator is presented. This equivalence
has been made possible through the use of feedback FIRDACs
[6].

In section II, we give a brief comparison between conven-
tional LC resonator and BAW one. In section III, the proposed
DT to CT transformation technique is presented. In section
IV, this technique is applied to two design examples and their
simulation results are discussed. The conclusion is given is
section V.

Σ∆LCLNA

Filter
Decimation

Decimation
Filter

DSP
90

0

DIGITALRF

Fig. 1. RF receiver based on bandpass LC Σ∆ ADC.
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Fig. 2. (a) Physical view and (b) MBVD model of BAW resonator.

II. BAW RESONATORS

BAW resonators are recent devices that work according
to the piezoelectricity principle : an electrical signal applied
to metallic electrodes is converted to a mechanical wave
that moves into the piezoelectrical layer made of AlN (Alu-
minium Nitride) (Fig.2.(a)). Thus filtering operation is done
mechanically. The center frequency of BAW resonator is
given by : f0 = V0

2d where d is the AlN thickness and V0

the acoustic wave velocity in the piezoelectrical bulk. Two
physical implementations for BAW resonators are possible:
FBAR (Film Bulk Acoustic Resonator) and SMR (Solidly
Mounted Resonator) which respectively use air gap and Bragg
reflector to assure acoustic isolation [4]. Such an efficient
isolation is the key to reach higher quality factor compared
to LC resonator.

Now to study and simulate BAW resonator we use its elec-
trical model named MBVD (Modified Butterworth Van Dycke).
This model takes into account electromagnetic (Rp, Cp) and
mechanical (Rm, Cm, Lm) behavior of BAW resonators [7]
as shown Fig.2.(b). Rs models electrical loss due to metallic
electrodes. The transfer function of MBVD model is given by
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Fig. 3. LC and BAW resonator transfer functions for infinite Q, Qso and
Qpo. Normalized resonance frequency is at 0.25.

[8] :
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ωp and ωs are respectively resonance and anti-resonance
pulsations. For comparison LC resonator’s transfer function
is :

HLC(s) =
ω0s

s2 + ω2
0
Q s+ ω2

0

(3)

where ω0 is the resonance pulsation. Both transfer functions
are showed on Fig.3. We notice the presence of an anti-
resonance frequency fs near the resonance frequency fp and
a pole at the origin for the BAW resonator.

III. DT TO CT TRANSFORMATION

In [6], the authors describe a method to design a CT
modulator NTF from a DT one. Their method is based on
the identification between CT and DT modulator loop gain
and aims at computing CT modulator coefficients included in
FIRDAC1 and FIRDAC2 (Fig.4.(a)).

The loop gain of a conventional second-order bandpass DT
modulator is given by :

Gd(z) =
1

z2 + 1
(4)

According to Fig.4.(a) the CT loop gain is :

Gc(z) = Y (z)
Uc(z)

= Z{HBAW (s)FIRDAC1(s) + FIRDAC2(s)}
(5)
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Fig. 4. (a) Σ∆ modulator with BAW resonator and FIRDACs and (b) one
FIRDAC detail (N : number of coefficients in the FIRDAC) with z−1 =
e−Ts.

with :

FIRDAC1(s) = (α0 + α1e
−Ts + α2e

−2Ts)HDAC(s)
FIRDAC2(s) = (β0 + β1e

−Ts + β2e
−2Ts)HDAC(s)

HDAC(s) = 1−e−T s

s
(6)

where αi and βi are the coefficients in each FIRDAC. Assum-
ing infinite Qso and Qpo equation (1) becomes :

HBAW (s) =
K

s

s2 + ω2
s

s2 + ω2
p

, K =
Xpω

3
p

ω2
s

(7)

Including (6) and (7) in (5) we have :
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s2+ω2
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s2+ω2
p
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Knowing that Z{1 − e−Ts} = 1 − z−1 and Z{ 1
s} = 1

1−z−1

we get from equation (8):
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Let’s focus on A(z):
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p
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Knowing ωp = π
2T we find:

B(z) =
K

ωp

z
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(11)

Using partial fraction expansion we obtain:
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s
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p
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Fig. 5. Σ∆ modulator with BAW resonator output spectrum simulated
(Matlab) with 16384 points, OSR=64, input amplitude=-23 dB, SNR=21.50
dB. Normalized resonance frequency is at 0.25. Notice DC offset on left side.

and then:
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(13) can be written under the form :

Gc(z) = [K(α0z
2 + α1z + α2)((z2 + 1)

(ω2
p + π

2ω
2
s − ω2

s) + 2z(ω2
s − ω2
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p
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/(z2(z − 1)(z2 + 1))

(14)

Now we expect to solve:

Gc(z) = Gd(z) (15)

Gd(z) is modified to have the same denominator as Gc(z) in
order to equal their numerators and solve the equation. We
set z2(z − 1)(z2 + 1) as common denominator. Then from
equation (4) Gd(z) becomes : z3−z2

z2(z−1)(z2+1) .
To perform final calculations to get αi and βi values we use

matrix representation of equation (15) described in [6]: CF =
D, where C is a 6x6 matrix containing Gc(z) numerator
expression taken from equation (14) and rearranged according
to z powers (rows) and αi, βi (lines), F and D are six lines
rows respectively made of Gc(z) numerator coefficients (αi,
βi), and Gd(z) numerator coefficients. At last, we have to
solve F = C−1D. Using a symbolic mathematical tool, we
find the coefficients of the two FIRDACs in function of the
parameters of the BAW resonator :

