
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2009, Article ID 259837, 13 pages
doi:10.1155/2009/259837

Research Article

FPGA Interconnect Topologies Exploration

Zied Marrakchi, Hayder Mrabet, Umer Farooq, and Habib Mehrez

LIP6, Université Pierre et Marie Curie, 4, Place Jussieu, 75252 Paris, France

Correspondence should be addressed to Zied Marrakchi, zied.marrakchi@lip6.fr

Received 1 December 2008; Accepted 20 July 2009

Recommended by J. Manuel Moreno

This paper presents an improved interconnect network for Tree-based FPGA architecture that unifies two unidirectional
programmable networks. New tools are developed to place and route the largest benchmark circuits, where different optimization
techniques are used to get an optimized architecture. The effect of variation in LUT and cluster size on the area, performance, and
power of the Tree-based architecture is analyzed. Experimental results show that an architecture with LUT size 4 and arity size 4
is the most efficient in terms of area and static power dissipation, whereas the architectures with higher LUT and cluster size are
efficient in terms of performance. We also show that unifying a Mesh with this Tree topology leads to an architecture which has
good layout scalability and better interconnect efficiency compared to VPR-style Mesh.

Copyright © 2009 Zied Marrakchi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The work presented in this paper can be divided into two
parts. In the first part, we present an improved Tree-based
FPGA architecture. In the second part of the paper, the archi-
tecture presented in the first part is used for the improvement
of connection blocks and intracluster interconnect topolo-
gies in a cluster-based Mesh FPGA architecture.

The motivation behind the work presented in the first
part is to reduce the domination of the interconnect area in
field programmable arrays (FPGAs). In FPGAs interconnect
area takes up to 90% of the total area while the remaining
10% is used by the logic part of the architecture. Domination
by interconnect greatly affects the delay and area efficiency
of the architecture. In [1] the authors have shown that the
best way to improve circuit density is to balance logic blocks
and interconnect utilization. In this paper we present an
improved Tree-based FPGA (MFPGA) architecture where
interconnect and logic utilizations are controlled using
different architectural parameters, and it is shown that
by reducing the logic occupancy of the architecture, we
can increase the interconnect utilization of the architecture
resulting in over all area reduction. Also, in this part we
investigate the effect of LUT and cluster size on the area,
performance, and power dissipation of a Tree-based FPGA.
Many studies in the past several years were carried out to

see the effect of LUT and cluster size on the density and
performance of FPGA architecture [2–5]. But all the work
previously done in this context focuses on the Mesh-based
FPGA architecture, and no work has been done for Tree-
based architectures up to now.

The motivation behind the second part of the paper
is the optimization of connection blocks and intracluster
interconnect topologies in a cluster-based Mesh FPGA
architecture. There are different ways to connect signals to
the LUT input muxes. In Xilinx Virtex architectures [6], the
routing tracks are connected directly to the input muxes.
In the VPR [7] and the Altera Stratix [8] architectures, the
routing tracks are connected to the input muxes via an inter-
mediate level of muxes called connection block. VPR-style
interconnect has a sparsely populated connection block and
a fully populated intracluster crossbar. The fully populated
intracluster crossbar is simple but takes no advantage of the
logical equivalence of LUT inputs and causes a significant
inefficiency. Lemieux and Lewis [9] improved the basic VPR-
style interconnect in two ways. They proposed an approach
to generate highly routable optimized connection block.
Furthermore, they showed that the intracluster full crossbar
can be depopulated to achieve significant area reduction
without performance degradation. A practical example is
Stratix, which depopulates this crossbar by 50% [8]. All



2 International Journal of Reconfigurable Computing

LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB

DMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSB

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

UMSB

UMSB UMSB UMSB UMSB

UMSBUMSBUMSB

In Out

Output pads 
cluster

Input pads
cluster

level 1

level 2

Cluster with
16 inputs
4 outputs

Figure 1: Tree-based interconnect: upward and downward networks.

these studies consider the connection block interconnect
level and the intracluster crossbar separately. In [10], authors
investigated joint optimization of both crossbars and
proposed a new class of efficient topology. Nevertheless in the
intracluster crossbar they optimized only the part connecting
external signals to LBs inputs. Using a full crossbar to connect
feedbacks (LBs outputs) to LBs inputs is very penalizing and
imposes a very low bound on the cluster LBs number. For
example, we assume that we have a cluster with 256 LBs and
we use a full crossbar to connect feedbacks to 4-Lut inputs.
This means that we need 256×1024 switches to route clusters
internal signals only, which is very expensive. In this part,
our first contribution corresponds to a joint optimization of
connection blocks and intracluster interconnect topologies.
We optimize both crossbars: (1) connecting external signals
to LB inputs (2) connecting feedbacks to LB inputs. Our
second contribution consists in using only single-driver
interconnect based on unidirectional wires. As illustrated in
[11], single-driver interconnect has a good impact on density
improvement.

The remainder of the paper is organized as follows.
Section 2 describes the Tree-based architecture. In Section 3
we propose suitable techniques to place and route netlists
on the Tree-based architecture. In the following section, we
present the effect of LUT and cluster size on Tree-based
FPGA, then we evaluate architecture routability, and we
compare it with the common VPR-Style Mesh architecture.
Finally we present the cluster-based Mesh FPGA architecture
and then we conclude this paper.

