
Multi-compartment: A new architecture for secure
co-hosting on SoC

Joël Porquet∗† and Christian Schwarz†
†STMicroelectronics

Advanced System Technology
Rousset, France

{firstname.lastname}@st.com

Alain Greiner∗
∗LIP6-SoC Laboratory

University of Paris-VI, Pierre et Marie Curie
Paris, France

{firstname.lastname}@lip6.fr

Abstract—Multi-compartment is a flexible, lightweight archi-
tecture for embedded systems that allows multiple protection
domains (compartments) to securely share processing, memory
and other system resources. Compartments run in physical
address space and enjoy direct access to security-critical initiator
devices, such as DMA devices, while remaining protected from
one another.

I. INTRODUCTION

Co-hosting several standalone software stacks is an up-
coming requirement in embedded systems. For example, in
multimedia oriented SoCs, recent developments show the
growing importance of being able to execute multiple software
stacks in parallel (time shared) and to transparently partition
available platform resources in a protected way. These stacks
can range from applications on top of a Realtime Operating
System (RTOS) to small, security-critical conditional access
stacks running isolated from a RTOS and up to execution of
a rich OS in parallel with a RTOS or a baseband phone stack.

Until recently, embedded systems were not designed to
address this secure co-hosting requirement.

Relatively simple platforms without sophisticated (memory)
protection mechanisms, are typically equipped with a RTOS
executing in supervisor mode and without application separa-
tion or separation using a Memory Protection Unit (MPU). The
RTOS and its applications run in physical address mode. Often
the memory layout is decided by the system integrator and thus
remains static throughout the platforms life cycle. More com-
plex platforms can use a rich OS, protecting its applications
from one another by means of a Memory Management Unit
(MMU). In both cases, the memory protection or isolation
between applications is always achieved at processor level.
All the memory accesses an application performs are checked
and validated inside the processor’s boundary: an application
is then unable to propagate any illegal memory access across
the platform.

This processor-centric property makes the sharing of pro-
cessing and memory resources efficient for applications run-

c©2009 IEEE. Personal use of this material is permitted. However, permis-
sion to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

ning on the same basis (i.e. OS), but is ill-adapted for execu-
tion of independent software stacks. Establishing a common
basis is especially difficult when confronted with a heteroge-
neous multi-processor layout. At the platform scale, co-hosting
standalone software stacks thus implies a static partitioning of
the platform resources without any security.

Yet this secure co-hosting issue has been addressed as
"Software Virtualization" first for mainframe servers [1] and
later for desktop systems [2][3], and recently for embedded
systems [4][5]. In addition to these pure software approaches,
hardware support has been added directly within the processor
[6][7] and substantially facilitates the virtualization. It is likely
this hardware support to appear in embedded processors soon.
As a matter of fact, ARM has already begun to impel this
mechanism with the TrustZone feature which introduces a
"secure world" along the standard "unprotected world" [8].
TrustZone is optimized for and limited to executing a small
trusted software stack in the secure world while running
untrusted software, typically a rich OS, in the unprotected
world.

All these virtualization mechanisms are processor-centric.
It means they share the same drawbacks as virtual memory
since at platform scale, they also need a common basis to be
efficient.

Furthermore, due to performance considerations, an expec-
tation is to allow the Virtual Machines (VMs) direct access
to some security-critical devices, such as Direct Memory
Access (DMA) devices. Although such a device enjoys full
access to the physical address space, it is most of the time
hardware only, that is does not embed any trusted software
layer. A VM which would directly instruct a DMA device
could reach forbidden memory areas. In this perspective of
enabling direct access to devices while keeping a strong
memory isolation, Intel and AMD have begun to market a
mechanism of virtual memory for devices [9][10]. Thanks
to an input/output memory management unit (IOMMU), the
virtual address space of a VM is extended down to the device.
This solution, only intended for desktop systems at this time,
requires once again a common basis for the address space
virtualization to be coherent.

