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Résumé
Cette thèse présente un mécanisme de tolérance aux pannes franches pour un micro-

réseau intégré sur puce (Network-on-Chip), ce dernier utilisé dans une architecture de

type MP2SoC (Massively-Parallel Multi-Processors System-on-Chip ). Ce mécanisme se

décompose en trois étapes : 1) détection des composants du NoC, 2) désactivation des

composants défectueux et 3) reconfiguration de fonction de routage.

Ce mécanisme est exécuté lors de chaque redémarrage du système ou de mise sous

tension de puce, pour détecter et désactiver les composants défectueux du NoC, et pour ac-

tiver les composants sans défaut. Ces composants activés seront alors utilisés pour lancer

une auto-reconfiguration de fonction de routage du NoC. En conclusion, grâce au mé-

canisme, un NoC endommagé peut structurellement s’auto-tester, partiellement s’auto-

désactiver, globalement s’auto-reconfigurer et fonctionnellement s’auto-réparer, après un

redémarrage du système ou une mise sous tension de puce. En outre, ce mécanisme peut

être utilisé dans les architectures multiprocesseurs, se basant sur un NoC de type 2D-

Mesh.

Le mécanisme mentionné a été implémenté dans un NoC de type 2D-Mesh : DSPIN.

Grâce à cette implémentation, nous l’évaluons du point de vue de la couverture de fautes,

du surcoût matériel, du temps d’exécution, etc.

Il convient de noter que, le mécanisme peut aussi être utilisé pour améliorer le rende-

ment de fabrication, en évitant de jeter celle-ci à cause d’un composant défectueux.

Mots-clés : micro-réseau sur puce, MP2SoC, architecture multiprocesseurs, tolérance

aux fautes, tolérance aux pannes franches, NoC auto-test, NoC BIST, reconfiguration du

NoC, algorithme de routage, l’infrastructure de configuration, DCCI.



Abstract
This thesis presents a complete ODDR (“On the field” Detection, De-activation and

Reconfiguration) mechanism, providing a permanent fault-tolerance for a 2D-Mesh Netw-

ork-on-Chip (NoC) in a shared memory, Massively-Parallel Multi-Processors System-on-

Chip (MP2SoC) architecture.

This mechanism is executed at each system reboot or chip power-on, to detect and de-

activate the faulty components of NoC and to activate the fault-free components ; then it

makes NoC itself to achieve a self-reconfiguration through the fault-free/activated compo-

nents. In conclusion, with the help of this ODDR mechanism, a damaged 2D-Mesh NoC

can structurally self-test, partially self-disable, globally self-reconfigure and functionally

self-recover, after a simple system reboot or at chip power-on. Moreover, this mechanism

can be used in any 2D-Mesh NoC based, shared memory, multi-cores architecture.

The ODDR mechanism has been implemented in a typical 2D-Mesh NoC : DSPIN.

Thanks to this micro-network, we evaluate and analyze the mechanism, from the point

of view of the stuck-at fault coverage, of the silicon area overhead, of the execution time

consumed, etc.

It should be noted that, the ODDR mechanism can be used not only “on the field”, but

also in the manufacture, where it’s helpful to improve the yield by avoiding to throw the

whole chip when one single component is faulty.

Keywords : Network-on-Chip, MP2SoC, ODDR, “on the field”, fault-tolerance, NoC

test, NoC BIST, NoC reconfiguration, routing algorithm, reconfigurable, deterministic,

configuration infrastructure, DCCI.

English Title : “On the field” Detection, De-activation and Reconfiguration (ODDR)

Mechanism for the Permanent Fault-Tolerance of Network-on-Chip.
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Introduction

The Network-on-Chip (NoC) [Benini and Micheli, 2002] based, shared memory, Ma-

ssively-Parallel Multi-Processors System-on-Chip (MP2SoC) architectures, are the future

for the semiconductor industry, since such architecture can integrate thousands of IP (In-

tellectual Property) cores in a single chip. However, for such chip, the production yield is

an issue [Furber, 2006], because a huge number of permanent faulty components will ap-

pear not only in the manufacture, but also “on the field” when the chip is already mounted

on the final equipment. The NoC reliability is a key issue since it is a shared, global and

irreplaceable resource. Thus, the “on the field” permanent fault-tolerance for NoC, must

be taken into account and defined in the MP2SoC architecture design. To our knowledge,

there is no complete and feasible solution in the world.

Facing this problem, we propose an “on the field” permanent fault-tolerant mechanism

for 2D-Mesh NoC used in shared memory MP2SoC architecture, according to the graceful

degradation theory. This mechanism can be summarized by three keywords : Detection,

De-activation & Reconfiguration. The general principle is the following :

At each system reboot or chip power-on, the mechanism is operated to detect

& de-activate the faulty components of the NoC, and to activate the fault-free

components, then to achieve the NoC auto-configuration using the fault-free

components. In other words, the mechanism aims to make NoC self-test &

self-recover at each system reboot or chip power-on.

In this thesis, we present and detail this fully automatic, “On the field” Detection, De-

activation & Reconfiguration (ODDR) mechanism. This mechanism is implemented in a

typical 2D-Mesh NoC : DSPIN [Panades et al., 2006] (Distributed Scalable Predictable

Interconnect Network). The fault coverage, silicon area overhead, time consumed, the

formal proof of deadlock-free property, etc. are evaluated, discussed and analyzed.

The organisation of this thesis is described as below :

In chapter 1 : We define and discuss three main problems of “on the field” fault-

tolerance issues.

1
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1. “NoC Test” : the faulty components of NoC (router and channel) must be detected

by an appropriate built-in self-test (BIST) mechanism.

2. “Configuration Infrastructure” : the NoC reconfiguration mechanism requires

the definition of a configuration master and a reliable configuration bus.

3. “Routing Algorithm” : a deterministic, fault-tolerant & reconfigurable routing al-

gorithm must be defined. And this routing algorithm must fit the modification of

NoC topology resulted from the faulty components.

In chapter 2 : We summarize the state of the art of NoC fault-tolerant strategies. And

we present the related solutions for the three main problems and analyze their limitations

in the context of “on the field” fault-tolerance.

In chapter 3 : We introduce a typical 2D-Mesh NoC : DSPIN. And we present the

DSPIN based, shared memory MP2SoC architecture that is used in this thesis to evaluate

the ODDR (“On the field” Detection, De-activation & Reconfiguration) mechanism. This

mechanism uses the following DSPIN characteristics :

– 2D-Mesh topology

– Full-Crossbar Switch

– FIFO-based Flow Control Policy

– Default routing algorithm : X-First

All the Network-on-Chip architecture having the stated characteristics, can adopt and

implement the proposed “on the field” fault-tolerant approach.

In chapter 4 : We present the general scenario of ODDR (“On the field” Detection,

De-activation & Reconfiguration) mechanism, used in the DSPIN based, shared memory

MP2SoC architecture. This scenario consists of three stages :

1. Initialization stage / NoC Test

2. Pre-configuration stage / Configuration Infrastructure

3. Configuration stage / Routing Algorithm

In chapter 5 : We detail the initialization stage and a fully distributed off-line BIST

dedicated to 2D-Mesh NoC in a GALS (Globally Asynchronous, Locally Synchronous)

context. This BIST is implemented in NoC as an initialization procedure, and executed at

each system reboot or chip power-on. With the help of this procedure, the faulty compo-

nents are detected and de-activated, finally configured to behave as a “Black Hole”, while

the fault-free components are activated to operate the normal function.
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In chapter 6 : We details the pre-configuration stage, the used configuration infras-

tructure (DCCI, Distributed Cooperative Configuration Infrastructure), and the software-

based diagnosis/localization of faulty component. The main function of DCCI is to con-

struct a software communication tree on top of the initialized NoC, using only the faulty-

free components. Each tree node is an embedded processor core. The tree root is the

configuration master. The tree itself is the configuration bus. We use this DCCI tree to

locate all “Black Holes” with a software application, finally to identify the modification

of NoC topology.

In chapter 7 : We detail the configuration stage and the deterministic, lightweight, re-

configurable routing algorithm. Following this algorithm, the network itself is split into

two regions : normal region and faulty region. The routers of normal region are not re-

configured, but the border routers of the faulty region are configured to create a cycle-free

contour, aiming to bypass the faulty/disable routers. The routing function (of cycle-free

contour) is proven to be deadlock-free with any single-faulty-router topology.
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Problem Definition
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In this chapter, we discuss the problems addressed by this thesis and list the involved

questions.
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1.1 Thesis motivation

To face the challenge of high-performance multi-computing issue, the semiconductor

industry has begun to integrate in a single chip a large number of processor cores inter-

connected by a Network-on-Chip (NoC). Vivid examples of such architecture are the Intel

48-cores Single-chip Cloud Computer (SCC) [SCC, 2009], the Intel Tera-flops 80-cores

chip [Vangal et al., 2008], or the Tilera 100-cores TILE-Gx Processor [TILE-Gx, 2009].

In the incoming years, NoC-based, shared memory, Massively-Parallel Multi-Processors

System-on-Chip (MP2SoC) architecture, containing more than one thousand processors

[Shekhar, 2007] will be used and implemented.

However, as stated by [Furber, 2006], zero-defect manufacturing of such architecture

on a chip, with 100% fault-free components, is a big challenge that is very difficult, not

to say impossible to achieve. The same author also recalls that during the first year of

use, numerous faults are likely to occur “on the field”, in chip operation, due to wear-out

effects. To solve these two major problems, not only the technique improving the chip

yield at manufacture time is needed, but also the “on the field”, architecture-level fault-

tolerant approach must be taken into account.

According to the industrial classification, the faults occurring on chip cir-
cuit can be classed into three families : permanent, transient and intermittent.
Their definitions are summarized as below :
– Permanent faults are irreversible physical changes, due to some pollutions

in manufacture process or wear-out effect during the operation of circuit.
So an error caused by permanent fault cannot be recovered by hardware
reset.

– Transient faults are induced by external temporary environmental events,
such as ions or electro-magnetic radiation. They create non physical change.
So all errors caused by the transient fault can be recovered by hardware re-
set.

– Intermittent faults are induced due to unstable hardware, in some environ-
mental conditions, such as temperature or voltage change. Then all errors
caused by the intermittent fault can be treated by hardware reset in the
environment adjusted.

In brief, as the permanent fault can physically change the chip structure, it will
strongly decrease the chip yield and lifetime. Thus, our objective all along this
thesis is to provide solutions to improve permanent fault-tolerance.

A MP2SoC architecture will contain a larger number of replicated identical compo-

nents, such as the processor cores, the embedded memory banks, the network routers and
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so on. In this kind of architecture, even if some of the components are faulty, the remaining

ones are able to continue to work in a gracefully degraded mode. Borrowing the ideas from

the error control process : Detection, Containment & Recovery [Dally and Towles, 2004] 1,

we can define a new mechanism, as an “on the field”, architecture-level fault-tolerant

approach. For example, for the faulty processor cores, or the faulty embedded mem-

ory banks, once their erratic behaviors have been detected (detection), they will be de-

activated (containment), and the software application will be remapped on the remaining

operational hardware (recovery). Unfortunately, for the NoC itself, to realize the recovery

mechanism is not always straightforward.

In order to save silicon area, and to minimize the network latency, most NoCs, tak-

ing advantage of the regular micro-network topology, use dedicated routing algorithms,

such as X-First routing [Dally and Seitz, 1987] for a N×M 2D-Mesh topology. Thus, in

a defective NoC, once the faulty components (router or communication channel) have

been detected and de-activated (became holes), the NoC regular topology has been in fact

modified. This results in a new irregular topology. With the original routing algorithm,

the packets might be routed towards the hole, or be routed in a deadlock or livelock way,

which, in the worst case, will lead to a whole NoC block. Therefore, recovery means

to reconfigure the NoC itself and the global routing function, aiming to support the new

topology.

The goal of this thesis is to define, realize and evaluate a complete “On the field”,

Detection, De-activation & Reconfiguration (ODDR) mechanism for a 2D-Mesh NoC

used in a shared memory MP2SoC architecture.

1.2 Analysis of “On the field” Detection, De-activation &
Reconfiguration (ODDR)

As shown in Figure 1.1, three basic components of a 2D-Mesh NoC are : router, com-

munication channel and network interface controller (NIC).

– Router : is the switching units of network. Its task is to route the packets from an

input channel to an output channel, respecting the routing algorithm. The routing

function module and switch module (such as crossbar) constitute the router struc-

ture.

1. The error control process : Detection, Containment & Recovery, is usually used to deal with a tran-
sient fault, as a packet-transmission-level fault-tolerant approach. Detection means to check out the failure
of packet, using such as ECC (Error Control Code) or CRC (Cyclic-Redundancy Check) field. Containment
aims to prevent the failure packet propagation. Recovery means the packet retransmission.
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Figure 1.1 – A generic 2D-Mesh NoC structure.

– Communication channel : is a set of unidirectional buffering devices, connecting

an output port and an input port of the neighboring router/router or router/NIC.

Its main task is to flow the packets. A communication channel might travel clock

boundary, when the NoC supports GALS (Globally Asynchronous, Locally Syn-

chronous) approach.

– Network Interface Controller (NIC) : is a gateway between network and each

local subsystem (called a cluster). It provides the services at the transport layer on

the ISO-OSI reference model. Its main tasks are the protocol conversion and the

packet building.

In the context of fault-tolerance, among these three basic components, the NIC is

normally considered as a component of cluster, rather than a NoC component. Because

a faulty NIC doesn’t modify the network topology, but leads a cluster unavailable. The

router and the communication channel are considered as two atomic components of NoC.

For the ODDR (“On the field” Detection, De-activation & Reconfiguration) mecha-

nism, once a router or a communication channel is detected as faulty, it must be fully de-

activated. Then, all faulty/de-activated components must be diagnosed/located to identify

the modification of topology. And the routing function must be reconfigured to support

this modified topology.

To realize such mechanism, we must solve three problems :

1. “NoC Test” : We must define an appropriate test strategy, which must be able to de-

tect and de-activate all faulty components (routers and channels) of NoC. In order

to fit “on the field” requirement, namely, to recover (permanent) failures happen-

ing when the chip is mounted in the final equipment, the test mechanism must be
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embedded on chip.

2. “Configuration Infrastructure” : We must define a robust global configuration

master. And we must make this master able to diagnose/locate the faulty/fault-free

components, and able to identify the modification of topology, and finally able to

calculate the configuration information. Besides, we must also define a robust global

configuration bus for the master, in order to distribute the configuration information

to the corresponding NoC components.

3. “Routing Algorithm” : We must define a deadlock-free, livelock-free and recon-

figurable routing algorithm to support any modification of topology. And we must

also implement this routing algorithm in NoC.

In the following section 1.2, 1.3 and 1.4, we analyze and discuss these three problems.

And we conclude and list the questions at the end of each section. These questions are

answered in the thesis “Conclusion”.

1.3 NoC Test

In the semiconductor industry, the classical test approach aims to exactly determine

which chip is faulty in early stage of the manufacturing process. Earlier detection con-

sumes lower cost (for example, a typical incremental ratio of detecting a fault at the vari-

ous manufacture levels is 10, as presented in [Williams and PARKER, 1982]).

Manufacturing Process Cost of detecting a fault ($)
Low Wafer 0.01-0.10www� Packaged chip 0.1-1

Board 1-10
System 10-100

High Field 100-1000

Once a chip is detected as defective, it will be thrown away as a garbage. This solution

is acceptable when the die yield per wafer is high (> 70%). But, for a modern high-

density chip, shrinking transistor geometry and increasing transistor quantity per single

die [ITRS, 2009], could result in a low yield. In order to improve this yield, the manu-

facture defect must be detected and located. A faulty chip can therefore be (statically)

reconfigured to work in a degraded mode, and be sold at a lower cost.

However, facing a future high-permanent-fault-rate MP2SoC chip, not only the man-

ufacture defects, but also the “on the field” failures (where the chip is already mounted in

the final equipment), must be handled. Thus, “test for de-activation” strategy must be used,
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to isolate the failure propagation. For the NoC itself, the “test for de-activation” strategy

aiming to detect and de-activate all faulty components, must be defined and realized. The

related problems are analyzed and discussed in this section.

1.3.1 BIST (Built-In Self-Test)

In order to detect the faults both in the manufacture and “on the field”, a BIST (built-in

self-test) strategy is the unique solution, since we cannot use an external tester. Thus, the

test generator/analyzer are embedded on a chip, so that the test process can be operated at

any slice of chip lifetime. The BIST strategies can be split into 2 classes :

– On-Line : Testing occurs during normal functional operating conditions.

– Off-Line : Deals with testing a system when it is not in its normal mode of operation.

As a permanent fault physically and globally changes the NoC structure and topology,

“off-line BIST” techniques must be adopted, where the components can be de-activated as

soon as they have been detected as faulty, when the NoC is not yet running. In this thesis,

we make the test process systematically operated at each system reboot or chip power-on.

To define/realize such off-line BIST for NoC, the first task is to place each embedded

test generator/analyzer at reasonable position.

1.3.2 Placement of Embedded Test Generator/Analyzer

A Network-on-Chip is composed of a set of atomic components : routers and channels.

These two kinds of component connect with each other through the wire-links. We must

insert the multiplexers to break the original connections, as shown in Figure 1.2, in order

to isolate each component test, and then to de-activate the faulty ones.

With the help of these multiplexers, we can place the BIST modules : embedded test

generator/analyzer, to test each component. As shown in Figure 1.3, there are in fact two

possible placements : non-interactional and interactional.

Figure 1.3.{A} presents non-interactional placement. With this placement, the router

test and the channel test do not interfere. Thus, each component can be tested in parallel

and in isolation without any coordination. However, this placement implies that some

data-paths - the inputs of the multiplexers - can not be tested, namely, the multiplexers

can not be fully tested.

Figure 1.3.{B} presents interactional placement. With this placement, all data-paths

can be tested. However, the router test and the channel test mutually interfere.