2. Tree-Based Interconnect

We propose a Tree-based architecture called MFPGA (Mul-
tilevel FPGA) where LBs (Logic Blocks) are grouped into
clusters located at different levels. Each cluster contains a
switch block to connect local LBs. A switch block is divided
into MSBs (Miniswitch Blocks).

2.1. Interconnect Networks. This architecture unifies two
unidirectional networks. The downward network uses a
“Butterfly Fat Tree” topology to connect DMSBs (Downward
MSBs) to LBs inputs. As shown in Figure 1, the number of
DMSBs of a cluster located at level � is equal to the number of
inputs of a cluster located at level �− 1. The upward network
connects LBs outputs to the DMSBs at each level. As shown
in Figure 1, we use UMSBs (Upward MSBs) to allow LBs
outputs to reach a large number of DMSBs and to reduce
fanout on feedback lines. The number of UMSBs of a cluster
located at level � is equal to the number of outputs of a cluster
located at level �−1. UMSBs are organized in a way allowing
LBs belonging to the same “owner cluster” to reach exactly
the same set of DMSBs at each level. Thus positions, inside
the same cluster, are equivalent, and LBs can negotiate with
their siblings the use of a larger number of DMSBs depending
on their fanout.

As shown in Figure 1, input and output pads are grouped
into specific clusters and are connected to UMSBs and
DMSBs, respectively. Thus, input pads can reach all LBs of
the architecture, and output pads can also be reached by all
the from different paths.

Using UMSBs and DMSBs greatly enhances routability,
but it increases the interconnect switches number. However
this increase is compensated by reducing in/out signals
bandwidth of clusters at every level. In fact, netlists imple-
mented on FPGA architecture often communicate locally
(intraclusters) and this fact can be exploited to reduce the
bandwidth of signals with inter-clusters communication. A
good estimation of netlists communication locality is given
by Rent’s Rule [12]. Based on this estimation authors in [13]
showed that most netlist Rent’s parameters range between 0.5
and 0.65.

2.2. Architecture Rent’s Parameter. We define Rent’s parame-
ter for an architecture as follows:

IO = c ·m�·p. (1)



International Journal of Reconfigurable Computing 3

LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB

DMSBDMSB DMSBDMSBDMSB DMSBDMSBDMSBDMSB DMSB

DMSBDMSBDMSB DMSB DMSBDMSBDMSB DMSB DMSBDMSBDMSB DMSB DMSBDMSBDMSB DMSB

UMSB UMSB UMSB

UMSBUMSBUMSBUMSB

Cluster with
10 inputs 

and 3 outputs

Level 1

Level 2

Figure 2: Tree-based interconnect depopulation using Rent’s rule (level 1 with p = 0.73).

In this formula, � is a Tree level, m is the cluster arity, c is
the number of in/out pins of an LB, and IO is the number of
in/out pins of a cluster located at level �.

Intuitively, p represents the locality in interconnect
requirements. If most of the connections are routed locally
and only a few of them communicate to the exterior of a local
region, p will be small. In Tree-based architecture, both the
upward and downward interconnects populations depend on
this parameter. As shown in Figure 2, we can depopulate the
routing interconnect by reducing the number of inputs of
each cluster of level 1 from 16 to 10 and outputs from 4
to 3 (p = 0.73). In this case, if we consider an architecture
with 2 levels of hierarchy, we get a reduction in interconnect
switches number from 521 to 368 (28%). However, a
reduction in the value of p reduces the routability of the
architecture too. Thus we must find the best tradeoff between
interconnect population and logic blocks occupancy. As
shown in [1], the best way to improve circuit density is
to balance logic blocks and interconnect utilization. So in
MFPGA architecture, interconnect occupancy is controlled
by p and logic occupancy factor is controlled by N (the leaves
(LBs) number in the Tree).

3. Configuration Flow

The way LBs are distributed between Tree clusters has
an important impact on congestion. It is worthwhile to
reduce external communications, since local connections
are cheaper, not only in terms of delay but also in terms
of routability, as this allows to get more levels (more
paths) for connecting sources to destinations. Another way
to decrease congestion consists in eliminating competition
between sources to reach their sinks. This can be achieved
by depopulating clusters based on netlist instances fanout.
Instances with high fanout need more resources to reach
their sinks. Thus in the partitioning phase, instances weights

are attributed according to their fanout size. We use a top-
down recursive partitioning approach. First, we construct
the top level clusters, then every cluster is partitioned into
subclusters, until the bottom of the hierarchy is reached.
Since logic block positions inside the owner cluster are
equivalent, the detailed placement phase (Arrangement
inside clusters) is done randomly.

After placement, the routing process is started. Intercon-
nect resources are presented by a routing graph with nodes
corresponding to wires and LBs pins and edges to switches.
We use the negotiation-based algorithm Pathfinder to route
netlists signals [14].