The µspider [11] project includes an example of a security
model coherent with the whole platform. The feature, inte-



grated within a Network-on-Chip (NoC), checks the hardware
transactions between physical devices and authorizes them if
they comply to the configuration. However, the granularity of
the access control is the entire device. This lack of flexibility
does therefore not allow different rights to memory areas
within the same physical memory bank. Besides, this filtering
method is also incompatible with co-hosting, where several
software stacks are able to share the same initiator devices.

As a consequence, it is necessary to provide a new co-
hosting mechanism which offers a security coherent with
the whole platform and which keeps a low-impact on the
performance.

In Section II, we introduce our concept of multi-
compartment which provides a secure, efficient and flexible
co-hosting mechanism. The new hardware and software mech-
anisms required to build this multi-compartment approach are
explained in the following section III. Conclusions and future
work are presented in section IV.

II. MULTI-COMPARTMENT CONCEPT

An ideal mechanism would allow several standalone soft-
ware stacks to transparently share all the platform’s resources,
particularly the memory and processing resources. The archi-
tecture we present in this paper represents a step towards such
a co-hosting system. We call it multi-compartment because
each standalone application is securely contained in a logical
entity called compartment. This concept (shown on figure 1)
is based on the two following principles.

Processor Processor Processor

Memory

Interconnect

DMA

Fig. 1. Co-hosting of two compartments sharing processing and memory
resources as well as a DMA device

A. Identification

Co-hosting compartments first requires identifying each
compartment accurately at hardware level. From any trans-
action (in the sense of request/response between an initiator
device and a target device through the SoC interconnect),
this identification must allow to track back the transmitting
compartment. For that, we introduce the compartment iden-
tifier (CID) which allows to couple any transaction with its
associated compartment. Concretely only initiator devices are
concerned since they are the only ones capable of initiating
transactions. They must be able to provide the exact identity

of the compartment on behalf of which they launch any
transaction. This CID must be available directly at the device’s
output, that is to say at the link between the device and the
interconnect.

This identification enables then to perform an access control
for each transaction.

B. Protection

Protecting compartments from one another means actu-
ally protecting their code, data, exclusive uses of periph-
eral devices, etc against misuses. Since these assets are in
fact areas in the shared address space, the access control
merely corresponds to access rights on address regions (e.g.
read/write/execute). In combination with the CID associated
to each transaction, the isolation is achieved by confronting
all the transactions against different sets of access rights, one
set per compartment. As a result, the granularity of the access
control becomes the compartment.

III. MULTI-COMPARTMENT ARCHITECTURE

In this section, we give an overview of a possible im-
plementation for this multi-compartment concept. From this
implementation, we detail how the CID can be propagated
through the platform, then how the multi-compartment can
be managed by initiator devices, i.e. processors and DMA
devices, and what flexible memory protection mechanism can
be applied.

A. CID propagation

At the heart of multi-compartment is the compartment
identifier which tags all the transactions, at hardware level. Our
approach consists in extending the interconnect interface with
a new signal. Actually, standard communication protocols,
such as VCI or OCP, already offer such a feature. The VCI
protocol [12] provides a field named TRDID which "can be
used as an extension to the SRCID (identifier of the physical
device) to create logical, or virtual devices". This addresses
exactly our issue where initiator devices must broad-cast
different logical identity according to the compartment they
are running at a certain time.

B. Processor devices

At hardware level, a new control register is added, to hold
the compartment identifier. The value of this register tags
every transaction (instruction/data) the processor issues in
the platform. Besides, it is preferable to also tag the whole
memory chain, i.e. the cache and the write buffer, with the
CID value. This avoids memory chain flushing upon a CID
register switch, thus reducing performance degradation. Figure
2 illustrates the hardware modifications.

For specialized processors providing only one execution
mode and/or processors which only run one compartment, the
CID register value can be static. This can be done either at
design-time or configured at boot by a trusted software. On
processors providing several privilege levels, a Trusted Soft-
ware Agent (TSA) runs at the most privileged level and is in



CID register
valid tag cid line

= =

hit Cache

cidaddress

Processor

<31:n>

<n:m>

Fig. 2. Example of a request in a simple direct-mapped cache

charge of two tasks: scheduling the compartments which run at
least one level of privilege above and updating the CID register
value accordingly. If compartments are applications then the
TSA can be any trusted rich OS. If complex compartments,
such as commodity OS, are targeted then the TSA can be any
trusted hypervisor. In both cases, the TSA implementation is
significantly simplifies, since it does not have to care about
memory protection management.