In this thesis, we show more interest in the interactional placement, because it can

provide a complete data-paths test. With this placement, we must develop an algorithm



1.3. NOC TEST 11

Channel

Communication

Router

Figure 1.2 – The inserted multiplexers.
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The input of multipexer of data−path can not be tested

Figure 1.3 – Two placements of BIST modules.

for test process to handle the test interaction. Besides, we must solve the second problem

of NoC test, that is to generate a set of efficient test patterns for router test and channel

test.

1.3.3 Test Pattern, Fault Model & Fault Coverage

As shown in Figure 1.4, used by a couple of test generator/analyzer to detect a circuit,

the basic method is to assign an input value on the inputs ports, at a given time period, and

to observe the output value on the outputs ports. Such a group of assigning input signals,
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observing output signals and a given time period, is defined as a test pattern.
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Figure 1.4 – A generic circuit is tested by a couple of test generator/analyzer.

The quality of a test pattern is evaluated from point of view of fault coverage on a fault

model. In this thesis, the target fault model is SAF (stuck-at fault).

Stuck-At Fault : The faults most frequently occur due to gate oxide or metal

wire short with GND or Vdd, resulting in a signal or a gate in/output port

stuck at a 0 or 1 value.

The definition of the SAF coverage is :

Fault Coverage (%) =
Number of SAF Detected

Total Number of SAF

In this formula :

“Total Number of SAF” is calculated from the total number of gate port of

the target circuit.

“Number of SAF Detected” comes from the number of SAF detected through

a given test pattern.

For example, as shown in Figure 1.5, for a circuit with an inverter gate, the

total number of gate port is 2 (In and Out). Each port can be injected by SA0

or SA1, “Total Number of SAF” is thus 4= 2×2. And we can list all of SAFs.

For a given test pattern (In :0, Out :1), two SAFs can be detected, “Number

of SAF Detected” is thus 2. “Fault Coverage” reached by this test pattern is

50% = 2/4.

In Out

SA0SA0

SA1 SA1

SAF LIST:  A test pattern (In:0,Out:1):

In_SA0

In_SA1

Out_SA0

Out_SA1

can detect 2 SAFs

In_SA1

Out_SA0

Figure 1.5 – A circuit with an inverse gate.
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A higher fault coverage means that more SAF can be detected. To get a high fault

coverage becomes the main goal at test pattern generation stage. However, to reach this

goal, it normally needs a larger number of test patterns, which will lead to consume more

test times and more silicon area overhead (when the test patterns are directly embedded

on chip). So, to get the balance between the number of test patterns and the fault coverage

is an issue.

In this thesis, we want to obtain the highest possible fault coverage, limiting the test

time less than 1 second at 1Ghz clock and the silicon area overhead less than 200% (the

overhead due to TMR : Triple Modular Redundancy) of the total NoC silicon footprint.

To meet these big challenges, we must define an efficient test pattern generation.

1.3.4 Test Pattern Generation

At the beginning of this discussion, we introduce the classification of circuit : combi-

national and sequential.

G
M

Circuit

Output
N

G : generation

{A}

Input T
N M M

G
H

Circuit

Output

{B}

Input

T : transition G : generation

Figure 1.6 – The combinational circuit and the sequential circuit.

Combinational Circuit consists of logic gates whose outputs at any time are deter-

mined by combining the values of the applied inputs using logic operations. In a NoC, the

routing function module of the router is a combinational circuit.

As shown in Figure 1.6.{A}, for a combinational circuit with N bits input, the to-

tal number of circuit states is 2N . And each circuit state can be directly tested through

assigning the input and observing the output.

Sequential Circuit consists of some combinational circuits and storage elements. The

output depends not only on the presented input but also on the contents of storage ele-

ments. In a NoC, the channel and the switch module (such as crossbar) of the router are

sequential circuits.

As shown in Figure 1.6.{B}, for a sequential circuit with N bits input and M bits

register, the total number of circuit state is 2N+M = 2N × 2M. To test each circuit state,

we need at least 2 clock cycles for 2 input assignments : one clock cycle for register
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initialization with first input assignment ; the other clock cycle for output observation

with second input assignment. That is to say, two test patterns work together to test one

circuit state.

To test a circuit using BIST strategy, three classical test pattern generations can be

used : pseudo-random test pattern generation, automatic test pattern generation and ad-

hoc test pattern generation.

Pseudo-random Test Pattern Generation produces a set of test pattern with an orga-

nized & random process, such as LFSR (Linear Feedback Shift Register). LFSR is a shift

register whose input bit is a linear function of its previous state. For the combinational

circuit shown in Figure 1.6, LFSR (with N bits register) can produce (2N−1) continuous

and unduplicated test patterns to detect the corresponding circuit state. Moreover, coop-

erating with a signature computation, such as MISR (Multiple Input Signature Register),

they (LFSR/MISR) can directly play the role of BIST generator&analyzer.

However, when N is a big number, we can not not easily get the balance between the

number of test pattern and the fault coverage with the LFSR/MISR couple. This weak

point will be very obvious, when we use LFSR/MISR to handle a sequential circuit. In

order to deal with this problem, we can use multi-reseeding reinitialization for the LFSR.

But, this method breaks the linearity feature of LFSR, leading to high complexity of test

control and high hardware overhead. Therefore, this method doesn’t interests us.

Multi-reseeding reinitialization for the LFSR : To test a circuit, one seed

of LFSR might lead to a good fault coverage increase, such as 5%. However,

the following continuous states of LFSR might be inefficiency, the fault cov-

erage increase might stay at 5% for a long time. So, LFSR will need many

times of reinitializations to increase quickly the fault coverage. But, this so-

lution breaks the linearity feature of LFSR, leading to high complexity of test

control.

Automatic Test Pattern Generation can produce directly high fault coverage with

number limited test patterns for combinational circuits. This test pattern generation is

done using the structure analysis of the circuit with the help of an algorithm, suck as

Roth’s D-Algorithm [Paul, 1966]. Therefore, many industrial ATPG (Automatic Test Pat-

tern Generation) tools have been launched on the market. In this thesis, we will use Syn-

opsis TetraMAX, to generate directly the test patterns for the routing function module of

router.
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It should be noted that, the ATPG tool can not directly deal with a complex sequential

circuit, as the controllability and observability of most nodes of circuit are very low.

– Controllability of an internal circuit node presents the complexity of set-
ting a node to a 1 or 0 value through the circuit input.

– Observability of a particular circuit node describes the complexity of ob-
servation of the node state from the outputs of this circuit.

As shown in Figure 1.7, a complex sequential circuit means a large depth of

register level, and the node a means an internal single node in the middle of

the logic level. If it’s difficult to be controlled by the input and to be observed

through the output, its controllability & observability is low. For such circuit,

ATPG tools get very low fault coverage.

a
Input

Circuit

Output

Multi Register levels

Figure 1.7 – A complex sequential circuit with multi-register-levels.

In fact, ATPG tools are useful when the techniques improving the observability and

controllability are implemented, such as the scan-path approach.
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Figure 1.8 – Scan-based approach.
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As shown in Figure 1.8, the registers of circuit are connected as a long-chain shift

register called scan-path. The circuit can thus operate in one of two modes : the normal

mode and the scan mode. When to process test, the circuit works firstly in scan mode (M

clock cycles, a M bits data are shifted in the registers as the initialization state). Then the

circuit works in normal mode one clock cycle, the circuit produces the register value and

the output value. Finally, the circuit works again in scan mode (M clock cycles, so the

M bits register value are shifted out and analyzed). In other words, the scan-path allows

to split a complex sequential circuit into a set of combinational parts (for example, the

transition part and the generation part as shown in Figure 1.8). Each part can be easily

handled by ATPG tool.

However, using the scan-path, the time consuming will be very huge caused by shifting-

in, shifting-out. Therefore, this approach is not used in this thesis.

Ad-hoc Test Pattern Generation corresponds to explicitly generate the test patterns,

considering the characteristic of component function and structure. This method can get

a high fault coverage, and can limit the number of test pattern. Taking account of these

advantages, we propose in this thesis, an ad-hoc test pattern generation for channel test

and the router switch module (crossbar) test. The detail will be presented in chapter 5.

In the last two subsections, we will analyze and discuss two constraints of “NoC test” :

GALS and de-activated component behavior.

1.3.5 GALS

The GALS (Globally Asynchronous, Locally Synchronous) approach can solve the

design bottleneck of clock tree distribution, by partitioning a large circuit in small syn-

chronous parts communicating asynchronously. And most Network-on-Chip designs sup-

port the GALS on the communication channel. Thus, the channel test procedure must be

able to handle the clock boundaries.

1.3.6 De-activated Component Behavior

The faulty components must be de-activated as soon as they have been detected as

faulty, with the purpose of isolating error source and avoiding failure propagation. This

de-activation approach must be implemented together with the NoC BIST. Moreover, the

de-activated component should not disturb the normal function of fault-free components.

To meet this requirement, in this thesis, the de-activation component is proposed to be

configured to behave as a “Black Hole”, which discards any incoming data, and produces

no outgoing data.
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1.3.7 List of questions

In summary, the question related to the embedded test procedure are the following :

• How to handle the interaction between the router test and the channel test ?

• How to generate efficient test patterns for channel test and router switch module

(crossbar) test ?

• How to realize the de-activation approach within the BIST strategy ? And How to

configure the fault component to behave as a “Black Hole” ?

• Can the proposed communication channel test handle the clock boundaries ? And

How ?

• How many test patterns are generated for the NoC test ?

• What is the cost of the NoC test ?

• What is the SAF coverage respectively reached by the channel test and the router

test ? What is the SAF coverage reached by the whole network (with the BIST

circuit) test ?

1.4 Configuration Infrastructure

To support the “on the field” NoC reconfiguration mechanism in a MP2SoC architec-

ture, the configuration infrastructure must be implemented in the architecture. The specific

responsibilities of such infrastructure are :

– To define a robust global configuration master. This master is in charge of the con-

trol of all configuration actions.

– To define a method for the master, to diagnose/locate the faulty/fault-free compo-

nents detected by the BIST.

– To define a robust global configuration bus. This bus is used by the master to dis-

tribute the configuration information to the NoC components.

In the section, we analyze and discuss each responsibility.

1.4.1 Configuration Master

Considering the context of “on the field” NoC reconfiguration mechanism, the global

configuration master must be embedded on the chip. Thus, there are two methods to define

a master : to design an appropriative embedded component or to reuse an embedded pro-

cessor core of MP2SoC. In this thesis, we prefer the second method, because it improves

the fault-tolerance : any core can be used as the global configuration master. However, we

have to solve the problem produced by the use of this method : how to select an embed-
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ded processor core to play the role of global configuration master. In fact, we can use two

approaches of selection : static selection and dynamic selection.

– Static selection fixes a processor core to play the master role. However, this method

is not “robust” when the fixed processor core is faulty.

– Dynamic selection elects core respecting “free competition” principle. This selec-

tion method allows to meet “the robust” requirement.

Once the global configuration master problem has be solved, the next one is to develop

a mechanism of diagnosis/localization of faulty/fault-free components operating in the

master.

1.4.2 Diagnosis/Localization of Faulty/Fault-free Component

One of the tasks of the global configuration master is to process the NoC test results,

namely, to diagnose/locate the faulty/fault-free components, with purpose of identifying

the modification of topology and calculating the configuration information. The practica-

ble methods are : direct diagnosis/localization or indirect diagnosis/localization.

– Direct Diagnosis/Localization method reads or accesses directly the devices stor-

ing the NoC test results. Therefore, there are two requirements implied in this

method. Firstly, the NoC test results must be locally stored in some distributed

memory devices. Secondly, an appropriative TAM (test access mechanism) must

be built on the chip to access these memory devices. These two requirements will

result in more hardware overhead and more risk of failures. So it is not proposed in

this thesis.

– Indirect Diagnosis/Localization method is to find out the faulty/fault-free com-

ponents, through a functional test. According to the NoC test strategy, any faulty

component will be de-activated and be configured to behave as a “Black Hole” (dis-

cards any incoming data, and produces no outgoing data). This strategy is actually a

functional fault model, that can be located by a functional test, such as the solutions

proposed in [Grecu et al., 2005, Stewart and Tragoudas, 2006, Raik et al., 2007]. It

should be noted that, the functional test can be realized using a software application.

It will be executed by the configuration master.

Once the faulty/fault-free components have been diagnosed/located by the master, the

modification of topology has been identified, the configuration information can be cal-

culated according to the new routing algorithm. So, we have to define a robust global

configuration bus for the master, in order to distribute the information to the configuration

registers, which is the next problem to be solved.



1.5. ROUTING ALGORITHM 19

1.4.3 Configuration Bus

First of all, the proposed global configuration master is a not yet defined embedded

processor core. Secondly, the NoC itself already connects each processor core and each

configuration memory device. Considering these two characteristics, we propose to reuse

NoC itself to play the role of configuration bus. For example, using the remaining fault-

free components to propagate the messages (such as the flooding broadcast propagation

proposed in [Dumitraş et al., 2003]), the NoC can implement a function configuration bus.

This method is robust and it doesn’t induce any hardware overhead and any risk of failure.

1.4.4 List of questions

This thesis will use an existing configuration infrastructure solution : the DCCI (Dis-

tributed Cooperative Configuration Infrastructure) [Zhang et al., 2011]. DCCI is devel-

oped by REFAUVELET Dimitri at the LIP6 laboratory. This DCCI dynamically selects

an embedded processor core to play the role of the global configuration master, and it

reuses the NoC itself to realize a functional global configuration bus. And we aims to

develop on top of DCCI, a functional test software to diagnose/locate faulty/fault-free

component.

The questions addressed in this topic are :

• Can the test software 100% diagnose/locate faulty/disabled component ?

• Can the test software 100% diagnose/locate the fault-free component ?

• What is the performance of the test software ?

1.5 Routing Algorithm

The routing algorithm is in charge of guiding packet transmission. It must route any

packet to the destination from the source in a given topology without deadlock and live-

lock. However, when the topology is modified caused by some faulty/disabled routers or

channels, the routing algorithm must be reconfigured to adapt the modification of topol-

ogy. In this section, the problem of defining a fault-tolerant reconfigurable routing algo-

rithm is discussed and analyzed.

1.5.1 Micro-network Regular Topology

As shown in Figure 1.9, the typical regular topologies are Linear, Ring, Fat tree, Mesh,

Torus, Octagon and Butterfly, each one defines a static arrangement of the communication
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channels, the routers and the clusters (a couple of go/back channels are presented by a line,

a channel is presented by an arrow line, a router by a square node and a cluster by a circle).

For a given regular topology, the number of connections per router and the total num-

ber of channels are determined, and these numbers will be utilized by the fault-tolerant

reconfigurable routing algorithm, to bypass the faulty components.

(C) Fat tree

(D) (2D−)Mesh (E) (2D−)Torus

(F) Octagon

(G) Butterfly

(A) Linear (B) Ring

Figure 1.9 – A summary of typical regular topology.

C0

R0 R1

(A) Ring

R0 R1

(B) (2D−)Mesh

Figure 1.10 – A 9-nodes Ring topology and 3×3-nodes 2D-Mesh topology.

As shown in Figure 1.10.A, in a 9-nodes Ring topology, there are two paths

from R0 to R1. Once the communication channel C0 is broken, only one

path can be used to route the packet from R0 to R1 for any routing algorithm
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to bypass the faulty channel. As shown in Figure 1.10.B, in a 3× 3-nodes

2D-Mesh topology, there are seven paths between routers R0 and R1. Even

though the channel C0 is broken, six paths can still be used by a routing

algorithm to bypass the faulty channel.

In this thesis, we are focussing on 2D-Mesh micro topologies.

1.5.2 Fault Model of Modification of Topology

In the regular 2D-Mesh, the modification of topology can be classified into five fault

models :

• Single faulty channel topology.

• Multiple faulty channels topology.

• Single faulty router topology.

• Multiple faulty routers topology.

• Mixed Single or Multiple faulty channel and router topology.

These five fault models must be handled by the fault-tolerant reconfigurable routing

algorithm, without deadlock or livelock. It should be noted that, handling all single-faulty-

router topologies is the minimum requirement for a fault-tolerant routing algorithm.

In the following, we will present the routing strategy and analyze and discuss dead-

lock/livelock problems.

1.5.3 Routing Strategies

The routing strategies can be classified in two types : deterministic and adaptive. Ac-

cording to a deterministic routing algorithm, all the packets of a pair of {source, des-

tination} will follow the same fixed path. It guaranties the in-order delivery property.

Oppositely, in an adaptive routing, the path of a pair of {source, destination} can be dy-

namically modified for various causes (router congestion, channel busy, channel failure

and so on). It results in an out-of-order delivery.

For a deterministic routing, once a fixed path is broken, the reconfiguration mechanism

must redefine a new one to replace the broken one. For an adaptive routing, the reconfig-

uration mechanism must mark which channel and/or router as failed or as unusable (not

only the faulty components must be marked, but also some fault-free might need to be

marked as unusable for some packets, so as to avoid the livelock or deadlock).

As the adaptive routing has more flexibility than the deterministic routing, it’s used

in many published solutions. However, the adaptive routing causes a higher overhead of
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silicon area. 2 Moreover, the loss of the in-order delivery property introduces big dif-

ficulties in higher level communication protocols. Therefore, to design a deterministic,

lightweight, deadlock-free, fault-tolerant and reconfigurable routing algorithm is the goal

of our work.

busy

return path

Figure 1.11 – A return-back path in a 3×4-nodes 2D-Mesh topology. It induces a higher
deadlock or livelock risk.

1.5.4 Deadlock & Livelock

For any routing algorithm, both deadlock and livelock must be avoided. They are

occasioned by incompatible allocation/deallocation conditions, presented as :

P0

C
0

C
1

(A) Deadlock (B) Livelock

P1

R1

R0

P0
busy

busy

Figure 1.12 – A deadlock and a livelock.

– Deadlock is caused by two or more packets waiting for each other to release a

network resource, such as a communication channel. As shown in Figure 1.12.A,

in a 2D-Mesh topology, the packets P0 and P1, waiting for each other to release

the channels C1 and C0, induces a deadlock situation. To handle this problem, two

methods can be used : deadlock prevention and deadlock recovery.