4. Experimental Evaluation

To evaluate the proposed architecture performance, we place
and route the largest MCNC benchmark circuits available
and consider as a reference the optimized clustered Mesh
(VPR-style) architecture. We use t-vpack [7] to construct
clusters and the channel minimizing router VPR 4.3 [7] to
route signals. VPR determines the optimal size as well as the
optimal channel widthW to place and route each benchmark
circuit. In [15], author showed that the wiring structure in
the fat-tree containing N logic blocks is sufficiently regular
to permit a layout in O(N) area (the area dictated by the
nodes and switches) using O(log(N)) wiring layers. Thus, in
our area model we do not consider area dictated by wires.
We estimate the layout area as the sum of areas required
for all logic cells in an FPGA. As presented in Figure 3,
switching cells depend on the interconnect structure and
especially on wires directions (unidirectional/bidirectional).
We use symbolic standard cells library [16] to estimate the
FPGA required area. Different cells areas are presented in
Table 1. We use bidirectional wires in the case of Mesh and
unidirectional wires for MFPGA.



4 International Journal of Reconfigurable Computing

Buffer

Mux 2:1

Mux 8:1

Tri-state

Wire

SRAM

Figure 3: Unidirectional versus bidirectional wires.

For each level �
p(�) = 1

Initial level
� = 1

Decrease rent
p(�) 

Optimized
architecture

Feasible
routing?

� ≤ nb 
levels?

Yes

YesNo

�++

No

Routing

Figure 4: MFPGA architecture optimization flow (bottom-up
approach).

Table 1: Standard cells characteristics.

Cell Area λ2

Sram 30× 50

Tri-state 35× 50

Buffer 20× 50

Flip-flop 90× 50

Mux 2 : 1 35× 50

Table 2: Levels Rent’s rule parameters (21 benchmark average).

Level Circuits
partitioning

Archi.
top-down

Archi.
bottom-up

Archi.
random

1 0.64 0.98 0.79 0.88

2 0.55 0.88 0.74 0.79

3 0.50 0.80 0.77 0.76

4 0.49 0.75 0.86 0.73

5 0.45 0.59 0.87 0.7

4.1. Architecture Optimization. As explained in Section 2,
MFPGA routability and switches number depend on 2

parameters: p (architecture Rent’s parameter) and N (num-
ber of LBs in the architecture which defines occupancy ratio).
To find the best tradeoff between device routability and
switches requirement (area) we study MFPGA architectures
with various N and p parameters. The purpose is to find
for each netlist, the architecture with the smallest area that
can implement it. N depends on Tree levels number and
clusters arity. For a specific clusters arity, we determine the
smallest levels number to implement the circuit. With our
tools we can consider, in the same architecture, levels with
different p values. Clusters located at the same level have
the same Rent’s parameter. In the case of Mesh, VPR adjusts
the channel width W , and for Tree-based interconnect, we
adjust Rent’s parameters at every level in order to obtain the
smallest architecture.

Just like VPR which applies a binary search to find the
smallest value of channel width for Mesh architecture, we
apply a binary search to determine the smallest value of
Rent’s parameters for each level of Tree-based architecture.
Depending on levels order processing, we tested 3 different
approaches.

(i) Bottom-Up Approach. As shown in Figure 4, we start
by optimizing the lowest level up to the highest one.
At each level we apply a binary search to determine
the smallest number of input/output signals allowing
to route the benchmark circuit.

(ii) Top-Down Approach. In this approach we start by
optimizing the highest level down to the lowest one.
In each level we apply a binary search to determine
the smallest number of input/output signals allowing
to route the benchmark circuit.

(iii) Random Approach. In this approach all levels are
optimized in a random fashion. We choose a level
randomly and we modify its input/output signals
number depending on the previous result obtained
at this level, then we move to another one. In this way
we move randomly from one level to another until all
levels are optimized.

The 3 approaches have the same objective and aim at
reducing clusters signals bandwidth at each level. The
difference is the order in which levels are processed. In
Table 2, we show architecture Rent’s parameter (at each level)
obtained with each technique. The first column of the table
shows Rent’s parameters obtained after circuits partitioning.
Results correspond to averages of all the 21 circuits. We
notice that in all cases, architecture Rent’s parameters are
larger than partitioned circuits Rent’s parameters. This is
due to the depopulated switch boxes topology. In fact, to
solve routing conflicts, a signal may enter from 2 different
DMSBs to reach 2 different destinations located at the same
cluster. In Figure 5 we show an example of a partitioned
netlist to place and route onto an architecture with LBs
inputs number equal to 2 (2 DMSBs in each cluster located
at level 1) and clusters arity equal to 3. As shown in the figure
if every signal comes from only one DMSB, we cannot solve
conflicts. To deal with such a problem we propose to enter
the signal driven by S0 from 2 different DMSBs. Thus, the



International Journal of Reconfigurable Computing 5

s0

s2

d1

d2

d3

Cut = 3

s1

p = 0.37

(a) Partitioned netlist

DMSBDMSB

s1

Conflict
s0/s2

s0 s2

d1 d3d2

p = 0.37

(b) Routed netlist with conflict

DMSBDMSB

d1 d3d2

s1 s0 s0 s2

p = 0.63

(c) Routed netlist with no conflict

Figure 5: A netlist routing example showing architecture Rent’s parameter increase.