α0 = π3

4KT (4ω2
sT

2−π2) β0 = 0

α1 = − π3

4KT (4ω2
sT

2−π2) β1 = −−4ω2
sT

2+π2+2ω2
sT

2π
2(4ω2

sT
2−π2)

α2 = 0 β2 = 0
(16)

IV. DESIGN EXAMPLES

In this section we present two design examples. The first
design is a Σ∆ modulator using only a BAW resonator. The
second one includes the anti-resonance cancellation system
described in [3].
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Fig. 6. STF of a Σ∆ modulator with BAW resonator with and without
anti-resonance cancellation. NTF is the same for both BAW modulators and
DT modulator. Normalized resonance frequency is at 0.25.

A. Σ∆ modulator with BAW resonator

We apply the method proposed in the previous section to
design a bandpass second-order Σ∆ modulator with a BAW
having a resonance frequency at 2 GHz (Rs = 1.02 Ω,
Rp = 0.85 Ω, Rm = 0.65 Ω, Cp = 1.8 pF , Cm = 80 fF ,
Lm = 79.4 nH , see Fig.2). In this case the coefficients of
FIRDAC1 and FIRDAC2 are : α0 = −0.26, α1 = 0.26,
α2 = 0, β0 = 0, β1 = 18.17, β2 = 0.

As can be seen in Fig.5, simulation results show that noise
shaping around fp is not identical to a second-order bandpass
Σ∆. We also notice a strong DC offset on the output spectrum
of the BAW-based Σ∆. In fact, by comparing the NTF and
STF of the designed BAW-based Σ∆ with its DT counterpart
(Fig.6), we find that although the NTFs are identical, there is
a significant difference in the STFs. This is mainly due to the
anti-resonance and the pole at the origin. In this design, the
maximum achievable SNR is only 21.5 dB (Fig.8).
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Fig. 7. Σ∆ modulator with BAW resonator and anti-resonance frequency
cancellation output spectrum simulated (Matlab) with 16384 points, OSR=64,
input amplitude=-1 dB, SNR=55.63 dB. Normalized resonance frequency is
at 0.25.
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Fig. 8. SNR in function of input amplitude of a DT modulator and CT
(with BAW resonator and infinite Qpo and Qso), OSR=64, 16384 points.
Peak SNR is 55.63 dB for BAW modulator.
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Fig. 9. Σ∆ modulator with BAW resonator and anti-resonance frequency
cancellation capacitance Cc.

B. Σ∆ modulator with anti-resonance frequency cancellation

If we add a capacitance Cc with differential input in parallel
with BAW resonator [3] (Fig.9) we have :

HBAWc(s) = HBAW (s)− 1
sCc

=
K

s

s2 + ω2
s

s2 + ω2
p

− 1
sCc

(17)

Now giving Cc the same value as Cp and after simplifying
equation (17) with equation (2) we get :

HBAWc
(s) =

s(Cm/C2
p)

s2 + ω2
p

≈ 2ωps
s2 + ω2

p

(18)

which is close to the LC resonator transfer function (equation
(3)), and without the term representing the anti-resonance
pulsation ωs. FIRDACs coefficients are computed using the
same technique described in section III by using the new
expression HBAWc

(s) in symbolic mathematical program. We
find the coefficients of FIRDAC1 and FIRDAC2 identical
to those in equation (16) except for β1 :

β1 = −4πKCcω2
sT

2 − π3 − 8KCcω2
sT

2 + 2KCcπ2

4KCc(4ω2
sT

2 − π2)
(19)

and then we have : α0 = −0.26, α1 = 0.26, α2 = 0, β0 = 0,
β1 = 0.5, β2 = 0.

The simulation now gives a better STF (Fig.6) without any
DC offset (Fig.7) and the simulation results give an output
power spectral density and a SNR identical to a DT second-
order bandpass Σ∆ (Fig.8).
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Fig. 10. SNR in function of input amplitude of LC modulator (with different
Q factors) and BAW one (with anti-resonance cancellation and finite Qpo and
Qso), OSR=64, 16384 points. Peak SNR is 55 dB for BAW modulator.

In Fig.10 we plot SNR in function of input signal amplitude
for LC and BAW modulators with finite quality factors. This
graph shows that we have similar SNR for a LC modulator
with active resistance (Q=80) and a BAW one (Q around 600).
Therefore we reach LC modulator’s best performance without
adding any power consumption.

V. CONCLUSION

In this paper, we presented a general method for the design
of a bandpass Σ∆ modulator with BAW resonator. The com-
putation of FIRDACs coefficients is based on loop gain equiv-
alence between DT and CT modulators. Two examples were
designed and simulated. A technique to cancel anti-resonance
frequency specific to BAW resonator was implemented and
simulated, and greatly improves output spectrum and SNR.
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