2. Firstly, the adaptive routing requires a reordering approach at the destination. Secondly, to treat some
irregular topologies, to avoid to route a packet in a dead end, the adaptive routing permits the return-back
path (as shown in Figure 1.11) in NoC, that induces a higher deadlock or livelock risk. Finally, some adaptive
routing implementations depend on the timeout & retransmission approach.
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• Deadlock prevention avoids deadlock by source restriction of the routing func-

tion. For example, the turn model [Glass and Ni, 1994] forbids some turns on a

2D-Mesh to break the cycle in the channel dependency graph.

• Deadlock recovery introduces some special resources to break the deadlock sit-

uation, when deadlock appears. For example, in Figure 1.12.A, we can suspend

the packet P0, until the end of transmission of P1, then release P0, so to recover

deadlock.

– Livelock occurs only in the adaptive routing strategy. Unlike deadlock, livelocked

packets continue to move through the network, but never reach their destination.

For example, one packet enters a cycle situation, as shown in Figure 1.12.B, in a

2D-Mesh topology, if some channels are very busy due to some applications, the

packet P0 (from R0 to R1) might keep moving, entering an infinite periodic loop.

A reconfigurable routing algorithm must be formally proven to be deadlock-free and

livelock-free, since the modifications of topology are irregular and numerous. Accord-

ing to the minimum requirement, the reconfigurable routing algorithm must be formally

proven to be deadlock-free and livelock-free with all single-faulty-router topologies 3.

In the following subsections, we will analyze and discuss two issues of fault-tolerant

reconfigurable routing algorithm : transmission mode and virtual channels.

1.5.5 Transmission Mode

[Bogdan et al., 2007, Song et al., 2009, Pirretti et al., 2004] proposed a fault-tolerant

approach for NoC : changing NoC transmission mode from unicast to multicast, broad-

casting a packet to increase the number of packet copies, and then making these copies

travel all possible route paths, finally guarantying that at least one copy of packet can

reach at the destination. This method provides a shortest or fastest route path and good

tolerance against faults. But, it will induce an extensive power consumption, a low trans-

mission efficiency, a high network latency and a complex network structure. In this thesis,

we keep the NoC original transmission mode (unicast).

1.5.6 Virtual Channels

As presented in the published techniques [Duato, 1993, Chalasani and Boppana, 1995a,

Park et al., 2000], virtual channels can be used to increase the degree of fault-tolerance of

NoC, or to realize deadlock recovery for the routing algorithm. But, the virtual channels

3. We can not prove deadlock-free and livelock-free properties using some cases of topology modifica-
tions, counter-example might exist, such as the history happened between the articles [Chen and Chiu, 1998]
and [Holsmark and Kumar, 2007].
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causes silicon area overhead and they are not supported by all NoCs. In this thesis, we

keep the NoC original channel property (non virtual channel).

In the following subsections, we will analyze and discuss the problem addressing the

routing algorithm implementation.

1.5.7 Routing Function

The final goal of a fault-tolerant reconfigurable routing algorithm design, is to imple-

ment the routing strategy in the NoC. Thus, in each router, the routing function must be

defined. It determines an output for a packet depending on some parameters, respecting

the routing algorithm.

INDEXoutput = Routing_Function (parameters)

The typical parameters and informations are :

– INDEXsource is the absolute coordinate of packet source in the given topology.

– INDEXdestination is the absolute coordinates of packet destination in the given topol-

ogy.

– INDEXrouter is the absolute coordinates of the router routing the packet.

– INDEXinput is the ID of the router input routing the packet.

– PRIORITYmessage describes the priority level of the packet.

– CONFIGrouter describes the informations of configuration of current router routing

the packet.

The number of parameters normally determines the implementation cost of the routing

function : less parameter, less cost (area).

1.5.8 Routing Function Implementation Method

The methods to implement a routing function can be classified in two types :

– Table-based : The routing function hardware implementation is a table. The in-

dex of table is a group of parameters, such as {INDEXsource, INDEXdestination, ...,

CONFIGrouter and so on}. The configuration memory is just the routing table it-

self. To be reconfigurable, this method requires to implement the routing table as a

read/write memory.

– Logic-block-based : The routing function hardware implementation is synthesized

directly from the routing function HDL description model. To be reconfigurable,

this method needs only an additional configuration register.
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For a fault-tolerant reconfigurable routing algorithm, the hardware cost due to logic-

block-based method is very smaller than the table-based method. Thus, we will use the

logic-block-based method in this thesis.

1.5.9 Routing Evaluation

A fault-tolerant reconfigurable routing algorithm must be evaluated from at least two

points :

– Performance evaluation aims to find out the impact or penalty on the network trans-

mission performance.

– Silicon area overhead evaluation shows the cost of routing function hardware im-

plementation.

1.5.10 List of questions

The questions addressed in this topic are :

• Which fault model of modification of topology can be handled by the proposed

routing algorithm ? And can all of single-faulty-router topologies be handled ?

• Can we formally prove that the proposed fault-tolerant reconfigurable routing algo-

rithm is deadlock-free and livelock-free for all of single-faulty-router topologies ?

• What is the impact or penalty on the network transmission performance ?

• What is the cost on the silicon area (comparing with X-First routing algorithm im-

plementation) ?

• Is it possible to generalize the proposed fault-tolerant reconfigurable routing algo-

rithm to handle other topologies than the 2D-Mesh ?
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In this chapter, we present the state of the art of the Network-on-Chip fault-tolerant

strategies dealing with the permanent fault family. These strategies are defined at differ-

ent levels : link-level, router-level and network-level. And we discuss and analyze the

researches related to ODDR (“On the field” Detection, Deactivation & Reconfiguration)

mechanism. This discussion & analysis cover three topics : the NoC test strategy, the

configuration infrastructure and the routing algorithm.

2.1 A Summary of NoC Fault-Tolerant Strategies Han-
dling the Permanent Fault Family

A Network-on-Chip, is an embedded interconnection system. It is an inheritance de-

sign of the networks used in the high-end supercomputers or in the telecom switches. As

shown in Figure 2.1, a typical NoC structure, is a set of monolithic centralized routers

connected each other through the wire-link channels. Researchers have defined and pub-

lished fault-tolerant strategies at link-level, at router-level and at network-level, to handle

27
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the permanent fault family. In this section, we summarize these strategies.

Router
A wire−link channel

Cluster

Figure 2.1 – A generic network consists of the routers and the wire-link channels.

2.1.1 Link-level

At link-level, the main idea of fault-tolerant strategy is to de-activate the faulty wire-

links in a channel, and to transmit the packet through the remaining links. Two solutions

are presented in the book [Dally and Towles, 2004] : Spare Bit or Graceful Degradation.

Spare Bit

This method relies on additional extra wire-links, to provide a hardware redundancy.

As shown in Figure 2.2, one spare bit is added into a N bits channel, resulting in a N+1

bits channel, that is used to transmit the N bits packet. When a bit is detected as faulty, the

remaining N bits are reconfigured to repair the packet transmission. However, this method

can not handle the case where the number of faulty bits exceeds the number of spare bits.

Graceful Degradation

This method doesn’t add any extra wire-link, but uses the remaining links to recover

the packet transmission. For a N bits channel, when M (M < N) links are detected as

faulty, the remaining (N-M) bits (or less) will be used to transmit the N bits packet, with

the help of serial repackaging technique [Pasca et al., 2010]. However, the bandwidth of

the faulty channel will be reduced, which decreases the channel transmission efficiency

and increases the network latency.

The wire-link channel test is very straightforward. With the help of some effective test

patterns, such as the patterns described in [Lien and Breuer, 1991, Jarwala and Yau, 1989,

Shi and Fuchs, 1995, Park, 1996], the test generator at the head of channel, cooperating

with the test analyzer at the end of chanel, can detect and diagnose the faulty wire-links.



2.1. A SUMMARY OF NOC FAULT-TOLERANT STRATEGIES HANDLING
THE PERMANENT FAULT FAMILY 29

(A) (B) (C)

d7

d6

d5

d4

d3

d2

d1

d0
L0

L1

L2

L3

L4

L5

L6

L7

L8

d7

d6

d5

d4

d3

d2

d1

d0

Tx Rx
d7

d6

d5

d4

d3

d2

d1

d0
L0

L1

L2

L3

L4

L5

L6

L7

L8

d7

d6

d5

d4

d3

d2

d1

d0

Tx Rx
d7

d6

d5

d4

d3

d2

d1

d0

d7

d6

d5

d4

d3

d2

d1

d0

Tx Rx

L0

L1

L2

L3

L4

L5

L6

L7

L8

Figure 2.2 – FIG.A presents a wire-link channel containing 8 bits + one spare bit. This
channel is used to transmit 8 bits data. FIG.B presents a configuration for the no-faulty
link case. FIG.C presents a configuration for an single-faulty link (L2) case.

2.1.2 Router-level
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u
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RF

RF

RF

Crossbar

Crossbar Allocator

RF

Buffering Device Buffering Device

Figure 2.3 – A generic router of 2D-Mesh NoC.

As shown in Figure 2.3, a generic router consists of three separate modules : routing

function (RF), crossbar and input/output buffering device. The fault-tolerant strategies

defined at router-level, are presented in this section. The related solutions are N-modular
Redundancy, Crossbar Bypass Bus and CRC (Cyclic Redundancy Codes) or ECC
(Error Correction Codes).
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NMR (N-Modular Redundancy)

Following a traditional hardware redundancy idea, [Constantinides et al., 2006] pro-

posed a NMR (N-Modular Redundancy) fault-tolerant solution for a router. This solution

adopts N-copies of router modules to generate N outputs in parallel, then to vote one out-

put as the final one, so as to guaranty the reliability. But, this solution is very expensive in

terms of area overhead.

Crossbar Bypass Bus

[Fick et al., 2009b] suggested to provide a parallel bus beside the crossbar, as shown

in Figure 2.4, to transmit the packet bypassing the faulty crossbar, in order to rebuild the

transmission from the inputs to the outputs. This solution uses a lightweight hardware

redundancy, but introduces a strong reduction of the bandwidth as well as a limitation on

clock frequency.

Crossbar

Bypass Bus

In
p

u
t

O
u

tp
u

t

Figure 2.4 – A crossbar and a bypass bus.

CRC (Cyclic Redundancy Codes) or ECC (Error Correction Codes)

[Kohler and Radetzki, 2009, Fick et al., 2009b] proposed to adopt CRC or ECC to

handle the failures in the data-paths of the crossbar or the buffering devices.

– CRC empower each packet to self-check the bit-error.

– ECC empower each packet to self-check, self-diagnose and self-correct a limited

number of bit-error. However, this limited number depends on the code used. For

example, the Hamming code can detect and correct a single-bit error. In order to

handle more bit-errors, complex codes must be used, but this leads to a very large

hardware cost.

As shown in Figure 2.5, the CRC/ECC decoding modules are built at each output port

of the crossbar or the buffering device, to check each packet. Once one of the packets can
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not pass the check, the corresponding component is considered as faulty.
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Figure 2.5 – A router with CRC/ECC modules.

In fact, CRC/ECC can only handle the packet-level errors, rather than other reliability

failures. For example, the crossbar blocking, caused by a corrupted flow control, is a very

dangerous failure, resulting in a global network blocking. Thus, the dedicated BIST must

be used to deal with these failures.

Dedicated BIST Design

In [Fick et al., 2009b], besides using CRC/ECC to test the data-paths of the crossbar or

the buffering devices, the dedicated BIST is proposed to detect the controller of the cross-

bar and the buffering devices. However, this BIST doesn’t support the GALS approach

that is very useful in modern NoC design. Moreover, without isolation or deactivation

mechanism, the failure propagation can not be stopped. Thus, this BIST can not fit the

“on the field” fault-tolerance.

[Lin et al., 2009] proposed an off-line, “on the field”, dedicated BIST to test, diagnose

and isolate the faulty buffering devices & the faulty multiplexers of crossbar. However,

this BIST can test/diagnose/isolate neither the whole crossbar nor the whole channel. It is

not a complete BIST solution for NoC itself.

2.1.3 Network-level

At link or router-level, the permanent fault-tolerant strategies aim to recover the func-

tion of each component (link or router), rather than to disable the faulty components.

However, there will be two possible results : success or fail. Once the result is negative,
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the corresponding wire-link channel or router must be de-activated. Thus, the network is

modified and the recovery action enters the network-level.

At the network-level, three proposed fault-tolerant approaches can be used : Default
Backup Paths (DBP), Spare Routers & Wire-link Channels and Fault-tolerant &
Reconfigurable Routing Algorithm.

Default Backup Paths (DBP)

[Koibuchi et al., 2008] proposed to add some lightweight redundant hardware “paths”,

like “Crossbar Bypass Bus”, beside each component, in order to bypass the faulty com-

ponents. However, this method is still an expensive solution, and these simple paths only

support low throughput transmission.

Spare Routers & Wire-link Channels

[Bruck et al., 1993] suggested to add certain extra routers and wire-link channels, as

redundant components. As shown in Figure 2.6, when some components are faulty and

disabled, the spare components will be activated to rebuild the topology. However, this

method can not handle the case where the number of faulty components exceeds the num-

ber of spare components. Moreover, this method requires very long wires that will reduce

network performance.

Spare routers

Spare wire−link  channels
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11 14

Faulty router

{B}{A}

De−activated channels

Figure 2.6 – FIG.A presents a network with one spare router and ten spare links. FIG.B
presents a configuration to repair the network topology.

Fault-tolerant & Reconfigurable Routing Algorithm

In the high-end supercomputers scope, the network fault-tolerance researches, such

as [Glass and Ni, 1993, Cunningham and Avresky, 1995, Chalasani and Boppana, 1995b,
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Chalasani and Boppana, 1996, Duato, 1997], provided “on the field graceful degradation”

theory : using the fault-free components to route the packet to bypass the faulty compo-

nents with the help of fault-tolerant & reconfigurable routing algorithms. These published

routing algorithms can be used in NoC to handle the modification of topology due to

the permanent fault. Moreover, many researchers continue the same orientation to define

and develop more fault-tolerant & reconfigurable routing algorithms for NoC, such as

[Mejia et al., 2006, Nunez-Yanez et al., 2008, Fick et al., 2009a, Rodrigo et al., 2010].

However, the natural condition of the high-end supercomputers, where each faulty

node (processor, network router, wire likes, etc.) can be manually, independently and

physically tested, disabled, removed, replaced, reconfigured and recovered, is very dif-

ferent with NoC based system. The “on the field graceful degradation” of NoC means to

define a practicable, complete and automatic detection, deactivation and reconfiguration

mechanism, rather than only a fault-tolerant & reconfigurable routing algorithm.

In this thesis, we devote ourself to define and realize a practicable, complete and auto-

matic ODDR (“On the field” Detection, Deactivation and Reconfiguration) mechanism for

a 2D-Mesh NoC in a MP2SoC architecture. The related works are presented and discussed

in the next section.

2.2 Works Related to ODDR (“On the field” Detection,
Deactivation and Reconfiguration) Mechanism

To our knowledge, there is no complete solution related to the ODDR mechanism.

Thus, we separately present and discuss the works related to each of three problems :

NoC test, Configuration Infrastructure and Routing Algorithm.

2.2.1 NoC Test

In the past ten years, many authors have proposed NoC test strategies. A non ex-

haustive survey of the major contributions to this area is given in the following summary

organized by theme.

Manufacturing Test

As discussed in [Vermeulen et al., 2003], the initial goal of Network-on-Chip test

is the manufacturing test : the faulty chips are thrown away. Whatever the test tech-

nique used, the goal is only to distinguish the faulty NoC circuit, rather than to tol-

erate faults. Aiming to this goal, some solutions are proposed : [Ubar and Raik, 2003,
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Vermeulen et al., 2003, Pande et al., 2005, Grecu et al., 2005, Hosseinabady et al., 2006,

Raik et al., 2006, Hosseinabady et al., 2007, Cota et al., 2007, Cota et al., 2008].

Yield Improving Test

In a modern high-density chip, the yield will be low. In order to improve this yield,

the manufacture defect must be located. A faulty chip can then be reconfigured and sold

at a lower cost. To reach this goal, some solutions [Amory et al., 2005, Raik et al., 2007,

Petersén and Öberg, 2007, Herve et al., 2009, Concatto et al., 2009, Tran et al., 2006] are

proposed, to achieve “test for diagnosis” strategy. The NoC test results are analyzed to

diagnose the faulty components. However, without embedded auto-deactivation or auto-

isolation of faulty components, this strategy isn’t yet sufficient to fit the “on the field”

fault-tolerance.

On The Field Test

Facing a future high-permanent-fault-rate MP2SoC chip, not only the manufacture

defects must be handled, but the failures of the chip that is already mounted in the final

equipment, must be also handled. To fit such “on the field” fault-tolerance requirement, a

“test for de-activation” strategy must be defined and implemented in NoC. Therefore, we

need an off-line BIST with de-activation mechanism, where the components can be de-

activated as soon as they have been detected as faulty, when the NoC is not yet running.

As far as we know, there is not yet such BIST, and we must solve this important problem.

2.2.2 Configuration Infrastructure

In order to achieve “on the field” NoC reconfiguration mechanism, we must define and

implement a configuration infrastructure in the MP2SoC architecture, determine a config-

uration master, implement a configuration bus, and diagnose/locate the faulty/de-activated

components in order to identify the modification of topology. To our knowledge, there are

three related solutions : FDAR (Fault-Diagnosis-And-Repair), SDSC (Self-Diagnosis and

Self-Configuration) and DCCI (Distributed Cooperative Configuration Infrastructure).

FDAR (Fault-Diagnosis-And-Repair) system

In [Kariniemi and Nurmi, 2006], the authors proposed to use each local processor to

monitor, detect & diagnosis (with CRC) and repair (lock the faulty channels) each corre-

sponding local router. This approach provides a one-to-one relationship between a couple

(processor/router). A processor is a local configuration master, and the interconnection
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between a couple (processor/router) is a local configuration bus. However, when a router

or a processor/router couple is faulty, the network topology is globally modified, which

can not be handled by FDAR, since the global configuration master and the global con-

figuration bus are not defined.