Top-down
Bottom-up
Random

Level 1 Level 2 Level 3 Level 4 Level 5

Tree levels

0

0.05

0.1

0.15

0.25

0.35

0.45

0.2

0.3

0.4

O
ve

rh
ea

d

Figure 6: Overhead between Architecture and partitioned netlist
Rent’s parameters (21 benchmark average).

resulting architecture cluster degree is equal to 4, whereas
the corresponding partition degree is equal to 3 (number of
crossing signals).

In Figure 6, we show the average discrepancy between
partitioning and architecture Rent’s parameters with each
optimizing approach. We notice that in the case of the top-
down (bottom-up) approach, overhead increases when we go

Table 3: Area and performance comparison between various
optimizing approaches (21 benchmark average).

Optimizing approach Area (λ2)
×106

Critical path
switches

Top-down 1498 98

Bottom-up 1326 106

Random 1221 101

down (up) in the Tree. This was expected since the top-down
(bottom-up) approach first optimizes high (low) levels. With
the random approach, we notice that levels overheads are
balanced.

A comparison of the average results obtained from the
3 optimizing approaches is shown in Table 3. We notice
that with the random approach we obtain the smallest area.
This means that optimizing levels randomly allows to avoid
local minima and helps to obtain a balanced congestion
distribution over levels. The bottom-up approach provides
a smaller area than the top-down one, but it is penalizing
in terms of critical path switches number. In fact, starting
by optimizing low levels means that local routing resources
are intensively reduced and signals are routed with resources
located at higher levels. Consequently, signals routing uses
more switches in series.

To reduce the gap between circuit and architecture
Rent’s parameters, we must improve the partitioning tool
(especially the objective function) to reduce congestion and
resources (clusters inputs) required to route signals.

4.2. Clusters Arity and LUT Size Effect. In this section we
evaluate the effect of LUTs size k (number of LUT inputs)
and cluster arity on area, performance, and static power
of MFPGA architecture. In order to evaluate this effect, we
performed a series of experiments where LUT size ranges
from 3 to 7 and cluster arity ranges from 4 to 8 for each
benchmark. Thus we have results for a set of 25 different
architectures for each benchmark. First, as shown in Figure 7,



6 International Journal of Reconfigurable Computing

Cluster size 4 Cluster size 7
Cluster size 8Cluster size 5

Cluster size 6

LUT 3 LUT 4 LUT 5

LUTs sizes

LUT 6 LUT 7

0

500

1000

1500

2000

2500
To

ta
l a

re
a 
× 

E
 +

 0
06

 (
λ

2
)

Figure 7: Total area for clusters sizes 4–8 (21 benchmark average).

LUT 3 LUT 4

Average number of LUTs
Average LUT area in λ2 

LUT 5 LUT 6 LUT 7
00E + 000

1000

2000

3000

4000

5000

6000

1E + 005

2E + 005

3E + 005

4E + 005

5E + 005

6E + 005

Figure 8: LUTs number and LUT area versus LUT size (for cluster
arity = 4).

Increasing
clusters arity

Figure 9: Varying clusters arity ⇒ varying multiplexers sizes and
number.

we evaluate the effect of LUT size and cluster arity on
MFPGA area. Results correspond to the average area of the
21 largest circuits. We notice that initially there is a reduction
in area between k = 3 and k = 4, but afterwards there is
an increase in area with the rise in LUT and cluster sizes.
It can be noted from the figure that for the same LUT size,
higher cluster arities give higher area values. This is due to
the fact that with an increase in the cluster size, there is a
decrease in the number of clusters required to implement
the circuit but at the same time there is an increase in the
area per cluster due to increased value of inputs/outputs
bandwidth. In addition, when clusters arity increases, the
required multiplexers number decreases but their size grows
larger (see Figure 9) and consequently the bound on area
efficiency goes down. Hence, these effects combine together
and result in higher area values for same LUT size but with
higher arity size.

In order to analyze further LUTs size effect on area we
divided it into two parts, logic blocks area and interconnect
area. From our experimentation we notice that logic area
increases with LUT size. This area is the product of the total
number of LUTs times the area per LUT. A plot of these
two components for clusters arity equal to 4 is shown in
Figure 8 (the left vertical axis presents area per LUT in (λ2)
and the right vertical axis presents LUTs number). The logic
block area grows exponentially with LUT size as there are
2k bits in a k-input LUT. Though there is a decline in the
number of LUTs with an increase in k (because each LUT
can implement more logic functions), the rate of increase
in area is steeper than the rate of decrease in LUTs number.
Concerning the interconnect area, we notice that it decreases
when LUT size increases. Since the rise in logic area is steeper
than the decline in interconnect area, we obtain the upward
trend in Figure 7.

The second key metric is the critical path delay. Since we
have no accurate wire length estimation (we do not have a
complete layout generator yet), we only evaluate the number
of switches crossed by the critical path. Figure 10 shows the
average critical path switches number across the 21 circuits
as a function of clusters arities and LUTs sizes. Observing
the figure, it is clear that increasing clusters arity and LUTs
size decreases the number of switches crossed by the critical
path. This behavior is due to the decrease of the number of



International Journal of Reconfigurable Computing 7

0
LUT 3

Cluster size 4 Cluster size 7
Cluster size 8Cluster size 5

Cluster size 6

LUT 4 LUT 5

LUTs sizes

LUT 6 LUT 7

20

40

60

80

100

120

140

160

180

200
C

ri
ti

ca
l p

at
h

 s
w

it
ch

es
 n

u
m

be
r

Figure 10: Critical path switches number clusters sizes 4–8 (21
benchmark average).