Those modifications at hardware and the CID register
management at software levels, are quite inexpensive. On the
processor side, there is only one register to add which value
is modified by the TSA when switching. On the cache side,
the increase due to the new CID tag does not impact its whole
size (only 1.5% increase on a simple 4K cache with a 8-bits
CID field) and the combinatory logic is slightly modified to
take the CID into account for the "hit" computation.

C. DMA devices

In the case of a DMA device, we apply an inheritance con-
cept. When a compartment directly instructs a DMA device,
its identity is included in the programming transaction via the
new CID signal. The device is able to reuse the same CID at
the time of the effective data transfer. The memory accesses
performed by the DMA device on behalf of the requesting
compartment will inherit of the same access rights than those
initially defined for this compartment. Therefore through a
minor modification, we benefit of the compartment identity
propagation into DMA devices.

The DMA device is also able to support concurrent access
from several compartments. Let us consider a simple DMA
device with three configuration registers (one for the start
address, one for the end address and one for the length of
the transfer). If this register set is replicated into several
virtual sets, each compartment is able to configure its own
set independently. The CID value tagging the programming
transactions is used as an efficient demultiplexer. Next there
are different possible implementations but basically the DMA
device can decide what transfer to perform thanks to any arbi-
tration policy. See figure 3. Consequently, multi-compartment
allows building an inexpensive self-virtualized device.

@start

@end

length

@start

@end

length

@start @end length cid

Transfer engine

cid

@start

@end

length

Arbiter

DMA

Interconnect

Fig. 3. Self-virtualized DMA device

D. Protection mechanism

Several compartments are able to run concurrently on the
platform. In fact, this means that each transaction (issued
by an initiator device) travelling across the platform belongs
to a compartment. For a proper protection and in order to
reach a maximal control on all memory accesses, the filtering
mechanism is thus positioned at the heart of the platform, the
communication network. This mechanism is thus represented
by a hardware module located in the network interface con-
troller as illustrated on figure 4.

Firewall Firewall

Processor Processor Processor

Memory Memory

Firewall

Interconnect

Fig. 4. Example of a platform equipped with firewall modules

Abstractly, the filtering algorithm is represented by a per-
mission table which is indexed by the memory address of the
transaction and the compartment identifier, and which contains
the defined access rights for each combination of these two
entries. Since one of the requirement is flexibility, that is many
compartments sharing the address space in a multitude of parts
with different access rights each, we assume this table is stored
outside of the firewall. It is recommended to store it in on-
chip memory, for performance and security reasons. In this
perspective, the firewall module is thus composed of a small
cache (called permission lookaside buffer, PLB) and dedicated
Finite State Machine (FSM) to fetch the required entry from
the permission table in case of PLB miss. As shown on figure
5, when a transaction arrives, the PLB is looked up. If the PLB
has the permission information concerning the tuple (address,



CID) the transaction is granted or dismissed accordingly.
Otherwise, the hardware FSM walks the permission table in
memory and refill the PLB with the missing information.

PLB

Permissions Table

ok

error

cid
lookup

Perm Table Base

refill

Firewall

Memory

Fig. 5. Internal architecture of the firewall module

[13] discussed alternative layouts of the entries in the
permissions tables. Basically, there are two approaches. Firstly
the segmentation approach is a "linear array of segments
ordered by segment start address". Although this approach
supports variable segment sizes, the lookup time can turn
out to be tremendous, as well as the update. Secondly, the
paged approach is a "forward mapped page table". The worst-
case lookup is deterministic and the management is quite
easy, while defining permissions for variable-sized pages is not
supported. Intended for other purposes, some projects such as
Mondrian Memory Protection [13] or Guarded Page Table [14]
have already addressed this kind of problematic and present
efficient, fined-grained protection schemes that could definitely
be adapted to our architecture.