SDSC (Self-Diagnosis and Self-Configuration) method

[Kolonis et al., 2009] proposed a mechanism for discovering in a MP2SoC the fault-

free paths between a specific I/O port and the fault-free processor cores. The result of the

discovering process is a fault-free communication map, that is used to find out the fault-

free components of NoC, and to configure them. This method is a centralized solution,

as the discovering process is driven by the static configuration master, the smart I/O port.

However, such smart I/O port controller will contain a very complex hardware structure,

with a high failure risk. Thus, this method induces a weak point into the chip, as the I/O

port is the critical resource.

DCCI (Distributed Cooperative Configuration Infrastructure)

The DCCI [Zhang et al., 2011] has been defined by REFAUVELET Dimitri at LIP6

within his thesis scope. The key idea is to have one embedded Configuration Firmware

(CF) in each cluster 1. With DCCI, a CF is able to communicate and exchange information

with its 4 direct neighbor CFs.

According to the NoC detection & de-activation mechanism, DCCI makes the assump-

tion that, the faulty components are disabled, the fault-free ones are enabled. The enabled

routers use the default X-First routing algorithm. Thus, the NoC it-self enters the pre-

configuration stage. The role of the DCCI distributed firmware is to progressively build

(only relying on local communications between neighbor clusters) a trusted tree of op-

erational clusters, where each operational cluster contains one operational (local master)

processor running the CF. This tree is built in a bottom-up way, starting with operational

clusters as leaves. This communication tree uses a limited part of the routing capabilities

of the NoC. It uses only the local communication channels between neighbor clusters,

to achieve software-based communication through dedicated mailboxes. This software-

based communication tree can thus be seen as a slow and temporary communication in-

frastructure, dynamically constructed, at the beginning of pre-configuration stage, using

the fault-free/activated NoC resources.

1. A cluster is a subsystem, containing several process cores, an embedded RAM, NoC router and so
on. An example of a cluster is presented in chapter 3.
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The root of tree is a cluster determined by a distributed election algorithm. The most

important criterion in this election process is the capability of this root cluster to access an

external mass storage where more exhaustive test programs and the final operating system

itself are available, and can be loaded in the embedded RAM of the root cluster. The local

master processor of the tree root can use this communication tree to make any processor

in the tree execute any specific software task (debug, fine-grain test), to propagate any

configuration command to any child tree node, or read any status information. Thus, it can

be used to complete the configuration of the NoC, and is actually the global configuration

master.
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Figure 2.7 – On a damaged NoC, the router at coordinates [1.2] is faulty and disabled. A
spanning DCCI communication tree is built as a result of each local CF task communi-
cating only with its neighboring clusters. The tree root is at coordinates [2,2]. The local
master processor of each tree node is presented as a circle.

Figure 2.7.{A} shows an example of a DCCI tree on a damaged NoC (the router at

coordinates [1.2] is faulty and disabled). As stated before, the tree covers all reachable

clusters. The local master processor of tree root, playing the role of the configuration

master, becomes the “chip leader”.

Figure 2.7.{B} presents a global representation of the final DCCI tree. To be con-

nected, two neighbor clusters (such as clusters [2.1] and [2.2]) must be able to communi-

cate through two directed edges, for full duplex communication. Each edge corresponds

to a software mailbox, as shown in Figure 2.7.{C}. We make the assumption that each

cluster contains an embedded memory bank. A mailbox is a data structure in the local

embedded RAM of the receiving node, and is shared by exactly one sender and one re-

ceiver. Consequently, two mailboxes are used for bidirectional communications. In the

DCCI, a round-trip mail, traveling two neighboring mailboxes, is used to check the bidi-
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rectional communications between two neighboring clusters. The fault-free clusters will

be used for tree construction and the fault-free bidirectional communication channels can

potentially become edges of the DCCI tree.

This tree can be considered as a trusted launching pad for exploration, configuration

and operation. By using end-to-end protocol or flooding protocol over the tree, we can

send command, application task, application results to one or to all nodes. And we can

configure each router through this tree. Therefore, the DCCI tree is the global NoC con-

figuration bus.

Compared with two above solutions (FDAR, SDSC), DCCI is more reliable. The con-

figuration master is not a unique and critical resource, and is naturally competent for con-

figuration task. In addition, reusing the fault-free components of NoC as the configuration

bus is a low-cost solution. However, DCCI doesn’t allow the diagnosis/localization of the

faulty/fault-free components. Thus, the modification of topology can not be identified. So,

this problem must be solved.

2.2.3 Routing Algorithm

As we want to define a deterministic, lightweight, deadlock-free and reconfigurable

routing algorithm for a 2D-Mesh NoC, the adaptive routing algorithms are not discussed

in this section. The published deterministic solutions for 2D-Mesh topology are [Wu, 2003,

Boppana and Chalasani, 1994, Mejia et al., 2006]. In this section, we present and analyze

these related works.

In fact, what ever the routing strategy is, the main idea is to route the packet to bypass

the faulty routers or faulty links, but, with different approaches of deadlock prevention 2.

As proposed by Dally in [Dally and Seitz, 1987], the main idea of deadlock prevention is

to remove the cycles, in the channel dependency graph (CDG). Thus, we discuss also the

method of cycle removing, in each related work presentation.

As shown in Figure 2.8, in a Channel Dependency Graph (CDG), a node
(red circle) means a channel, a directed edge (blue arrow) from a channel to
another, means a possible path defined by the routing algorithm. According
to Dally, the routing algorithm is deadlock-free, if the CDG doesn’t contain
any cycle.

2. The deterministic routing doesn’t have to handle the livelock-ness problem, as it’s always livelock-
free.
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Figure 2.8 – The channel dependency graph of X-First routing algorithm in a 2×2 2D-
Mesh NoC.

Turn Model

As shown in Figure 2.9.{A}, in a 2D-Mesh topology, a router can support various

types of “turns”.

{B}

O E

{A}

Odd−Even Turn Model

X−First Routing Algorithm

{C}

forbidden turns
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E W

N

S

E

0 degree Turns

90 degree Turns

180 degree Turns

Figure 2.9 – FIG.A presents all turns possible in a 2D-Mesh router. FIG.B presents the
turns restriction of the X-First routing algorithm. FIG.C presents the turns restriction of
the odd-even turn model routing algorithm.
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According to [Glass and Ni, 1994], the Turn Model proposed in, forbidding some

turns in the routing function, can guaranty cycle-free in the CDG, so as to avoid deadlock.

For example, the X-First and the odd-even turn model [Chiu, 2002] are two deadlock-free

routing algorithms, based on Turn Model.

– X-First : As shown in Figure 2.9.{B}, the X-First forbids the 180 degree turns and

forbids the turns from the Y dimension to X dimension.

– Odd-Even turn model : As shown in Figure 2.9.{C}, the odd-even turn model

routing algorithm forbids the 180 degree turns and forbids the turns SW, NW in

each router of odd column, and forbids the turns WS, WN in each router of even

column.

To define a fault-tolerant routing algorithm, the authors of [Wu, 2003] proposed the

extended X-First strategy, based on the X-First and Odd-Even turn model. According to

this routing algorithm, a faulty 2D-Mesh topology is split into the normal region and the

faulty region. As shown in Figure 2.10.{A}, in the normal region, the router uses the

X-First routing algorithm. And in the faulty region, the border router uses the odd-even

turn model routing algorithm. However, as shown in Figure 2.10.{B}, this strategy can

not handle some single-faulty-router topologies (for example, when the faulty router is

located at the West border of the Mesh). Thus, it can not fit the minimum fault-tolerant

requirement.
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F: Faulty Region, Odd−Even in the faulty region, by Odd−Even.
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Figure 2.10 – FIG.A shows that the router in the normal region uses X-First routing al-
gorithm, the border router in the faulty region uses Odd-Even routing algorithm. FIG.B
shows that what ever the first column is odd or even, the packet from S to D can not be
routed in the faulty region, caused by the forbidden turns of Odd-Even turn model.
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Segment-based Routing Algorithm

In [Mejia et al., 2006], the authors proposed a segment-based routing algorithm, using

a local turn restriction strategy. As shown in Figure 2.11.{A}, with the help of a segment

configuration mechanism, a faulty topology is split into several segments, each segment

is a subnetwork that consists of a set of routers and links. In each segment, a local turn

restriction must be placed, such as the 2.11.{B}, to forbid some bidirectional turns. As

segments are independent, each CDG of each segments is cycle-free. So, the combination

of all CDGs is also cycle-free, as shown in Figure 2.11.{C}, namely, the routing algorithm

is deadlock-free.

{C}

seg1

se
g

2

seg0

{A} {B}
forbidden bidirectional turns 

fault

Figure 2.11 – An example of segment-based routing algorithm.

The segment-based routing algorithm can handle a complex faulty topology. But, it

can only be implemented by a table-based routing function in each router. Thus, a recon-

figurable routing table per router is mandatory, and this will induce a great area overhead

for a NoC with large 2D-Mesh topology.

Virtual Channel

In [Boppana and Chalasani, 1994], the authors proposed to add virtual channels to

avoid deadlocks. The main idea is to place different turn restriction on each virtual net-

work, so as to guaranty each level to be deadlock-free, while all 0 and 90 degree turns are

permitted on whole network.

For example, in Figure 2.12, on a network with two virtual channels (level C0 and

level C1), different turn restrictions are placed to create the bypassing paths. Thus, using

the level C0, the network can route a packet to bypass a faulty region from West to East

or from East to West, without deadlock.
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Figure 2.12 – An example of virtual channel based routing algorithm.

The virtual channel based routing algorithm can handle all single-faulty-router topolo-

gies, but, it’s very expensive. A network with two virtual channels takes nearly twice the

silicon area of one channel network.

It should be noted that, a fault-tolerant routing algorithm must be formally proven to be

deadlock-free with all single-faulty-router topologies, otherwise, they are not be worthy

of confidence. However, almost all published solutions miss this important step.

As far as we analyzed, the published deterministic routing algorithms either are expen-

sive, or can not fit the minimum fault-tolerant requirement. Moreover, they haven’t been

formally proven to be deadlock-free. Therefore, we have to define a new fault-tolerant

routing algorithm.

2.3 Conclusion

In this chapter, we analyzed the state of the art of the researches related to 2D-Mesh

NoC routing algorithm reconfiguration strategy. And three remaining main problems are

identified, on three topics. These problems must be solved in this thesis.

1. NoC Test : In order to support “on the field” NoC reconfiguration strategy, an off-

line, “test for de-activation” BIST mechanism is necessary. As far as we know, there

is not yet such BIST, and we must solve this important problem.

2. Configuration Infrastructure : The DCCI will be used in this thesis as the con-

figuration infrastructure. However, DCCI doesn’t allow the diagnosis/localization

of the faulty/fault-free components. Thus, the modification of topology can not be

identified. So, this problem must be solved.

3. Routing Algorithm : As far as we analyze, the published deterministic routing

algorithms either are expensive, or can not handle some single-faulty-router topolo-
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gies. Moreover, they haven’t been formally proven to be deadlock-free. Therefore,

we have to define a new fault-tolerant routing algorithm.
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In this chapter, we present a typical 2D-Mesh Network-on-Chip used in this thesis,

DSPIN (Distributed Scalable Predictable Interconnect Network). And we introduce the

general structure of DSPIN-based, shared memory, MP2SoC architecture.

3.1 A Summary of DSPIN & MP2SoC

The DSPIN micro-network (Distributed Scalable Predictable Interconnect Network)

was designed by the LIP6 laboratory and physically implemented by ST Microelectronics.

It’s a typical 2D-Mesh NoC, supporting MP2SoC architectures, and the GALS (Globally

Asynchronous Locally Synchronous) approach.

As shown in Figure 3.1.{A}, a DSPIN based, shared memory, MP2SoC architecture is

typically composed of a set of tiles called clusters, each cluster is a synchronous domain.

As shown in Figure 3.1.{B}, a cluster may contain one or several programmable pro-

cessors, a local interconnect, an embedded RAM, an embedded ROM (for configuration

firmware) and two routers : in order to avoid deadlocks in command/response traffic, each

cluster contains two independent routers implementing two separated sub-networks for

commands and responses. In addition, some special clusters contain I/O ports controllers,

used to access external mass storage devices. In order to support “on the field” recon-

figuration mechanism, we suppose that each programmable processor contains a timeout

mechanism : when it executes a memory load/store operation, the timeout mechanism is

43
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Figure 3.1 – A 4×4, DSPIN based, shared memory, MP2SoC architecture. In such archi-
tecture, the memory is physically distributed, but logically shared : All processors can
directly address all memory banks.

triggered. If the transaction fails, the timeout triggers an interrupt and the processor enters

its exception mode.

3.2 DSPIN Structure

The DSPIN router micro-architecture is distributed : the basic units of a router, such as

routing function, crossbar and input/output buffering devices, are not centralized to result

in an integrated component, but distributed into five separated and identical modules :

North, South, East, West and Local, as shown in Figure 3.2.{A}. Moreover, the North,

South, East and West modules are physically placed on the corresponding clusters borders

(the Local module can be placed everywhere, in the cluster). This feature, combined with

the mesh topology allows us to classify the network wires in two classes :

Intra-cluster Wires

Intra-cluster wires, connecting modules in the same cluster (for example : West mod-

ule connects to North, South, East and Local modules), are the long wires. But, the wire

length is bounded by the physical area of a given cluster, a synchronous domain. With the
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Figure 3.2 – A generic DSPIN router architecture.

help of intra-cluster wires, all modules are connected as a full crossbar as shown in Figure

3.2.{A}, in order to support the fault-tolerant and reconfigurable routing algorithm.

Inter-cluster Wires

Inter-cluster wires, connecting modules in adjacent clusters (for example : the North

module of cluster (Y,X) is connected to South module of cluster (Y+1,X)), are very short

wires, because those components are very close from/to each other. With the help of

inter-cluster wires, the adjacent output/input buffering devices of two neighboring routers

are seamlessly connected. It should be noted that, in order to support the GALS (Glob-

ally Asynchronous Locally Synchronous) approach, the input buffering device is a bi-

synchronous FIFO (First-In, First-Out, depth is 4) [Miro Panades and Greiner, 2007], and

the output buffering device is a synchronous FIFO (depth is 4), as shown in Figure

3.2.{B}. Thus, a packet can be transmitted from a clock domain (CK) to another clock

domain (CK’).

In this thesis, we redefine the boundaries of router and channel, as shown in Figure

3.2 : the router consists of the routing function (RF) and the crossbar, the channel is

composed of a couple of output/input FIFOs.
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3.3 DSPIN Switching and Flow-Control Policy

Like most NoC designed for shared memory multiprocessors architectures, DSPIN

is a packet-switching network. As shown in Figure 3.3, a packet is divided into smallest

flow control units called flits, according to the wormhole routing conception (a review of

wormhole routing conception can be found in [Ni and McKinley, 1993]). The first flit is

the header flit that includes the destination address defined in absolute coordinates Y and

X. The second and third flits contain the payload protocol informations. The remaining

flits are payload data flits. The trailer flit contains the end of packet (EOP) mark. In a

DSPIN router, the header flit of a packet is analyzed by the routing function (RF) logic,

and an output port is selected. Then the crossbar builds a path from the input port to the

selected output port, and the whole packet is transmitted to the target.
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Figure 3.3 – A generic DSPIN packet.

3.4 DSPIN Deadlock-Free Analysis

The default routing algorithm implemented in the DSPIN micro-network is X-First.

With this routing algorithm, the packets are firstly routed on the X direction, and then on

the Y direction. As shown in Figure 2.8, using the CDG (Channel Dependency Graph), on

the both command/response subnetworks of DSPIN, the deadlock-free feature is proven.

3.5 Conclusion

DSPIN is a typical 2D-Mesh Network-on-Chip, supporting the shared memory, MP2SoC

architectures and the GALS approach. The ODDR (“On the field” Detection, De-activation

& Reconfiguration) mechanism proposed in this thesis, will use the following DSPIN

characteristics :

– 2D-Mesh topology

– Full-Crossbar Switch
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– FIFO-based Flow Control Policy

– Default routing algorithm : X-First

All the Network-on-Chip micro-architectures having these stated characteristics, used

in a shared memory, multi-cores or MP2SoC architecture, can adopt and implement the

general ODDR scenario presented in chapter 4.
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Chapter 4

General ODDR Scenario
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In this chapter, we introduce the ODDR (“On the field” Detection, De-activation &

Reconfiguration) mechanism. This mechanism provides a “graceful degradation” based

(permanent) fault-tolerance, for a 2D-Mesh Network-on-Chip used in a shared memory,

MP2SoC architecture. The general ODDR scenario contains three stages with three major

roles :

1 Initialization stage/NoC Test

2 Pre-configuration stage/Configuration Infrastructure

3 Configuration stage/Routing Algorithm

4.1 Initialization Stage/NoC Test

In this stage, a fully distributed off-line BIST is proposed, according to the “test for

de-activation” strategy. As shown in Figure 4.1.{a}, this BIST is executed as an initial-

ization procedure, at each system reboot or chip power-on. It aims to avoid evil failure

propagation and clean NoC malfunctions, by detecting and de-activating the faulty com-

ponents.

As shown in Figure 4.1.{b}, with the help of additional multiplexers, we can insert,

at each interface between a router and a channel, the router/channel test generator & ana-

lyzer. Thus, we distribute the corresponding test module into each router and each channel,

to test each component in parallel and in isolation. In order to avoid the mutual interfer-

ence (interfering), each router should be tested before each channel. In sum, there are two

49
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possible results :

– If a router is detected as faulty, all input and output channels are directly considered

as faulty without test. Thus, the router and all channels are de-activated.

– If a router is fault-free, and a channel is detected as faulty, this channel is de-

activated, and the router kept activated.