Table 4: Levels Rent’s parameters for 2 circuits.

Circuits Level 1 Level 2 Level 3 Level 4 Level 5

apex2 1 0.89 0.86 0.84 0.77

tseng 0.79 0.79 0.79 0.72 0.67

LUTs and clusters in series on the critical path. Nevertheless,
to get an idea about the accurate delay we have to consider
the increase of intrinsic LUT delay when its size increases.

According to [17], buffers and SRAM are the major
factors behind static power dissipation. Therefore, in order to
get an idea about LUT and cluster size effect on static power
dissipation, we evaluate buffers and SRAM cells numbers
as a function of LUT and cluster size. We assume that we
insert a buffer at the output of every multiplexer. We notice,
as shown in Figure 11, that initially there is a reduction
in buffers number when 4-LUTs are used instead of 3-
LUTs, and afterwards buffers number increases with LUT
size. Also it can be noticed from the Figure 11 that for the
same LUT size, higher cluster sizes have a smaller number
of buffers. This is due to the fact that when we increase
cluster arity, multiplexers sizes increase and their number
decreases and consequently buffer number also decreases
(see Figure 9). As shown in Figure 12, we notice that SRAM

0

LUT 3

Cluster size 4 Cluster size 7
Cluster size 8Cluster size 5

Cluster size 6

LUT 4 LUT 5

LUTs sizes

LUT 6 LUT 7

20

40

60

80

100

120

140

B
u

ff
er

s 
n

u
m

be
r 

×103

Figure 11: Buffers number clusters sizes 4–8 (21 benchmark
average).

points number decreases when LUT size increases from 3 to 4
and increases afterwards. Clearly, results for all clusters sizes
show consistently that LUT size 4 gives minimum leakage
energy compared to other LUT sizes. This result is expected
since LUT size 4 achieves the highest total-area efficiency.

To get a good tradeoff between area and path delays
reduction, using different LUTs sizes is necessary. This was
confirmed by the Stratix II architecture [18] where authors
showed that the use of ALMs (Adaptive Logic Blocks)
gives a good tradeoff between area and critical path delay
reductions.

4.3. Area Efficiency. Here we compare MFPGA to the Mesh-
based architecture in terms of area efficiency. In both cases
we consider architectures with clusters arity 4 and LUT size
4. In each case, we determine the smallest architecture imple-
menting every benchmark circuit. In the case of Mesh we use
VPR to find the smallest channel width, and in the case of
MFPGA we use the random optimizing approach described
in Section 4.1 to determine the smallest Rent’s parameters.

In Figure 13, we observe that the Tree-based architecture
has a better density for all the 21 benchmark circuits. On
average with the Tree architecture we save 56% of the total
area. We achieve a 42% area gain with alu4 (smallest circuit



8 International Journal of Reconfigurable Computing

0

LUT 3

Cluster size 4 Cluster size 7
Cluster size 8Cluster size 5

Cluster size 6

LUT 4 LUT 5

LUTs sizes

LUT 6 LUT 7

100

200

300

400

500

600

SR
A

M
 p

oi
n

ts
 n

u
m

be
r 

×103

Figure 12: SRAM cells number clusters sizes 4–8 (21 benchmark
average)

cl
m

a
pd

c
ap

ex
2

ap
ex

4
al

u
4

bi
gk

ey de
s

di
ff

eq
ds

ip
el

lip
ti

c
ex

10
10

m
is

ex
3

Benchmark circuits

fr
is

c
ex

5p
s2

98
s3

84
17

s3
85

84 se
q

sp
la

ts
en

g

av
a

0

2000

4000

6000

8000

10000

12000

Mesh area
MFPGA area

To
ta

l a
re

a 
 E

 +
 0

06
 (
λ

2
)

Figure 13: MFPGA area versus Mesh area (21 benchmark circuits).

584 LUTs) and 60% with ava (largest circuit 14964 LUTs).
This confirms that Tree-based interconnect is very attractive
for both small and large circuits.

We compare the areas of both architectures using a
refined estimation model of effective circuit area. The Mesh

27%

Interconnect area
Logic area

Tree Mesh

10%

90%73%

Figure 14: Area distribution between interconnect and logic blocks:
Tree and Mesh cases.

area is the sum of its basic cells areas like SRAMs, tri-
states, multiplexers and buffers. The same evaluation is
made for the Tree, composed of SRAMs, multiplexers, and
buffers. Both architectures use the same symbolic cells
library.