The location of the firewall modules in the platform can
be relevant. The major advantage of being located at the
initiators side (figure 4) is that modules are able to prevent
any denial of service in the interconnect, if ever an initiator
device keeps performing unauthorized accesses. Otherwise, the
location must be chosen according to the platform layout. In
order to reduce the number of modules, it is advised to locate
them on the side which counts fewer devices.

E. Platform management

In our approach, the processing resource is locally managed
through Trusted Software Agents (renamed Local TSA or
LTSA), in order to schedule compartments and keep the
CID updated. However, this local management is typically
complemented by a Global Trusted Software Agent (GTSA)
which deals with the whole platform. The GTSA especially
supervises the address space partitioning management through
the "on-the-fly" definition of the permission table. Moreover, it
dynamically handles the creation/destruction of compartments
and the firewall modules configuration (definition of the per-
mission table base pointer).

Yet this layered trust is conceptual and can be implemented
differently according to the context. For a platform which is
entirely covered by a common basis, such as a RTOS, the
RTOS is able to act as the LTSA on all processors and as the
GTSA for the platform management. For a platform shared by
two RTOSes, they are able to act as LTSAs on the processors
they have under control, while one of them acts as the GTSA.

IV. CONCLUSION

We have presented a proposal for securely co-hosting
several protection domains (compartments), called multi-
compartment. By representing logical entities at the hard-
ware level, the protection policy turns out to be much more
flexible, lightweight and coherent with respect to embedded
systems aspects, in particular heterogeneous multi-processing.
Compared with other approaches, compartments are able to
run in physical address space and enjoy direct access to
security-critical initiator devices, such as DMA devices, while
remaining protected from one another.

Our upcoming work is to complete the prototyping of this
architecture. Along with the concept validation, it will allow to
get accurate performance results. We will also get into details
concerning other peripheral devices management.

REFERENCES

[1] R. J. Creasy, “The Origin of the VM/370 Time-Sharing System,” IBM
Journal of Research and Development, vol. 25, no. 5, pp. 483–490, 1981.

[2] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield, D. Magenheimer,
J. Nakajima, and A. Mallick, “Xen 3.0 and the Art of Virtualization,”
in Proceedings of Linux Symposium 2005, July 2005.

[3] VMWare. [Online]. Available: http://www.vmware.com
[4] VirtualLogix. [Online]. Available: http://www.virtuallogix.com
[5] O. K. Labs. [Online]. Available: http://www.ok-labs.com
[6] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.

Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
Virtualization Technology,” Computer, vol. 38, no. 5, pp. 48–56, 2005.

[7] Advanced Micro Devices, Inc., AMD64 Virtualization Codenamed
“Pacifica” Technology: Secure Virtual Machine Architecture Reference
Manual, May 2005.

[8] T. Alves and D. Felton, “ARM TrustZone: Integrated Hardware and
Software Security,” July 2004. [Online]. Available: http://www.arm.com

[9] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G. Regnier,
R. Sankaran, I. Schoinas, R. Uhlig, B. Vembu, and J. Wiegert,
“Intel Virtualization Technology for Directed I/O,” Intel Technology
Journal, vol. 10, no. 3, August 2006. [Online]. Available: http:
//www.intel.com/technology/itj/2006/v10i3/

[10] Advanced Micro Devices, Inc., AMD I/O Virtualization Technology
(IOMMU) Specification, February 2009, PID 34434 Rev 1.26.
[Online]. Available: http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/34434.pdf

[11] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “NOC-centric
Security of Reconfigurable SoC,” in NOCS ’07: Proceedings of the First
International Symposium on Networks-on-Chip, 2007, pp. 223–232.

[12] VSI Alliance, Virtual Component Interface Standard, April 2001, ver-
sion 2, OCB 2 2.0.

[13] E. Witchel, J. Cates, and K. Asanović, “Mondrian Memory Protection,”
in ASPLOS-X: Proceedings of the 10th international conference on Ar-
chitectural support for programming languages and operating systems,
2002, pp. 304–316.

[14] J. Liedtke, “Address space sparsity and fine granularity,” in EW 6:
Proceedings of the 6th workshop on ACM SIGOPS European workshop,
1994, pp. 78–81.