Each de-activated channel is configured to behave as a “Black Hole”, that discards any

incoming data, and produces no outgoing data. With this configuration, when a packet is

routed to a faulty channel or a faulty router, the packet is discarded, which will trigger a

timeout exception at emitter side (a processor core). These exceptions will be used after

building the DCCI (Distributed Cooperative Configuration Infrastructure), to diagnose/lo-

cate the faulty routers and channels. This deactivation mechanism is detailed in chapter 5

section 5.4.
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Figure 4.1 – {a} : A dedicated off-line NoC BIST is executed at each system reboot
or chip power-on, as an initialization procedure. {b} : The interfaces between a router
and a channel are broken by multiplexers. The embedded test generators & analyzers are
reasonably placed, to realize a fully distributed BIST.

This NoC BIST with de-activation mechanism was published in [Zhang et al., 2010].
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It is detailed in chapter 5.

4.2 Pre-configuration Stage/Configuration Infrastructure

After the NoC initialization procedure (BIST) is done, the faulty components have

been disabled, the fault-free components are activated to work in a functional mode. The

activated routers are configured to use the default routing algorithm, X-First. The network

enters the pre-configuration stage.

As shown in Figure 2.7 and presented in chapter 2 section 2.2.2, at the beginning of

the NoC pre-configuration stage, a DCCI communication tree is created. Each tree node is

an embedded processor core. The tree root is the global configuration master, and the tree

itself is the global configuration bus. It should be noted that, the configuration master must

be able to identify the modification of topology (versus the ideal 2D-Mesh). Concerning

this problem, we propose a software-based diagnosis/localization of faulty/fault-free com-

ponents. The diagnosis/localization procedure will be distributed into each tree node, to

test all paths defined by the default routing algorithm - X-First.

In Figure 4.2, we briefly describe this diagnosis/localization procedure by an example.

I1J Figure 4.2.{A} presents a 3×3 2D-Mesh NoC containing one faulty component :

the router in cluster 3. And this router and all associated channels are de-activated

and configured as “Black Hole”, at the end of test stage. Then, the whole network

enters the pre-configuration stage.

I2J As shown in Figure 4.2.{B}, the DCCI communication tree is constructed, at the

beginning of the network pre-configuration stage. The tree root is the cluster P5, it

plays the role of the general global reconfiguration master.

I3J Figures 4.2.{C-E} : the tree root makes each node execute the local diagnosis/lo-

calization procedure. Each node (such as P0) tests each X-First path (sourced from

P0). If a path contains a “Black Hole”, it’s faulty. Otherwise, it’s fault-free (blue

path). For each fault-free path, the routers and the channels are marked (brown) in

the source node (P0).

I4J Finally, as shown in Figure 4.2.{F}, when all nodes have finished their local diagno-

sis/localization procedures, the tree root will centralize all local marked fault-free

components. Thus, the no-marked components are considered as faulty, and the

modification of topology is identified.

This software-based diagnosis/localization of faulty/fault-free components on top of

DCCI, was published in [Zhang et al., 2011]. It is detailed in chapter 6.
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Figure 4.2 – An example of software-based diagnosis/localization procedure.

4.3 Configuration Stage/Routing Algorithm

As discussed in chapter 1 section 1.5.2, a 2D-Mesh topology involves five fault mod-

els :

– Single faulty channel topology.

– Multiple faulty channels topology.

– Single faulty router topology.

– Multiple faulty routers topology.

– Mixed Single or Multi faulty channel and router topology.

All these five fault models must be handled by the fault-tolerant reconfigurable rout-

ing algorithm. In this thesis, we suggest that, when any input channel of a router is de-

tected as faulty, the entire router will be considered as faulty. Thus, these five fault models
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are simplified into two types : Single-faulty-router topology and Multiple-faulty-routers

topology. These two fault models can be handled by our proposed reconfigurable routing

algorithm.

NNW

EW

SW S SE

NE

Figure 4.3 – The reconfigurable routing algorithm routes packets to bypass the faulty
region through cycle-free contour.

As shown in Figure 4.3, with the proposed routing algorithm, a faulty topology is

split into two regions : the normal region and the faulty region. In the normal region (yel-

low), the router doesn’t need to be reconfigured, it uses the default routing algorithm :

X-First. In the faulty region (gray), the border routers are configured to create a contour,

in order to bypass the faulty router. The main challenge is to avoid that the new paths in-

troduce a dead-lock. This routing algorithm has been formally proven to be deadlock-free

for all single-faulty-router topologies. It should be noted that, supporting this reconfig-

urable routing algorithm, in each router, only 4 bits register for storing the configuration

information is needed.

This deterministic, lightweight and reconfigurable routing algorithm was published in

[Zhang et al., 2008]. It is detailed in chapter 7.

4.4 Conclusion

In this chapter, we summarize the general ODDR (“On the field” Detection, De-

activation & Reconfiguration) scenario for the 2D-Mesh Network-on-Chip, used in the

MP2SoC architecture. This scenario contains three stages with three major objectives :

1. Initialization Stage/NoC Test : At each system reboot or chip power-on, each com-

ponent (router or channel) is tested, in parallel and in isolation, by a set of em-

bedded, distributed BIST modules. The faulty components are detected and de-

activated, finally configured to behave as a “Black Hole”. The fault-free ones are

activated to work. The technique detail is presented in chapter 5.



54 General ODDR Scenario

2. Pre-configuration Stage/Configuration Infrastructure : On top of an initialized NoC,

a DCCI tree is built. Each node is an embedded processor core. The root is the

global configuration master. The tree itself is the configuration bus. Through this

tree, the root makes each node to execute local software-based diagnosis/localiza-

tion procedure, and then it centralizes each local result to identify the faulty/fault-

free components and the modification of topology. The technique detail is presented

in chapter 6.

3. Configuration Stage/Routing Algorithm : According to the identification result of

modification of topology, the network itself is split into two regions : normal region

and faulty region. The routers of normal region are not reconfigured, but the border

routers of the faulty region are configured to create a (deadlock-free) contour, so as

to bypass the faulty/disable routers. The technique detail is presented in chapter 7.

With this scenario, a damaged 2D-Mesh NoC can be structurally tested, reconfigured

and functionally recovered, in a shared memory MP2SoC architecture.
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In this chapter, we detail a distributed off-line BIST architecture dedicated to 2D-Mesh

NoC. This architecture has been implemented in the DSPIN micro-network, and both SAF

(Stuck-at Fault) coverage and silicon area overhead have been evaluated.
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5.1 Test Strategy

Aiming to support the ODDR (“On the field” Detection, De-activation & Reconfigu-

ration) mechanism, a fully distributed off-line BIST is proposed, respecting the “test for

de-activation” strategy. This BIST will be systematically operated, at each system reboot

or chip power-on, to detect and de-activate the faulty components. And the (BIST) test

process, shown in Figure 4.1.{a}, is integrated in NoC as the initialization procedure.

With the help of this initialization procedure, the NoC itself can prevent the evil failure

propagations and clean the malfunctions, so that it reaches a clean state, ready for self-

reconfiguration.

In the following subsection, we analyze the DSPIN malfunctions due to a faulty com-

munication channel. The analysis explains the importance and necessity of the initializa-

tion procedure.

DSPIN malfunctions due to a faulty channel

The DSPIN malfunctions due to a faulty channel are analyzed and shown in Table

5.1. In this analysis, the point-to-point channel is described as two FIFOs (Figure 5.1).

The discussed faults are the SAFs (Stuck-At Faults) injected on the channel flow-control

signals (W,WOK,R,ROK) as well as on the channel data signals (DI,DO).
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Figure 5.1 – A generic DSPIN channel.

From this analysis, we conclude that most NoC malfunctions due to a faulty channel

are very dangerous for NoC self-reconfiguration. In order to avoid these destructive be-

haviors, the faulty channel must be de-activated as soon as it has been detected. This test

and de-activation mechanism must be totally distributed, and must be done locally/sepa-

rately for each router and each communication channel, when the NoC is not yet running.



5.2. TEST PROCESS 57

Fault Behavior
Flow Control Signals : W,WOK,R,ROK

W/SA0 The channel ignores any packet arriving, namely, those packets are
lost.

W/SA1 When the channel isn’t full, it stores any DI as a packet flit, even if it
is not valid. That leads to the self-generating fake packets. These fake
packets will quickly fill the channel, eventually block the whole NoC.

WOK/SA0 The channel is always considered to be full, which leads to blocking
some other channels, eventually blocking the whole NoC.

WOK/SA1 The channel is never considered to be full, so the packets are always
accepted, even if it’s full. Some of the packets routed to this channel
will be lost or corrupted.

R/SA0 The channel can store the packets, but these packets cannot be con-
sumed. The packets will quickly fill this channel, eventually block the
whole NoC.

R/SA1 The packets are consumed, even if the router doesn’t allocate an output
port for it. These packets are lost.

ROK/SA0 The channel is always considered to be empty, even if it is not. Conse-
quently the packets will never be consumed and will quickly fill this
channel, eventually block the whole NoC.

ROK/SA1 The channel is always considered to be non empty, even if it is empty.
That leads to self-generating fake packets (like W/SA1).

Data Signals : DI, DO
EOP/SA0 If the End of Packet mark is lost, all packets become a unique packet,

and the output port is never de-allocated, eventually blocking the
whole NoC.

EOP/SA1 If the End of Packet mark is always set, the channel transforms every
packet arriving to a set of one-flit fake packets. These packets will
block the whole NoC, when they can not be consumed. Or they will
destroy the function of the receiver, when they are routed to wrong
destination.

YX/SA01 If the destination coordinates of a packet is changed, this packet is
routed to wrong destination. At worst, it will destroy the function of
the receiver.

Payload/SA01 The packets will be changed. At worst, it will destroy the function of
the receiver.

Table 5.1 – Analysis of stuck-at fault impact on the NoC functions.

5.2 Test Process

To locally/separately test each component, we insert a set of multiplexers at each in-

terface of router and channel, to break their original connections. And then, we insert the

embedded test modules, and place them according to interactional placement as discussed

in chapter 1 section 1.3.2.
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As shown in Figure 5.2, to drive the router test, we insert one test controller (ATC :

Auto-Test Controller) per router. To drive each channel test, we insert one test generator

(ATG : Auto-Test Generator) per output channel, and insert one test analyser (ATA : Auto-

Test Analyzer) per input channel.
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Figure 5.2 – The embedded test modules : one ATC per router, one ATG per output chan-
nel and one ATA per input channel.

Avoiding the mutual interference between router test and channel test, we propose an

algorithm of test process, distributed in each router, to achieve two levels of parallelism

as shown in Figure 5.3.

In this algorithm :

I At each system reboot or chip power-on, the test of all routers is started in parallel.

Each router test is driven by a corresponding local ATC.
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Figure 5.3 – The algorithm of test process distributed in each router.

I If a router test is KO, the router is considered as faulty. The router itself and all as-

sociated input/output channels are de-activated. Otherwise, the test of all associated

communication channels is started in parallel.

I Each channel test is driven by a couple of ATG/ATA. If a channel test is KO, the chan-

nel is considered as faulty, and then de-activated. Otherwise, the channel is activated.

I For a router, when the test of all associated channel ends, the router is activated.

I When a local test doesn’t go through, a timeout mechanism implemented in each

router, forces the completion of the router/channel test, and the corresponding router/chan-

nel is de-activated.

Thanks to this algorithm, the router test and the channel test can be coordinated without

mutual interference. And the test process can be operated before the normal function as

the initialization procedure. Thus, the faulty components can be de-activated and the fault-

free components can be activated, when NoC is not yet running.
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5.3 BIST Structure

As shown in Figure 5.4, we detail the BIST structure implemented in a router.
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Figure 5.4 – Test Structure.

In this structure :

I The basic test modules : ATC (Auto-Test Controller), ATG (Auto-Test Generator) and

ATA (Auto-Test Analyzer) are realized by FSM (Finite State Machine). Thus, there

are one master FSM and ten slave FSMs in a generic router with five ports.

I The master FSM : ATC, is in charge of two tests in router : the routing function test

and the crossbar test. It de-activates/activates the crossbar through RESET (rst) signal.

I The slave FSMs : ATGs and ATAs, are in charge of the corresponding channel test.

They de-activate/activate the (FIFO) channel through RESET (rst) signal.

I In each router, the master FSM communicates with the slave FSMs through some

command/acknowledge handshake signals, to operate the test process.

I The test of each bi-synchronous channel is driven by a couple of ATG/ATA. As

ATG/ATA belong to different routers and different clock domains, they communi-

cate asynchronously through a limited number of handshaking signals, thanks to re-

synchronization flip-flops.

I The multiplexers controlled by ATGs and ATAs offer 2 functions : isolate router test

and channel test, and configure the behavior of the faulty channel. This behavior con-

figuration is detailed in the next section.

I A timer is inserted to provide the timeout mechanism.



5.4. CHANNEL DE-ACTIVATION MECHANISM 61

This test structure is symmetrical and identical for each generic router. We can therefore

modularize this structure and reuse it in any 2D-Mesh NoC (which has the characteristics

presented in chapter 3 section 3.5).

5.4 Channel De-activation Mechanism

As shown in Figure 5.5, a faulty channel is de-activated by a couple of ATG/ATA,

through the RESET signals (RST, RST’). And the de-activated channel is behaviorally

configured by ATG/ATA and ATC, through enforcing two flow-control signals (WOK=1

and ROK=0). Thus, the channel is always empty for consumer, is always no-full for pro-

ducer. In other words, the faulty/de-activated channel becomes a “Black Hole”, that dis-

cards any incoming data, and produces no outgoing data.

A
T
G

1

A
T
A

ATC

WOK

DI

W

DO

ROK

R
WOK

DI

W

DO

ROK

R #

#

#
#

(Y,X) (Y,X+1)

RST’

CK’CK

RST
0

Figure 5.5 – De-activation and behavior configuration of a faulty channel.

It should be noted that, if the router is fault-free, only the associated faulty channel is

de-activated and configured to become a “Black Hole”. If the router is faulty, all associ-

ated channels are de-activated and configured to be “Black Holes”. This auto-test phase

results in a set of inner & invisible modifications, involving NoC’s topology, structure

and function. Therefore, each “Black Hole” must be diagnosed and located, in the pre-

configuration stage.

In fact, the feature of the “Black Hole” makes itself easier to be tested by a packet,

since the packet is discarded and a “transaction timeout” failure occurs at emitter. Thus,

we propose a software application, that produces the packets and observes the “transaction

timeout” failures, to diagnose and locate each “Black Hole”. This software application is

detailed in the next chapter.

So, we don’t need any more hardware mechanism to extract each local test result. This

advantage makes our proposed BIST be more robust, reliable and lightweight.
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5.5 ATC, ATG and ATA FSMs Design

In this section, we present the details of ATC, ATG and ATA FSMs Design. It should

be noted that, from the point of view of ATC, the ATG and ATA FSMs are very similar.

They are thus described by one FSM (AT#FSM) as shown in Figure 5.6.

Figure 5.6 – ATC and AT# (G/A) FSMs.

I1J At each system reboot or chip power-on, ATC and all AT#s are reinitialized by the

global RESET signal, and they enter in the idle state.

I2J When the RESET signal is disabled, ATC and all AT#s do the first command/ac-

knowledge handshake through signals CMD&ACK. This handshake is realized by

two states.
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• ATC uses “CMDCBT” to send the command “CBTEST” (crossbar test) to all

AT#s, and it uses “ACKCBT” to check the acknowledge.

• AT#s use “CHKCBT” to check the command, and use “ACKCBT” to return the

acknowledge.

This first handshake has two goals :

• Check the command/acknowledge signals between ATC and all AT#s.

• Make AT#s coordinate the multiplexer selection, to fit the crossbar test.

If this first handshake is broken, due to a fault (such as the signal ACK stuck at

one : SA1), ATC and all AT#s enter the end state “ERRATC” or “ERRAT#”. The

router test ends with KO. The whole router is considered as faulty. The router and

all associated communication channels are de-activated. Otherwise, ATC uses a set

of states “CBTEST” to test the crossbar. And AT#s enter the state “CBTEST” to

wait for the test result.

This table presents the value of CMD&ACK signals in the first handshake.

Signals
ATC AT#s

CMDCBT ACKCBT ERRATC CHKCBT ACKCBT ERRAT#
Values

CMD 10 10 00
ACK 0 1 1

I3J A set of states “CBTEST” generates a set of crossbar test patterns, that are detailed

in section 5.7.

OUT is right
OUT is wrong

CBTESTn

CBTESTn+1 ERRATC

Figure 5.7 – ATC tests the crossbar with a set of states “CBTEST”.

As shown in Figure 5.7, in the state “CBTESTn”, ATC assigns the input of crossbar

and observes the output of crossbar at the same time. If the output value is right,

ATC enters the next state “CBTESTn+1”. Otherwise, ATC enters the end state “ER-

RATC”, and sends the command “NOP/KO” to all AT#s. With this message, all

AT#s also enter the end state “ERRAT#”. The router test ends with KO.

I4J If the crossbar has passed all test patterns, it’s thus considered as fault-free. ATC

and all AT#s achieve the second handshake to coordinate the multiplexer selection

for the routing function test.

• ATC uses “CMDRFT” to send the command “RFTEST” (routing function test)

and it uses “ACKRFT” to check the acknowledge.
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• AT#s use “CBTEST” to check the command, and use “ACKRFT” to return the

acknowledge.

This table presents the value of CMD&ACK signals in the second handshake.

Signals
ATC AT#s

CMDRFT ACKRFT ERRATC CBTEST ACKRFT ERRAT#
Values

CMD 11 11 00
ACK 0 1 1

If the second handshake is broken, the router test will end with KO. Otherwise, ATC

uses a set of states “RFTEST” to test the routing function. And AT#s enter the state

“RFTEST” to wait for the test result.

I5J A set of states “RFTEST” generates a set of routing function test patterns, that are

detailed in section 5.6.

I6J If the routing function has passed all test patterns, it’s considered as fault-free. The

router test ends with OK. ATC and all AT#s achieve the third handshake to coordi-

nate the multiplexer selection for the channel test. And each AT# starts to test the

corresponding channel.

• ATC uses “CMDCHT” to send the command “CHTEST” (channel test) and it

uses “ACKCHT” to check the acknowledge of the end of all associated channels

tests.