The Tree architecture efficiency is due essentially to its
ability to control simultaneously logic blocks occupancy and
interconnect population, based on LBs number N and archi-
tecture Rent’s parameter p, respectively. For example in the
case of apex2 circuit, we use an architecture with high logic
occupancy (91%) and high Rent’s parameters as shown in
Table 4. In the case of tseng circuit, we have a low occupancy
(51%) and we achieve routability with a low architecture
Rent’s parameters as illustrated in Table 4. This confirms
that we can balance interconnect and logic blocks utilization
with the help of logic occupancy decreasing and congestion
spreading. In fact, we use a high-interconnect/low-logic
utilization approach which is in direct opposition to the high
logic utilization approach that has been adopted for Mesh-
based FPGA [7]. As shown in Figure 14, unlike Mesh case
where interconnect occupies 90% of the overall area, in Tree-
based architecture interconnect occupies 73%. Compared to
Mesh architecture, we have a 20% lower occupancy; the extra
logic area allows us to exploit interconnect better and to
reduce its area by 69%.

5. Unifying Mesh and Tree

We showed that with a Tree-based topology, we obtain
good density and we cut area by a factor of 2 compared to
Mesh. Nevertheless, based on our layout experimentation
we noticed that this Tree-based architecture is penalizing
in terms of physical layout generation. It does not support
scalability and does not fit with a planar chip structure,
especially for large circuits. Conversely the Mesh and in
specially the Mesh of Tree [19] has a good physical scalability
since it corresponds to an array of repeated tiles. Once a
tile layout is generated we can abut it to generate layout of
selectable size. In addition, as shown in Figure 15, unlike



International Journal of Reconfigurable Computing 9

Wire 
segments

Wire 
segments

Mesh layout (64 LBs)Tree layout (256 LBs)

Figure 15: Layout view of Mesh and Tree interconnect structures.

0
16 LBs 64 LBs 256 LBs 1024 LBs

LBs number

4096 LBs

Max length

M
ax

 w
ir

es
 le

n
gt

h
s 

(m
m

)

5

10

15

20

25

30

35

40

Figure 16: Maximum wire lengths depending on Tree size (arity 4).

Mesh where the largest wiring distance is fixed, in the case
of a Tree, wiring length increases as we move towards higher
levels. An accurate estimation of wire lengths is presented
in Figure 16. Maximum wires lengths are evaluated based
on layout generated in 130 nm technology. We notice from
Figure 17 that in the case of architectures larger than 512
LBs, wires delays become critical and dominant compared
to switches delays. It is essential to cut down wire lengths
to reduce the quadratic delays growth. For this purpose we
propose to use a Mesh interconnect structure from this break
even point (512 LBs) to reduce wires delays. In this way wires
lengths depend only on Mesh clusters size and no more on
total architecture size.

0

16 LBs 64 LBs 256 LBs 1024 LBs

LBs number

4096 LBs

Max delay

M
ax

 w
ir

es
 d

el
ay

s 
(n

s)

2

4

6

8

10

12

14

16

18

Figure 17: Maximum wire delays depending on Tree size (arity 4).

To take advantage of the positive points of both topolo-
gies, we propose an architecture where LBs are connected
into a cluster (Mesh cluster) with a local interconnect built
as a Tree. Mesh clusters are connected with an external
interconnect with a Mesh topology. We use the same Tree
topology presented previously. In the Mesh interconnect we
use only unidirectional wires, since in [11], authors show
that single driver interconnect can lead to 25% improvement
in area density. Each Mesh cluster is surrounded by four
channels which are connected by Switch Boxes (SBs). We
do not use connection blocks in the Mesh to connect
channel tracks to cluster inputs and outputs. Actually, as
presented in [10], interconnect is better optimized when



10 International Journal of Reconfigurable Computing

LB

LB

LB

SB_0 SB_1

SB_2SB_3

Tree-based
Intra-cluster
interconnect

Channel North

Channel South

Channel EastChannel West

Figure 18: Node of Mesh of Tree architecture.

a connection block is combined with the cluster local
interconnect.

5.1. Mesh Cluster Interface. As presented in Figure 18, each
cluster is connected to the 4 adjacent channel tracks. The
cluster input and output connectors are equally distributed
on the 4 sides. On all sides we have the same number of
inputs and outputs. The distribution of inputs and outputs
is illustrated in Figure 19. Input signals (output signals) are
grouped together into input Superpins (output Superpins)
located at level �in (�out) of the Tree.

(i) Each input Superpin contains 4 inputs connected to
the 4 adjacent channels. Each input is connected to all
UMSBs located at level � + 1 of the Tree. In this way
the 4 inputs are logically equivalent and can reach all
Tree LBs.

(ii) Each output Superpin contains 4 outputs connected
to the 4 adjacent switch boxes. Each output is
connected to all DMSBs placed at level � + 1 of the
Tree. In this way the 4 outputs are logically equivalent
and can be reached from all Tree LBs.

This distribution has an important impact on routability
and eliminates constraints in the placement of LBs inside
Tree clusters. All 4 Mesh cluster sides have the same number
of inputs and outputs. Side inputs and outputs numbers

depend on the number of Tree leaves and on the level where
they are connected:

Nbin = N

k�in+1
,

Nbout = N

k�out+1
,

(2)

where k is Tree clusters arity. N is the number of Tree leaves.
�in and �out are levels where input and output Superpins are
located, respectively. As explained previously the Tree-based
local interconnect of a cluster can be depopulated using
Rent’s parameter.