• AT#s use “RFTEST” to check the command, and then each AT# uses a set of

states “CHTEST” to test the corresponding channel. The detail of channel test is

presented in section 5.8. It should be noted that, what ever the end of a channel

test is, the corresponding AT# uses one end state “FUNC” or “ERRATC”, to

return to ATC the “end” acknowledge.

This table presents the value of CMD&ACK signals in the third handshake.

Signals
ATC AT#s

CMDCHT ACKCHT RFTEST CHTEST FUNC ERRAT#
Values

CMD 01 01
ACK 0 0 1 1

After the third handshake has successfully go through, ATC uses the state “FUNC”

to activate the router, and AT#s activate the fault-free channels and de-activate the

faulty channels. Thus, the whole test process is terminated, and the activated com-

ponents will operate the normal function.

I7J A timeout mechanism implemented in each router, forces the completion of the

router test and the channel test. This will lead to two possible results.
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• If a timeout has occurred before the third handshake, the timeout mechanism will

enforce ATC with the state “ERRATC”, and enforce AT#s with the “ERRAT#”.

The router test finally ends with KO.

• If a timeout has occurred during the third handshake, the timeout mechanism

will enforce ATC with the state “FUNC”, and enforce no-end AT#s with the

“ERRAT#”. The corresponding channel test finally ends with KO.

I8J What ever the end state is, ATC and all AT#s keep their end states until the next

system reboot or chip power-on.

In the following sections, we will detail test pattern generation for : routing function

test, crossbar test and channel test.

5.6 Test Pattern Generation for Routing Function Test

The routing function module is a combinational circuit. Its test patterns are directly

generated by Synopsis TetraMAX, an ATPG tool.

Cluster test

C
ro

ss
b

ar
NoC Test

R
F

Reconfiguration
Register

Figure 5.8 – The full test of a reconfigurable routing function.

As shown in Figure 5.8, the full test of a reconfigurable routing function is

presented. This full test contains the test for the routing function (RF) and

the test for the reconfiguration register. The NoC test doesn’t address the

(write&read) test of reconfiguration register, which will be achieved in the

cluster test.

As shown in Figure 5.9, with the help of enabling some options (blue rectangles)

in TetraMAX, we can generate a set of test patterns, dedicated to SAF (Stuck-at Fault)

model, to reach 100% fault coverage. Moreover, we can limit the number of patterns (red

rectangle).
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Figure 5.9 – Some important TetraMAX options for the test pattern generation.

According to our experimental work, we obtain 52 test patterns, getting 100% fault

coverage. The ATPG information is listed in Listing 5.1. These 52 patterns are converted

to 52 “RFTEST” states, inserted in the ATC FSM.

U n c o l l a p s e d S tuck F a u l t Summary R ep or t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f a u l t c l a s s code # f a u l t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−− −−−−−−−−−
D e t e c t e d DT 1464
P o s s i b l y d e t e c t e d PT 0
U n d e t e c t a b l e UD 0
ATPG u n t e s t a b l e AU 0
Not d e t e c t e d ND 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t o t a l f a u l t s 1464
f a u l t c o v e r a g e 100.00%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 5.1 – ATPG information of test pattern generation for the routing function.

5.7 Test Pattern Generation for Crossbar Test

The crossbar module is a complex sequential circuit, its test patterns can hardly be

generated by ATPG tool. Therefore, we propose an ad-hoc method to generate the test
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patterns, considering the characteristics of crossbar function and structure. The principle

of this method is to determine the form and the value of test pattern by the analysis of com-

ponent’s function and structure, and to evaluate the fault coverage by fault simulation. In

the following subsection, we present the crossbar’s interface and function characteristics.

5.7.1 Characteristics of Crossbar Function

A generic full (5 borders) crossbar (Figure 5.10) is composed of 5 input ports & 5

output ports. These input/output ports are connected to the corresponding input/output

FIFOs, with flow control and data signals. The data path is actually a set of five (4to1)

multiplexers located at each output port. In addition, each input port contains a “Req”

signal controlled by the corresponding routing function (RF) module.
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Figure 5.10 – A generic crossbar.

As presented in chapter 3 section 3.3, the router function is to route the packet from

an input FIFO to an output FIFO (different border), according to the routing algorithm.

The crossbar module function is to create a data-flow path from an input port to an output

port. We detail such function with the example of input/output ports : IPN 1, IPE, IPL, IPS

and OPW of Figure 5.10 :

1. IP# means the Input Port of # border, OP# means the Output Port of # border.
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I1J When some packets arrive at the input ports of crossbar (IPN, IPE, IPL, IPS), the

corresponding RF modules will analyze the HoP (Header of Packet) flit, and then

use the Req signals to send the access request to the target output port (OPW).

I2J Beside OPW, the round-robin FSM (Finite State Machine) determines which access

request should be accepted. Once an access request (from IPN) is accepted. The

data-flow path is created between IPN and OPW, where the Read, Data and Write

signals of IPN and OPW are connected.

I3J Beside IPN, the req-enable/-disable FSM disables the Req signal, once the data-

flow path is created.

I4J The packet is transmitted flit by flit through the data-flow path.

I5J The packet transmission can be suspended/resumed depending on the input/output

FIFO states.

• Once the output FIFO of OPW becomes full (WOK is 0), the packet transmission

is suspended (Read of IPN becomes 0). This read suspension is resumed (Read

of IPN becomes 1) when the output FIFO of OPW becomes no full (WOK is 1).

• Once the input FIFO of IPN becomes empty (ROK is 0), the packet transmis-

sion is suspended (Write of OPW becomes 0). This write suspension is resumed

(Write of OPW becomes 1) when the input FIFO of IPN becomes no empty

(ROK is 1).

I6J Finally, the data-flow path between IPN and OPW is closed by the EoP (End of

Packet) flit.

Crossbar Function Test Summary

According to the above mentioned characteristics of crossbar functions, testing this

block consists in checking :

• The creation and the closing of data-flow path between each couple of input/output

port.

• The correctness of packet transmission on each data-flow path.

• The Req signal disable mechanism during the packet transmission.

• The suspension/resumption mechanism of packet transmission.

Therefore, the crossbar function must be tested through the transmission of a set of

well defined dedicated packets.

5.7.2 Characteristics of Crossbar Structure

In this subsection, we present the structures of crossbar input/output ports.
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Input port structure

The pseudo gate-level structure of IPN and the req-enable/-disable FSM are detailed

as shown in Figure 5.11.

ReadEN
ReadLN
ReadSN
ReadWN

Condition

a : Read+EoP+Write

c : Read+EoP+Write
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Figure 5.11 – The IPN and the req-enable/-disable FSM.

Beside the input port :

I The Write and Data signals are shared by all output ports (of the different border).

They are used by the input port to present a valid (Write = 1) flit to the output ports.

I The Read signal is used by the output ports, to confirm the creation of data-flow path

or to consume a flit :

• “Read is 1” means that the data-flow path is created between the current input port

and the target output port. The packet is transmitted.

• “Read is 0” means that the data-flow path isn’t yet created or the packet transmission

is suspended.

I The Req signal is controlled by the RF (routing function) module. This module ana-

lyzes the input : the “packet destination” fields of the HoP flit, then requires the output

port with Req signal. However, as the RF module is implemented by a simple com-

binational circuit (to save the silicon area), it takes the fields of every passed (valid

or invalid) flit, rather than the HoP flit. In order to avoid the wrong requirement, we

must disable the Req signal during the packet transmission or when the flit is invalid

(Write=0).

I The req-enable/-disable FSM :
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• The FSM is composed of 2 states : one (E) enables the Req signal and one (D)

disables the signal.

• The state E is the idle state.

• When the data-flow path is created to transmit multi-flits packet, FSM enters D to

disable the Req signal.

• When the data-flow path is created to transmit one-flit packet, FSM stays at E.

The structure of output port & round-robin FSM

The pseudo gate-level structure of OPW and the round-robin FSM are described in

Figure 5.12.
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Figure 5.12 – The OPW and the round-robin FSM.
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I Each output port of crossbar can be allocated to 4 input ports, two 4to1 multiplexers

(for Data and Write signals) and one 1to4 demultiplexer (for Read signal) are thus

used to guaranty one-to-one access.

I In order to give each input port a fair chance to access the output, the (multiplexer/de-

multiplexer) selection is thus determined by the round-robin FSM.

• The round-robin FSM is composed of 8 states, 4 Pre-select states (a,c,e,g), 4 Se-

lected states (b,d,f,h).

• State a is the idle state.

• Each state determines a value for the (multiplexer/demultiplexer) selection.

• Each Pre-select state disables (Val=0) the Read signal and the Write signal.

• Each Pre-select state provides an access priority for accessible input ports. This

priority is enforced by a set of transition conditions.

For example, a enforces the access priority : {0}=E, {1}=L, {3}=S, {4}=N. The

corresponding transition conditions enforce that :

-a0(gc0)- OPW accepts IPE, when IPE requires.

-a1(gc1)- OPW accepts IPL, when IPL requires but IPE doesn’t.

-a2(gc2)- OPW accepts IPS, when IPS requires but IPE and IPL don’t.

-a3(gc3)- OPW accepts IPN, when IPN requires but others don’t.

• A transition from a Pre-select state to a Selected state means that the access request

of an input port is accepted, OPW is allocated to the corresponding input port.

• Each Selected state enables (Val=1) the Read signal and the Write signal to create

the data-flow path.

• A transition from a Selected state to a Pre-select state means that OPW is released

by a valid EoP.

In brief, the strategy the round-robin FSM uses is : when the output port has been

released from an input port, this input port is given the lowest access priority at the

next time of request. For example : a→ d and d→ c, where c provides the new access

priority : {0}=L, {1}=S, {3}=N, {4}=E.

Crossbar Structure Test Summary

Finally, we can summarize the test objectives for the crossbar :

For each input port :

• Test each transition of req-enable/-disable FSM

• Test the “OR” gate for Read signal

• Test the “AND” gate for Req signals
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For each output port :
• Test each transition of round-robin FSM

• Test the 4to1 multiplexers for Data and Write signals

• Test the 1to4 demultiplexer for Read signals

• Test the “AND” gate for Write and Read signals.

5.7.3 Crossbar Test Scenario

Definition 1 : A packet transmission means a procedure of transmitting a packet from

the crossbar input port to the crossbar output port. This procedure will require several (N)

clock cycles. Therefore, a packet transmission corresponds to several (N) test patterns.

Definition 2 : A test pattern means, at a clock cycle, assigning values to crossbar

input and observing values at crossbar output. The test patterns will be stored in ATC

FSM and applied during the “CBTEST” states.

Summary of Crossbar Test Scenario

We summarize here the principle features of the crossbar test scenario, and detail them

in the following document :

I The crossbar test scenario is composed of five stages.

I At each stage, the test target is one output port.

I Each output port is tested by the 16 dedicated packets transmissions.

I Two basic flits : X : (00...00) and ¬X : (11...11) are used to constitute the 16 dedicated

packets.

I The first 4 dedicated packets are composed of two flits (HoP : X, EoP : ¬X).

I Each two-flits packet transmission requires 6 clock cycles. It corresponds to 6 test

patterns.

I The last 12 dedicated packets are composed of one-flit (EoP : ¬X).

I Each one-flit packet transmission requires 2 clock cycles. It corresponds to 2 test pat-

terns.

I In brief, at one stage, the 16 dedicated packets transmissions correspond to 48 = 4×
6+ 12× 2 test patterns. Therefore, the crossbar test scenario corresponds to 240 =

5×48 test patterns.

An example : the 16 dedicated packets transmissions for the OPW test

The table 5.2 presents the 16 dedicated packets transmissions for the OPW test.
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Step
Target FSM Assigning Observing
Transition IPN IPE IPL IPS OPW

N˚ Condition Req Data Req Data Req Data Req Data Data

1
a→ d (a0) W ¬X W X W ¬X W ¬X X
d→ c (d0) X ¬X X X ¬X

2
c→ f (c0) W ¬X W ¬X W X W ¬X X
f→ e (f0) X X ¬X X ¬X

3
e→ h (e0) W ¬X W ¬X W ¬X W X X
h→ g (h0) X X X ¬X ¬X

4
g→ b (g0) W X W ¬X W ¬X W ¬X X
b→ a (b0) ¬X X X X ¬X

5
a→ b (a3) W ¬X X X X ¬X
b→ a (b0)

6
a→ f (a1) W X X W ¬X W X ¬X
f→ e (f0)

7
e→ f (e3) X X W ¬X X ¬X
f→ e (f0)

8
e→ b (e1) W ¬X W X W X X ¬X
b→ a (b0)

9
a→ h (a2) W X X X W ¬X ¬X
h→ g (h0)

10
g→ h (g3) X X X W ¬X ¬X
h→ g (h0)

11
g→ d (g1) X W ¬X W X W X ¬X
d→ c (d0)

12
c→ d (c3) X W ¬X X X ¬X
d→ c (d0)

13
c→ h (c1) W X W X X W ¬X ¬X
h→ g (h0)

14
g→ f (g2) X X W ¬X W X ¬X
f→ e (f0)

15
e→ d (e2) X W ¬X W X X ¬X
d→ c (d0)

16
c→ b (c2) W ¬X W X X X ¬X
b→ a (b0)

Table 5.2 – The 16 dedicated packets transmissions for OPW test stage.

The details of the first 4 dedicated packets transmissions for the OPW test

Table 5.3 details the signal value per clock cycle of the first 4 dedicated packets trans-

missions for the OPW test stage.
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The 1st packet transmission The 2nd packet transmission
Clock Cycle 1 2 3 4 5 6 7 8 9 10 11 12

IPN G
Write 1 1 0 1 1 1 1 1 0 1 1 1
Data ¬X ¬X ¬X ¬X X ¬X ¬X ¬X ¬X X
Req 0001 0000 0001 0000

A Read 0 0 0 0

IPE G
Write 1 1 1 0 1 1 1 1 0 1 1 1
Data X X X X ¬X ¬X ¬X ¬X ¬X X
Req 0001 0001 1111 1111 1111 0000 0001 0000

A Read 0 1 0 1 1 0 0 0

IPL G
Write 1 1 0 1 1 1 1 1 1 0 1 1
Data ¬X ¬X ¬X ¬X X X X X X ¬X
Req 0001 0000 0001 0001 1111 1111 1111 0000

A Read 0 0 0 1 0 1 1 0

IPS G
Write 1 1 0 1 1 1 1 1 0 1 1 1
Data ¬X ¬X ¬X ¬X X ¬X ¬X ¬X ¬X X
Req 0001 0000 0001 0000

A Read 0 0 0 0

IPW G
Write 0 0
Data
Req 1111 1111

A Read 0 0

OPN A Write 0 0
Data

E,L,SG Read 1 1

OPWA Write 0 1 1 0 1 0 0 1 1 0 1 0
Data X X X ¬X X X X ¬X

G Read 1 1 0 1 1 1 1 1 0 1 1 1
The 3rd packet transmission The 4th packet transmission

Clock Cycle 13 14 15 16 17 18 19 20 21 22 23 24

IPN G
Write 1 1 0 1 1 1 1 1 1 0 1 1
Data ¬X ¬X ¬X ¬X X X X X X ¬X
Req 0001 0000 0001 0001 1111 1111 1111 0000

A Read 0 0 0 1 0 1 1 0

IPE G
Write 1 1 0 1 1 1 1 1 0 1 1 1
Data ¬X ¬X ¬X ¬X X ¬X ¬X ¬X ¬X X
Req 0001 0000 0001 0000

A Read 0 0 0 0

IPL G
Write 1 1 0 1 1 1 1 1 0 1 1 1
Data ¬X ¬X ¬X ¬X X ¬X ¬X ¬X ¬X X
Req 0001 0000 0001 0000

A Read 0 0 0 0

IPS G
Write 1 1 1 0 1 1 1 1 0 1 1 1
Data X X X X ¬X ¬X ¬X ¬X ¬X X
Req 0001 0001 1111 1111 1111 0000 0001 0000

A Read 0 1 0 1 1 0 0 0

IPW G
Write 0 0
Data
Req 1111 1111

A Read 0 0

OPN A Write 0 0
Data

E,L,SG Read 1 1

OPWA Write 0 1 1 0 1 0 0 1 1 0 1 0
Data X X X ¬X X X X ¬X

G Read 1 1 0 1 1 1 1 1 0 1 1 1

Table 5.3 – The detail of the first 4 dedicated packets transmissions for the OPW test
stage. A : analysing. G : generating.



5.7. TEST PATTERN GENERATION FOR CROSSBAR TEST 75

For example : the 1st dedicated packet transmission :

IClock Cycle 1J “Request cycle” : make each input port (IPN, IPE, IPL and IPS) send

the access request to OPW at the same time. The HoP (X) is assigned at IPE and the

EoP (¬X) is assigned at IPN, IPL and IPS.

For OPW :
• The round-robin FSM stays at the state a
For IPE :
• The transition a of req-enable/-disable FSM is operated

• The req-enable/-disable FSM stays at E

IClock Cycle 2J “Access cycle” : the data-flow path between OPW and IPE has been

created. The valid HoP (X) is presented by IPE to OPW.

For OPW :
• The transition a0 of round-robin FSM is operated

• FSM enters the state d
For IPE :
• The transition a of req-enable/-disable FSM is operated

• FSM stays at E

IClock Cycle 3J “Read suspension cycle” : the read suspension is operated at OPW.

And the req-disable mechanism of IPE will be tested, by assigning “1111” to the

Req signal.

For OPW :
• The transition d1 of round-robin FSM is operated

• FSM stays at the state d
For IPE :
• The transition b of req-enable/-disable FSM is operated

• FSM enters the state D

IClock Cycle 4J “Write suspension cycle” : the read suspension is resumed. The write

suspension is operated. And the req-disable mechanism is tested (If Write of OPN,

OPL and OPS are 0, i.e. no data-flow path has been created between IPE and OPN,

OPL and OPS, therefore the req-disable mechanism of IPE is detected as OK).

For OPW :
• The transition d1 of round-robin FSM is operated

• FSM stays at the state d
For IPE :
• The transition c of req-enable/-disable FSM is operated
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• FSM stays at the state D

IClock Cycle 5J “Release cycle” : the write suspension is resumed. The EoP (¬X) is

assigned at IPE, and the HoP (X) is assigned at IPN, IPL and IPS.

For OPW :
• The transition d1 of round-robin FSM is operated

• FSM stays at the state d
For IPE :
• The transition c of req-enable/-disable FSM is operated

• FSM stays at the state D

IClock Cycle 6J “Nop cycle” : The data-flow path between IPE and IPN has been

closed. Nothing will be done at this clock cycle.

For OPW :
• The transition d0 of round-robin FSM is operated

• FSM enters the state c
For IPE :
• The transition d of round-robin FSM is operated

• FSM enters the state E

IClock Cycle 7J Start the 2nd dedicated packet transmission, this time IPL has the high-

est priority.

For OPW :
• The transition c4 of round-robin FSM has been achieved

• FSM stays at the state c
For IPL :
• The transition a of req-enable/-disable FSM is operated

• FSM stays at E
......

Conclusion of the first 4 dedicated packets transmissions

We can conclude that, with the first 4 dedicated packets transmissions :

For OPW :
• The transitions of round-robin FSM : (a0, d1, d0 and c4), (c0, f1, f0 and e4), (e0,

h1, h0 and g4) and (g0, b1, b0 and a4) are operated and tested.

• The 4to1 multiplexers of Data and Write signals are tested.

As shown in Figure 5.13, the 4to1 multiplexer of Data signals is synthesized to a

set of (oa2a2a2a24) gates in the Synopsis synthesis environment with Sxlib stan-

dard cell library [Alliance, 2011]. For this kind of gate, during the first 4 dedicated



5.7. TEST PATTERN GENERATION FOR CROSSBAR TEST 77

0

01
10

01
1 0

01
1

0Sel=3: 010

01

10

10

10

0

01
1

00 10Sel=0:

0

10

1

10

10

0100Sel=1:

SA0 SA1

1

0

1

1

0

1

0

0

00Sel=2: 10

1

1

0

10

1

0

0

{2nd Packet at clock 8,11} {3rd Packet at clock 14,17} {4th Packet at clock 20,23}{1st Packet at clock 2,5}

FSM FSMFSM FSM

C
K
1
4

C
K
1
7

C
K
2
0

C
K
2
3

C
K
2

C
K
5

C
K
8

C
K
1
1

Figure 5.13 – During the first 4 dedicated packets transmissions, all SAFs of the 4to1
multiplexer can be completely tested.

packets transmissions, at clock cycles (2,5), (8,11), (14,17) and (20,23), the gate

selection is done using the round-robin FSM. The selected Data input and non-

selected Data input are differently assigned using packet flit (X or ¬X). Thus, all

SAFs of this gate can be detected.

The same for the 4to1 multiplexer of Write signal. At clock cycles (3,4), (9,10),

(15,16) and (21,22), the gate selection is done using the round-robin FSM.

• The 1to4 demultiplexer is also tested (Figure 5.14) in the same way.
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Figure 5.14 – During the first 4 dedicated packets transmissions, all SAFs of the 1to4
demultiplexer can be completely detected.

• The “AND” gates of Write and Read signals have been fully tested.

For IPN, IPE, IPL, IPS :
• The (a, b, c and d) transitions of req-enable/-disable FSM are operated and tested.

• The “OR” and “AND” gates have been partially tested. They will be fully tested at

the end of crossbar test scenario.
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The last 12 dedicated one-flit packets transmissions for the OPW test

Each one-flit packet transmission requires 2 clock cycles : one “Request cycle” and

one “Access cycle”. Each transmission operates one transition of round-robin FSM (de-

tailed in Table 5.2). At the end of these 12 transmissions, all remaining transitions of

round-robin FSM are tested.

In conclusion, at each test stage, with the help of the 16 dedicated packets transmis-

sions, one output port can be fully tested and four input ports can be partially tested. Then

after the end of five test stages, five input/output ports are completely tested.

5.7.4 Test Patterns Implementation

The crossbar test scenario corresponds to 240 test patterns, requiring 240 clock cycles.

These test patterns are generated by the ATC FSM in the “CBTEST” states. Thus, the

number of “CBTEST” states is 240. These states will be used by ATC FSM to test crossbar

as shown in Figure 5.7.

5.7.5 Fault Coverage Evaluation and Improving

U n c o l l a p s e d S tuck F a u l t Summary R ep or t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f a u l t c l a s s code # f a u l t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−− −−−−−−−−−
D e t e c t e d DT 5926
P o s s i b l y d e t e c t e d PT 42
U n d e t e c t a b l e UD 0
ATPG u n t e s t a b l e AU 0
Not d e t e c t e d ND 40
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t o t a l f a u l t s 6008
f a u l t c o v e r a g e 99.33%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 5.2 – SAF coverage information of crossbar test.

The SAF coverage of the 240 test patterns is evaluated using Synopsis TetraMAX

(Listing 5.2), on the synthesized version of the DSPIN full crossbar. We find out that

some test patterns related to “Nop cycle” in the first 4 dedicated packets transmissions,

are useless to improve the SAF coverage. Thus, we remove these patterns, and the new

total number of patterns is 225.
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5.8 Channel Test Process and Test Pattern Generation

The DSPIN communication channel is a point-to-point bi-synchronous data-flow path

containing two FIFOs. Therefore, it can be tested through generating&pushing the test

patterns at the head of the path, and pulling&observing the result at the end of the path.

In our proposed BIST structure, the ATG FSM is in charge of generating&pushing test

patterns, and the ATA FSM is in charge of pulling&observing flowed result. ATG/ATA

cooperate together to test each channel and then to de-activate faulty one.

As the ATG/ATA FSMs work in two different clock domains, their cooperation is

achieved with the help of some asynchronous handshake signals, as shown in Figure 5.4.

In the following, we detail such cooperation.

5.8.1 Cooperation between a couple of ATG/ATA

The cooperation between a couple of ATG/ATA, is a ping-pong game, as shown in

Figure 5.15. This game is achieved with the help of the asynchronous handshaking signals

“READY” and “GO”, to drive the “CHTEST” transitions round by round. At the end of

the test, if all rounds go through, the channel is considered as “OK”. Otherwise, once any

one round is broken or timeout, the game is over, the channel is considered as “KO”. It

should be noted that, ATG always serves first in a round.

In this game :

I1J Round (ACT) is the first round. ATG activates FIFO(out) (see Figure 5.4) in state

ACT and checks no WOK/SAF0 (where WOK is 1) in state ACTT. If it’s OK, ATG

sends “READY” in state RDYACT.

ATA waits for “READY” in state GOACT. Once “READY” is received, ATA acti-

vates FIFO(in) in state ACT and checks no ROK/SAF1 (where ROK is 0) in state

ACTT. If it’s OK, ATA returns “GO” in state GONOP. Once “GO” is received by

ATG, the test enters the next round.

I2J Round (NOP) is the second round. ATG does NOP test (do nothing) and ATA

verifies again the signal ROK (no self-generating fake packet, where ROK is 0).

I3J Round (PUSH/PULL) : In a PUSH/PULL round, ATG pushes the channel with

M test patterns using M states. And then, ATA uses M states to pull and check

the flowed data. If this round is “OK”, ATG/ATA continue until the end of last

(PUSH/PULL) round.

In this cooperation, there are three problems, how to :

I Determine the number M for each PUSH/PULL round ?
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Figure 5.15 – The cooperation achieved between a couple of ATG/ATA FSM.

I Generate M test patterns for each PUSH/PULL round ?

I Determine the total number of PUSH/PULL rounds : N ?

These problems are solved by an ad-hoc method, based on the analysis of the channel

function&structure characteristics.
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5.8.2 Characteristics of Channel Function

The function of a DSPIN communication channel is to flow a set of ordered flits from

input to output. And the goal of channel function test is not only to verify the correctness

of flowed flits, but also to check the flowing order. In addition, as a channel is similar

to wire-links, we will use two basic flits X {00...00} and ¬X {11...11}, to generate the

dedicated test patterns, since these two flits can handle any SAF of wire-links.

5.8.3 Characteristics of Channel Structure

A communication channel is composed of two 4 words FIFOs : one synchronous and

one bi-synchronous. Both of them adopt the pointer-shift structure as shown in Figure

5.16.
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Figure 5.16 – The pointer-shift FIFO structures.

In fact, there is a large number of implementations for a pointer-shift FIFO (the related

works can be found in the thesis of Ivan MIRO PANADES [Panades, 2008] chapter 4 and

appendix A). In order to simplify the analysis and to propose a general ad-hoc pattern

generation, we summarize the common ground of pointer-shift structure of the 4 words

FIFO :

For the controller :

• The write/read pointers are initialized to point to the first word. The initializations

of Full&Empty detectors make WOK set to 1 (can be written) and ROK set to 0

(cannot be read).

• When a valid flit (W=1) is presented at the Din of FIFO, the flit is written to the 1st

word, and the write pointer is shifted to 2nd word. FIFO isn’t yet empty, and Empty

detector makes ROK set to 1 (can be read).

• After having written 4 valid flits, the value of write pointer reaches the current
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value of read pointer, and FIFO is full, Full detector makes WOK set to 0 (cannot

be written).

• When FIFO is full, any assigned valid flit is ignored, the write pointer cannot be

shifted, and a new word cannot be written.

• When the 1st word is consumed (R=1), the read pointer is shifted to 2nd word. FIFO

isn’t yet full, and Full detector makes WOK set to 1.

• After having consumed 4 words, the value of read pointer reaches the current value

of write pointer, and FIFO becomes empty, Empty detector makes ROK set to 0.

• When FIFO is empty, the read pointer cannot be shifted.

For the data-path :

• The Din input and the 4 words can be modeled as a 1to4 demultiplexer. The write

pointer can be considered as the selection signal.

• The 4 words and the Dout can be modeled as a 4to1 multiplexer. The read pointer

can be considered as the selection signal.

The test objectives for a 4 words pointer-shift FIFO are :

• Test the write/full mechanism (Filling).

• Test the read/empty mechanism (Emptying).

• Test the shift of write pointer when FIFO isn’t full

• Test the shift of read pointer when FIFO isn’t empty

• Test the no-shift of write pointer when FIFO is full

• Test the no-shift of read pointer when FIFO is empty

• Test the input 1to4 demultiplexer

• Test the no-written word when FIFO is full

• Test the output 4to1 multiplexer

Taking the experience of crossbar test, 1to4 multiplexer is fully tested when the se-

lection is done and the input is assigned with (X and ¬X) ; 4to1 multiplexer can be fully

tested when the selection is made and the selected input and no-selected input have dif-

ferent values (X or ¬X). Therefore, we propose the following FIFO test scenario.

5.8.4 FIFO Test Scenario

I Test scenario is composed of 11 stages : 8 “filling/emptying” stages and 3 “pointer

shift” stages.

I At each “filling/emptying” stage, the 4 words of FIFO are respectively filled/emptied

for one time.

I After 2nd, 4th and 6th “filling/emptying” stage, the write/read pointers are shifted for
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one step, in a “pointer shift” stage.

Clock Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Test Stage 1st filling/emptying stage 2nd filling/emptying stage 1st stage of

Action 1st filling 1st emptying 2nd filling 2nd emptying pointer-shift

G
W 1 0 1 0 1 0
R 0 1 0 1 0 1

Din X ¬X ¬X ¬X ¬X ¬X X X X X

A
WOK 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
ROK 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1
Dout X ¬X ¬X ¬X X ¬X X X X ¬X

I
WP 1 2 3 4 1 1 1 2 3 4 1 1 1 2
RP 1 1 2 3 4 1 1 1 2 3 4 1 1 1

Clock Cycle 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
Test Stage 3rd filling/emptying stage 4th filling/emptying stage 2nd stage of

Action 3rd filling 3rd emptying 4th filling 4th emptying pointer-shift

G
W 1 0 1 0 1 0
R 0 1 0 1 0 1

Din X ¬X ¬X ¬X ¬X ¬X X X X X

A
WOK 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
ROK 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1
Dout X ¬X ¬X ¬X X ¬X X X X ¬X

I
WP 2 3 4 1 2 2 2 3 4 1 2 2 2 3
RP 2 2 3 4 1 2 2 2 3 4 1 2 2 2

Clock Cycle 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
Test Stage 5th filling/emptying stage 6th filling/emptying stage 3th stage of

Action 5rd filling 5rd emptying 6th filling 6th emptying pointer-shift

G
W 1 0 1 0 1 0
R 0 1 0 1 0 1

Din X ¬X ¬X ¬X ¬X ¬X X X X X

A
WOK 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
ROK 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1
Dout X ¬X ¬X ¬X X ¬X X X X ¬X

I
WP 3 4 1 2 3 3 3 4 1 2 3 3 3 4
RP 3 3 4 1 2 3 3 3 4 1 2 3 3 3

Clock Cycle 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Test Stage 7th filling/emptying stage 8th filling/emptying stage

Action 7rd filling 7rd emptying 8th filling 8th emptying

G
W 1 0 1 0
R 0 1 0 1

Din X ¬X ¬X ¬X ¬X ¬X X X X X

A
WOK 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1
ROK 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0
Dout X ¬X ¬X ¬X X ¬X X X X ¬X

I
WP 4 1 2 3 4 4 4 1 2 3 4 4
RP 4 4 1 2 3 4 4 4 1 2 3 4

Table 5.4 – Test scenario for FIFO. G : generating, A : analyzing and I : inner pointer.
WP : write pointer. RP : read pointer.

The synchronous timing detail of FIFO test scenario is presented in Table 5.4. We detail

here the stages of the 1st & 2nd “filling/emptying” and the 1st “pointer shift” :

I In the 1st filling/emptying stage
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• In the 1st “filling”, the 4 words of FIFO are filled, where 1st word is X, 2nd word is

¬X, 3rd word is ¬X and 4th word is ¬X. To write each word, the selection of 1to4

demultiplexer is made, and the input is assigned with X or ¬X. In other words, a

part of all SAFs of 1to4 demultiplexer is tested.

• When FIFO is full, another flit is presented to FIFO to verify that the 1st word

cannot be written, and the write pointer cannot be shifted.

• In the 1st “emptying”, the 4 words of FIFO are emptied with 4 consuming cycles.

To consume each word, the selection of 1to4 multiplexer is done, and the inputs

are have different values (X and ¬X). That is to say, a part of all SAFs of 4to1

multiplexer is tested.

• When FIFO is empty, another consumption is achieved to verify that the read pointer

cannot be shifted.

I In the 2nd “filling/emptying” stage

• In the 2nd “filling”, the 4 words of FIFO are filled, where 1st word is ¬X, 2nd word

is X, 3rd word is X and 4th word is X. And the test of 1to4 demultiplexer continues.

• When FIFO is full, we reverify that the 1st word cannot be written, and the write

pointer cannot be shifted.

• In the 2nd “emptying”, the 4 words of FIFO are emptied with 4 consuming cycles.

And the test of 4to1 multiplexer continues.

• When FIFO is empty, we reverify that the read pointer cannot be shifted.

I In the 1st “pointer shift” stage,

• The write/read pointers are shifted for one step. The next “filling/emptying” stage

will begin with the incremented write/read pointers. At the end, the shift of write/read

pointer is fully tested.

At the end of these 11 (8+3) stages, the FIFO is tested not only at functional level, but

also at structural level. Based on these stages, we propose a channel test scenario.

Channel Test Scenario

From the structural point of view, a channel is composed of two FIFOs. Each FIFO

must be tested using the 8 “filling/emptying” stages and the 3 “pointer shift” stages. There-

fore, we design 4 “filling/emptying” steps and 3 “pointer shift” steps, as the channel test

scenario. These steps are detailed in table 5.5.

In this table :

I In a “filling/emptying” step, each FIFO is respectively filled/emptied two times.

I 4 steps of “filling/emptying”, can completely achieve the 8 stages of “filling/empty-
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Pointer Flits filled FIFO-out/-in Flit Emptying
StepWP(O/I)RP(O/I) Channel Input Word0Word1Word2Word3 Channel Output

1 1,1 1,1 X,¬X,¬X,¬X,¬X,X,X,X,(X) X,¬X ¬X,X ¬X,X ¬X,X X,¬X,¬X,¬X,¬X,X,X,X,(¬X)
2 One Step Pointer Shift
3 2,2 2,2 X,¬X,¬X,¬X,¬X,X,X,X,(X)¬X,X X,¬X ¬X,X ¬X,X X,¬X,¬X,¬X,¬X,X,X,X,(¬X)
4 One Step Pointer Shift
5 3,3 3,3 X,¬X,¬X,¬X,¬X,X,X,X,(X)¬X,X ¬X,X X,¬X ¬X,X X,¬X,¬X,¬X,¬X,X,X,X,(¬X)
6 One Step Pointer Shift
7 4,4 4,4 X,¬X,¬X,¬X,¬X,X,X,X,(X)¬X,X ¬X,X ¬X,X X,¬X X,¬X,¬X,¬X,¬X,X,X,X,(¬X)

Table 5.5 – Details of the channel test scenario and the test patterns.

ing” for each FIFO test.

I In each “filling/emptying” step, the chain of filled flits contains 9 flits : 8 are pushed to

the FIFO ; another one is used to check that the word cannot be written, and the write

pointer cannot be shifted, when channel is full. The chain of observed flits contains

9 flits : 8 are pulled from FIFO ; another one is used to check that the read pointer

cannot be shifted, when channel is full.

I 3 steps of “pointer shift”, can completely achieve the 3 “pointer shift” stages for each

FIFO test.

In conclusion, these steps have tested a channel since they have completely achieved test

scenario for each FIFO. With these steps, we have solved the problems defined in section

5.8.1.

I For ATG :

– N : the total number of PUSH round is 7 (4+3) : 4 for “filling” channel, 3 for “write

pointer shift”.

– M : the number of states of a “filling” PUSH round is 9 (8+1).

– M : the number of states of a “write pointer shift” PUSH round is 1.

– Test patterns for each PUSH round are shown in table 5.5.

I For ATA :

– N : the total number of PULL round is 7 (4+3) : 4 for “emptying” channel, 3 for

“read pointer shift”.