5.2. Mesh Routing Interconnect. As presented in Figure 18,
cluster-based Mesh architecture is composed of logic blocks
clusters, switch boxes, and in/out pads. Interconnection
between clusters is done by routes through switch boxes,
along horizontal and vertical routing channels.

In the Mesh interconnect structure we use only single-
driver unidirectional wires; in [11], authors show that single-
driver-based interconnect leads to a 25% improvement in
area density. Each Mesh cluster is surrounded by 4 channels
which are connected by Switch Boxes (SBs). As described in
Figure 18, Mesh cluster input signals are connected to the 4
adjacent channel tracks. Thus, channel width W is given by

W = Nbin

4
= N

k�in+1
. (3)

A Mesh Switch Box (SB) allows to connect horizontal and
vertical channel tracks together and also to cluster outputs.
SB inputs come from the 4 channel tracks and from the 4
adjacent clusters outputs. SB outputs are connected to the
4 adjacent horizontal and vertical channels. Since we use a
single-driver-based interconnect, each SB output is driven
by a multiplexer. Switch boxes have a “disjoint” topology.
As presented in Figure 20(b), input track j of channel i is
connected to output track j of channel h with h /= i. SBs allow
also to connect Mesh cluster outputs to channels tracks. As
illustrated in Figure 20(a), each cluster output is connected
to all switch box outputs located on the 4 sides.

5.3. Configuration Flow. The configuration flow used to
implement benchmark netlists on the proposed architec-
ture is described in Figure 21. First netlist instances are
partitioned among the N Mesh clusters. We obtain one
external netlist describing Mesh clusters communication
and N internal netlists describing instances communication
inside each cluster. The external netlist is used to place Mesh
clusters on the 2D grid array. All internal netlist instances
are partitioned among Tree clusters. We use a multilevel
mincut partitioner based on FM refinement heuristics. Once
all instances are placed on the Mesh of Tree sites, we run
signals routing. Routing consists in assigning netlist signals
to routing resources in such a way that no routing resource



International Journal of Reconfigurable Computing 11

LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB

DMSBDMSBDMSBDMSB

DMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSB

DMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSBDMSB

DMSB

UMSB UMSB UMSB UMSB

UMSBUMSBUMSBUMSB

North
East

South

SB N/W
N/E

S/W
S/E

West

Level 2

Level 1

Level 0

Input 
superpin

Output
superpin

Figure 19: Cluster interface: external input and output connections.

Cluster 0 Cluster 1

Cluster 2Cluster 3 Channel 2

Channel 0

C
h

an
n

el
 3

C
h

an
n

el
 1

(a) SB: Cluster outputs to channel
tracks

Cluster 2

Cluster 1Cluster 0

Cluster 3

Channel 0

Channel 2

C
h

an
n

el
 1

C
h

an
n

el
 3

(b) SB: channel tracks to channel
tracks

Figure 20: Mesh switch box topology.

Tree
partitioning

Tree
partitioning

Tree
partitioning

External netlist

Clusters placement

Mesh partitioning

Main netlist

Internal netlists

Flat routing

Figure 21: Mesh of Tree configuration flow.

is shared by more than one net. For this purpose we
model routing resources by a flat direct graph, where nodes
correspond to wires, and LBs pins and edges correspond to
switches. We use the PathFinder algorithm to route signals on
the resulting graph.

5.4. Experimentation. To evaluate the proposed architecture
and tool performances, we place and route the 3 largest
MCNC benchmark circuits and the ava circuit which is
the largest design containing only LUTs. We consider as
references the optimized cluster-based (VPR-style) Mesh and
the MFPGA architectures. We map the 4 largest benchmark
circuits on the Mesh of Tree architecture. We consider an
architecture with unidirectional wires and Mesh clusters
size equal to 256 LBs. Every cluster has 256 inputs and
64 outputs equally distributed on the 4 sides. This is
obtained by putting input Superpin at Tree level 0 and
output Superpin at level 1. For every benchmark circuit
we adjust only the Mesh clusters array size. We do not
tailor every Tree interconnect flexibility to every circuit.
The Mesh channel width is equal to 64 and Tree signals
growth rate p is equal to 0.88. The Mesh of Tree switches
requirement and its distribution among Tree and Mesh
levels is presented in Figure 22. As shown in Figure 23, we
notice that, compared to the VPR-based Mesh architecture,
total area is reduced by 42%. This is due essentially to the
depopulated intracluster crossbar. In fact with p = 0.88 the
Tree required switches number is equal to 20 × 103 switches
only.

We also notice that, compared to a stand-alone Tree, the
total area is increased by 28%. This increase is compensated
by the Mesh of Tree layout generation simplicity and wires
length reduction, compared to stand-alone Tree, especially
when we target large circuits sizes. In this case, wires lengths
depend only on Mesh clusters sizes and not on architecture
total LBs number.



12 International Journal of Reconfigurable Computing

External
Internal

0

500

1000

1500

2000

2500
Sw

it
ch

es
×103

ava clma

Circuits

pdc s38417

Figure 22: Interconnect distribution in Mesh of Tree architecture.

0

2000

4000

6000

8000

10000

12000

ava

Mesh
Mesh of tree
Tree

clma

Circuits

pdc s38417

A
re

a 
E

 +
 0

06
 (
λ

2
)

Figure 23: Comparison of various FPGA architectures areas.

6. Conclusion

We proposed a Tree-based architecture with high inter-
connect and low logic utilizations. Based on the largest

MCNC benchmark implementation, we showed that this
architecture has better area efficiency than the common VPR-
Style clustered Mesh. We showed that in general LUTs with
size 4 and cluster size 4 produce most efficient results in
terms of area and static power dissipation for Tree-based
FPGA. We also determined the evolution of the number of
switches crossed by the critical path as a function of LUT
and cluster size and we showed that LUTs with higher input
size, and with higher cluster size can be more optimal in
terms of performance though they are not very good in
terms of density. Nevertheless, this Tree-based architecture
is penalizing in terms of physical layout generation. To deal
with such problem we proposed an architecture unifying
both Mesh and Tree strong points. The Mesh of Tree has a
good physical scalability: once the cluster layout is generated
we can abut it to generate Mesh layouts with the desired
size and shape factor. The proposed Mesh of Tree archi-
tecture is a good tradeoff between area density and layout
scalability.

References

[1] A. DeHon, “Balancing interconnect and computation in a
reconfigurable computing array (or, why you don’t really want
100% LUT utilization),” in Proceedings of the 7th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays
(FPGA ’99), pp. 69–78, Monterey, Calif, USA, February 1999.

[2] E. Ahmed and J. Rose, “The effect of LUT and cluster size
on deep-submicron FPGA performance and density,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 12, no. 3, pp. 288–298, 2004.

[3] J. Rose, R. Francis, D. Lewis, and P. Chow, “Architecture
of field-programmable gate arrays: the effect of logic block
functionality on area efficiency,” IEEE Journal of Solid-State
Circuits, vol. 25, no. 5, pp. 1217–1225, 1990.

[4] S. Kaptanoglu, G. Bakker, A. Kundu, I. Corneillet, and B.
Ting, “A new high density and very low cost reprogrammable
FPGA architecture,” in Proceedings of the 7th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays
(FPGA ’99), pp. 3–12, Monterey, Calif, USA, February 1999.

[5] D. Hill and N. Woo, “The benefits of flexibility in lookup table-
based FPGAs,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 12, no. 2, pp. 349–353,
1993.

[6] Xilinx Corp, http://www.xilinx.com.
[7] V. Betz, A. Marquardt, and J. Rose, Architecture and CAD

for Deep-Submicron FPGAs, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1999.

[8] D. Lewis, V. Betz, D. Jefferson, et al., “The StraixTM routing
and logic architecture,” in Proceedings of the 11th ACM/SIGDA
ACM International Symposium on Field Programmable Gate
Arrays (FPGA ’03), pp. 12–20, Monterey, Calif, USA, February
2003.

[9] G. Lemieux and D. Lewis, Design of Interconnection Networks
for Programmable Logic, Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 2004.

[10] W. Feng and S. Kaptanoglu, “Designing efficient input
interconnect blocks for LUT clusters using counting and
entropy,” in Proceedings of the 15th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’07),
pp. 23–32, Monterey, Calif, USA, February 2007.



International Journal of Reconfigurable Computing 13

[11] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and
single-driver wires in FPGA interconnect,” in Proceedings of the
IEEE International Conference on Field-Programmable Technol-
ogy (FPT ’04), pp. 41–48, Brisbane, Australia, December 2004.

[12] B. Landman and R. Russo, “On a pin versus block relationship
for partitions of logic graphs,” IEEE Transactions on Comput-
ers, vol. 20, no. 12, pp. 1469–1479, 1971.

[13] J. Pistorius and M. Hutton, “Placement rent exponent calcu-
lation methods, temporal behaviour and FPGA architecture
evaluation,” in Proceedings of the International Workshop on
System Level Interconnect Prediction, pp. 31–38, Monterey,
Calif, USA, April 2003.

[14] L. McMurchie and C. Ebeling, “PathFinder: a negotiation-
based performance-driven router for FPGAs,” in Proceedings of
the 3rd ACM International Symposium on Field-Programmable
Gate Arrays (FPGA ’95), pp. 111–117, Monterey, Calif, USA,
February 1995.

[15] A. DeHon, “Compact, multilayer layout for butterfly fat-tree,”
in Proceedings of the 12th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’00), pp. 206–215, Bar
Harbor, Me, USA, July 2000.

[16] A. Greiner and F. Pechêux, “Alliance: a complete set of CAD
tools for teaching VLSI design,” in Proceedings of the 3rd
EuroChip Workshop, pp. 230–237, September 1992.

[17] S. Kaptanoglu, “Power and the future FPGA architectures,”
in Proceedings of the International Conference on Field Pro-
grammable Technology (ICFPT ’07), pp. 241–244, Kitakyushu,
Japan, December 2007.

[18] D. Lewis, E. Ahmed, G. Baeckler, et al., “The Stratix II
logic and routing architecture,” in Proceedings of the 13th
ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’05), pp. 14–20, Monterey, Calif, USA,
February 2005.

[19] A. DeHon, “Unifing mesh and tree-based programmable
interconnect,” IEEE Transactions on VLSI Systems, vol. 12, no.
10, pp. 1051–1065, 2004.