– M : the number of states of a “emptying” PULL round is 9 (8+1).

– M : the number of states of a “read pointer shift” PULL round is 1.

– Test patterns for each PULL round are shown in table 5.5.

Thus, the channel test process has been defined. The “CHTEST” states of ATG/ATA FSMs

are completely designed.
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5.8.5 Channel Test Process Verification

In order to verify the channel test process, we developed a VHDL RTL model con-

taining one ATG FSM, one ATA FSM and a bi-synchronous channel, as shown in Figure

5.17.
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Figure 5.17 – A VHDL RTL model containing one ATG, one ATA and a bi-synchronous
channel.

We simulate this model with 7 different couples of clocks, as listed in Table 5.6. In

these simulations, we observed that ATG and ATA have gone through with these clocks

couples. This result demonstrates that the channel test process is robust against large vari-

ations of clock boundaries, it supports the GALS approach.

CK of ATG 500ns 111ns 7ns 5ns 5ns 5ns 5ns
CK of ATA 5ns 5ns 5ns 5ns 7ns 111ns 500ns

Table 5.6 – Clock couples.

5.8.6 Fault Coverage Evaluation

Using Synopsis TetraMAX on synthesized version of a synchronous channel, we eval-

uate the fault coverage of the channel test patterns. The result is presented in Listing 5.3.

It should be noted that, PT means possibly detected faults. For the channel test, PT is

large because there is a large number (almost 320) of undefined-register faults as shown

in Figure 5.18. In fact, for a real physical circuit, the X signal - the output of an undefined-

register - has a real value 0 or 1. Thus, the X signal is seem to be injected by SA0 or SA1.

As the SA0 and SA1 have been tested for signal X, all PT faults are considered as detected

faults.
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U n c o l l a p s e d S tuck F a u l t Summary R ep or t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f a u l t c l a s s code # f a u l t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−− −−−−−−−−−
D e t e c t e d DT 5912
P o s s i b l y d e t e c t e d PT 355
U n d e t e c t a b l e UD 0
ATPG u n t e s t a b l e AU 0
Not d e t e c t e d ND 91
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t o t a l f a u l t s 6358
f a u l t c o v e r a g e 98.57%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 5.3 – SAF coverage information of channel test.
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Figure 5.18 – The undefined-register faults due to a SAF.

5.9 Timeout Value

The timeout value is determined by the ratios between the various clock frequencies

involved in the NoC. If all clocks have the same frequencies (but different phases), the ini-

tialization procedure requires less than 400 clock cycles (the total number of test patterns

is 383 = 52 For Routing Function Test + 225 For Crossbar Test + 106 For Channel Test). If we assume

that the biggest ratio between two clock frequencies in two neighboring routers is equal

to 100 (1 Ghz and 10 Mhz), the upper bound timeout value is equal to 400× 100 local

clock cycles. That is to say, this timeout value is implemented in the timer of each router,

counted down with the local clock.

5.10 Experimental Result

In this section, we detail evaluations of the proposed 2D-Mesh NoC BIST. These

evaluations are done from the point of view of SAF (Stuck-at Fault) coverage, and from

the point of view of silicon area overhead.
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5.10.1 Fault Coverage Evaluation

We launch a fault simulation of the complete self testable router in the Tetramax envi-

ronment. In this evaluation, the ATC, ATG, ATA FSMs and the multiplexers are consid-

ered as the router components, and the final states of the FSMs are considered as the test

signature, as shown in Figure 5.19.
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Figure 5.19 – The self testable router.

The fault coverage result is presented in Listing 5.4. The overall SAF coverage of the

BIST is 90.95%.

U n c o l l a p s e d S tuck F a u l t Summary R ep or t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f a u l t c l a s s code # f a u l t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−− −−−−−−−−−
D e t e c t e d DT 63551
P o s s i b l y d e t e c t e d PT 2500
U n d e t e c t a b l e UD 8
ATPG u n t e s t a b l e AU 0
Not d e t e c t e d ND 6561
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t o t a l f a u l t s 72620
f a u l t c o v e r a g e 90.95%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 5.4 – Fault coverage evaluation of self testable router.
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A summary of fault coverage evaluation of each component is presented in Table

below.

Components Fault Coverage
Routing Function 100%

Full Crossbar 99.33%
Channel 98.57%

A Self Testable router (Whole NoC) 90.95%

5.10.2 Cost (extra silicon area) :

The cost from the point of view of the silicon area is evaluated through a synthesizable

VHDL model of a complete self testable router using the SXLIB standard cell library

[Alliance, 2011], in the Synopsis synthesis environment.

Component NAND %
Original DSPIN Router 13500.75 100%

Self Testable Router 20318.1 150.50%
Overhead 6817.35 50.50%

The router (by extension the NoC itself) footprint is increased by 50.50% (that is much

smaller than 200%, the overhead due to TMR : Triple Modular Redundancy). This is an

affordable cost, since the DSPIN NoC is a very compact design and represents typically

less than 3% [Panades et al., 2008] of the silicon area in a typical MP2SoC architecture.

5.10.3 NoC Test Execution Time

The NoC test execution time is determined by the timeout value, that is 4×104 local

clock cycles. For example, at a clock 500Mhz, the NoC test lasts 0.00008 seconds.

5.11 Conclusion

In this chapter, we detail the proposed fully distributed off-line BIST dedicated to 2D-

Mesh NoC in a GALS context. The (BIST) test process is systematically integrated in

the NoC as an initialization procedure. This procedure provides automatic detection and

de-activation of the faulty routers or communication channels. And it provides a global

SAF coverage about 91%, for an acceptable silicon area overhead.

The presented initialization procedure can be performed at fabrication time or “on

the field”. In the first case, this procedure is helpful in improving the yield by avoiding
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to throw the whole chip when one single component is faulty. In the second case, it’s

useful to avoid the failure propagation and offer cleaning the malfunctions of the overall

Network-on-Chip through a simple reboot of the chip. Thus it makes the NoC ready for

self-reconfiguration.

Moreover, the infrastructure : algorithm of test process, test structure, de-activation

mechanism and FSMs, can be reused in another reconfigurable or (permanent) fault-

tolerant Network-on-Chip, that have the characteristics presented in chapter 3 section 3.5.
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In this chapter, we present the DCCI (Distributed Cooperative Configuration Infras-

tructure) that has been implemented in a DSPIN-based, shared memory MP2SoC archi-

tecture by REFAUVELET Dimitri during its ongoing thesis. We detail also, on top of

DCCI, the software-based diagnosis/localization of faulty/fault-free components, which

is a software application for “Black Hole” detection. The evaluation of this software,

from the points of view of detection coverage, execution times and application code size,

are presented and analyzed.

6.1 DCCI Implementation in the DSPIN-based, shared
memory MP2SoC Architecture

The final goal of DCCI is to create a spanning communication tree, after the initial-

ization procedure of the DSPIN micro-network. This goal is reached through a distributed

91
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embedded Configuration Firmware (CF).

As shown in Figure 3.1.{B}, in the DSPIN-based, shared memory MP2SoC architec-

ture, each cluster contains an embedded ROM, that stores the local CF code. This code is

composed of three parts : cluster test, tree creation and “Black Hole” detection.

6.1.1 Cluster Test

After each system reboot or chip power-on, each cluster has to test itself executing the

first part of local CF code, before it can try to participate to build the DCCI communication

tree. In each cluster, the local test starts only after the local NoC initialization procedure

goes through. This local test has 3 stages :

• Local intra-cluster test : It is a first, coarse grain, software-based test (such as

presented in [Gizopoulos et al., 2004]) for all IPs belonging to the cluster, to decide

if a cluster is usable to participate to the tree building procedure. For instance, a

cluster which RAM does not pass the march test is declared unusable.

• Local leader election : As each cluster can contain several processors, an opera-

tional processor of the cluster is elected. The other operational processors are put in

idle state.

• Access to the external memory : The locally elected processor tries to establish a

connection with the external I/O controller, using the default routing algorithm for

the NoC : X-First.

If a cluster successfully passes the two first steps, it is declared to be usable and it’s

a potential DCCI tree node. If the third test successfully passes, the cluster is a potential

DCCI tree root.

6.1.2 Tree Creation

In each cluster, the elected local processor will execute the second part of local CF

code : tree creation, as presented in chapter 2 section 2.2.2.

6.1.3 “Black Hole” Detection

Once the DCCI tree has been built, the tree root will execute the last part of its CF

code : “Black Hole” detection. This detection phase has 3 stages :

• The tree root loads, from the external storage, the code for “Black Hole” detection.
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• The root uses the DCCI tree to distribute the code to each node, and then make

them execute the code. In other words, each node begins to do local “Black Hole”

detection.

• When all nodes have finished their local detections, the root will centralize each

local detection result to obtain the final “Black Hole map”.

The final “Black Hole map” is used by the tree root, to identify the modification of

topology. And the tree root can then analyse how to configure the routing function of

network, to fit the modification.

In this thesis, we only detail one of the three parts of CF codes : the “Black Hole”

detection software.

6.2 “Black Hole” Detection Software

The principal idea is to force each node to communicate with all other nodes in the

network to exercise all “X-First” paths. And then, to mark as valid all components of a

“non timeout” path.

6.2.1 Theory Presentation

After the DSPIN initialization procedure :

• The fault-free channels are activated.

• The fault-free routers are activated to achieve the default routing algorithm - X-First.

• The faulty channels are de-activated and configured to be a “Black Hole”.

• The faulty routers are de-activated. The associated channels are de-activated and

configured to be “Black Holes”. Thus, a faulty router is considered as a “Black

Hole”.

We indirectly test each component by checking each “X-First” path. As shown in

Figure 6.1, a “X-First” path is presented.

A “X-First” transaction between a couple of clusters, is a round-trip. It’s composed of

two half paths : one for command and one for response. For the command path, the initial

head is an initiator module, such as a processor/cache couple. The final end is a target

module, such as an embedded RAM. For the response path, the head is the target module,

the end is the initiator module.

Each half path contains a set of routers and channels. If one of these components is

a “Black Hole”, the packet transmission between initiator/target or target/initiator will be
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Figure 6.1 – A X-First path between cluster (0,0) and cluster (1,1).

lost. A timeout will be triggered at the initiator side, since the command/response protocol

is broken.

In other words, if no timeout is set by the initiator, it proves that the path contains no

“Black Hole” in both command path, and response path. And for a “no-timeout” path, all

components can be marked as fault-free.

In the following subsection, we detail the “X-First” path check mechanism.

6.2.2 “X-First” Path Checking Mechanism

As shown in Figure 6.2.{a}, each processor receives a timeout exception when “cache

miss” timeout occurs. This exception is the key of the “X-First” path check.

In Figure 6.2.{b}, the path check code is presented. It’s executed by the processor.

• A global variable : Timeout_Flag is initialized as neuter (0).

• The processor loads a word from the embedded RAM of targeted cluster.

• The load instruction triggers a cache miss, and then the cache generates a read

packet to the target RAM.

• If the “X-First” path contains a “Black Hole”, the timeout will be triggered by the

cache. And the processor will execute the exception code for “cache miss” timeout.

• The processor handles the exception as a non fatal error, where Timeout_Flag is

assigned as positive (1). And then the processor continues the check code.
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Figure 6.2 – FIG.{a} presents the “X-First” path and processor/cache couple. FIG.{b}
presents the code of “X-First” path check

• It should be noted that, if the path doesn’t contain any “Black Hole”, the cache will

receive the response packet from the RAM. And then the processor continues the

check code.

• The last step of check code is to verify Timeout_Flag to be neuter (0) or positive

(1).

• If the Timeout_Flag is neuter (0) that means the path doesn’t contain any “Black

Hole”. In this case, the processor will mark the path components as fault-free.

In the following subsection, we detail the algorithm for marking components.

6.2.3 Algorithm for Marking Components

The final goal of marking components is to create two lists : one is the list of FaultFree

Routers (FLR), and the other one is the list of FaultFree Channels (FLC). The algorithm

of marking components is based on the fault-free “X-First” path traversing.

MarkingComponents() :
Require: [Y.X ] is the index of the current cluster.
Require: [y,x] is the index of the target cluster.
Require: FLC is the list of faultless channels.
Require: FLR is the list of faultless routers.

{Comment0 : Initialization of two lists}
1: FLC← NIL
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2: FLR← NIL
{Comment1 : Add local channel and local router}

3: FLC← Input_Channel_o f _Local_port_o f _Command_Router[Y,X ]⋃
Out put_Channel_o f _Local_port_o f _Command_Router[y,x]⋃
Input_Channel_o f _Local_port_o f _Response_Router[y,x]⋃
Out put_Channel_o f _Local_port_o f _Response_Router[Y,X ]

4: FLR←Command_Router[Y,X ]
⋃

Command_Router[y,x]⋃
Response_Router[y,x]

⋃
Response_Router[Y,X ]

{Comment2 : Traversing the path on X direction}
5: if X < x then
6: for i = X to x−1 do
7: FLC← FLC

⋃
Out put_Channel_o f _East_port_o f _Command_Router[Y, i]⋃

Input_Channel_o f _East_port_o f _Response_Router[y, i]
8: FLR← FLR

⋃
Command_Router[Y, i+1]

⋃
Response_Router[y, i]

9: end for
10: else if X > x then
11: for i = X downto x+1 do
12: FLC← FLC

⋃
Out put_Channel_o f _West_port_o f _Command_Router[Y, i]⋃

Input_Channel_o f _West_port_o f _Response_Router[y, i]
13: FLR← FLR

⋃
Command_Router[Y, i−1]

⋃
Response_Router[y, i]

14: end for
15: end if

{Comment3 : Traversing the path on Y direction}
16: if Y < y then
17: for j = Y to y−1 do
18: FLC← FLC

⋃
Out put_Channel_o f _South_port_o f _Command_Router[ j,x]⋃

Input_Channel_o f _South_port_o f _Response_Router[ j,X ]
19: FLR← FLR

⋃
Command_Router[ j,x]

⋃
Response_Router[ j+1,X ]

20: end for
21: else if Y > y then
22: for j = Y downto y+1 do
23: FLC← FLC

⋃
Out put_Channel_o f _North_port_o f _Command_Router[ j,x]⋃

Input_Channel_o f _North_port_o f _Response_Router[ j,X ]
24: FLR← FLR

⋃
Command_Router[ j,x]

⋃
Response_Router[ j−1,X ]

25: end for
26: end if
27: return FLC
28: return FLR

The two lists FLR and FLC are distributed in each cluster. Finally, the tree node will

collect and merge these informations into two global lists : GFLR and GFLC. Any router

or communication channel that is not present in these GFLR and GFLC lists is a “Black

Hole”. So, theoretically, the Detection Coverage (DC) of “Black Hole” is 100%, with any

number of fault. And this is confirmed by the experimental results.
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6.3 Experimental Result

6.3.1 Detection Coverage

In this subsection, we present experimental results of Detection Coverage (DC) eval-

uation for the “Black Hole” detection. We have simulated two types of fault in a 4× 4

clusters MP2SoC. First, single fault injection (single faulty router or one faulty channel) ;

Second, multi-faults injections. These fault injections were simulated on a dedicated C

simulator.

Single Injection

In a M×N DSPIN 2D-mesh, there are C cmd&rsp channels, and there are R cmd&rsp

routers.

C = (M× (N−1)×2+N× (M−1)×2+M×N×2)×2

R = M×N×2

The Detection Coverage has been evaluated for all the situations where the NoC contains

one single fault : single faulty router or single faulty channel defining a total of (C+R)

different faulty networks. In our example, with M = 4,N = 4, there are 160 channels and

32 routers.

In all cases, the “Black Hole” has been identified and located, resulting in a Detection

Coverage of 100% for a single fault.

However, in some cases, some fault-free components are wrongly identified as “Black

Holes” due to the channel dependencies, which is explained in the following.

As shown in Figure 6.3.{A}, there are mutual dependencies between :

• The input channel of Local port of command router and the output channel of Local

port of response router. Such as a & b.

• The output channel of Local port of command router and the input channel of Local

port of response router. Such as c & d.

For example, channel a and channel b depends on each other. If the channel a is a

“Black Hole”, the cluster (0,0) can not be connected into the DCCI tree. Therefore, the

channel b is identified as a “Black Hole”. But this result is reasonable. Because, if one

channel of a local port is faulty, it breaks the command/response protocol and makes the

cluster unusable.

Figure 6.3.{B} shows that there are two other dependencies :
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Figure 6.3 – Dependencies exist between some channels.

• For routers located at the West border of the Mesh, the output channel of East port

of the router depends on the input channel of Local port of the router. Such as f &

e ; h & g.

• For router located at the East border of the Mesh, the output channel of West port

of the router depends on the input channel of Local port of the router. Such as j &

i ; l & k.

For example, channel f depends on channel e. If the channel e is a “Black Hole”,

the cluster (0,0) can not be connected into the DCCI tree. According to X-First routing

algorithm, all “X-First” paths containing f are sourced by cluster (0,0). That is to say, f
can be tested with any “X-First” path, as cluster (0,0) is unusable. Thus, the channel f is

identified as a “Black Hole”.

Due to the two above mentioned channel dependencies, some “fault-free” channels

are identified as faulty. This doesn’t induce any destructive problem nor catch out our

technique, but only leads to wasting some fault-free channels.

Multi-faults injection

The Detection Coverage of multi-faults injection has been evaluated for all the situa-

tions of

– 1 faulty router and 1 faulty channel

– 2 faulty routers

– 2 faulty channels
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– 2 faulty routers and 1 faulty channel

– 1 faulty routers and 2 faulty channels

– 2 faulty routers and 2 faulty channels

All these simulations resulted in a 100% “Black Hole” detection coverage.

6.3.2 Application Execution Time Evaluation

The execution time is an important issue for a software procedure that must be exe-

cuted at each reboot of the system. For this experiment we simulated the complete pro-

cedure on a 4×4 2D-mesh MP2SoC architecture containing 16 processors, modeled with

the cycle-accurate SoClib virtual prototyping platform [SoClib, 2011]. This architecture

allows the injection of different faults to emulate SAF within channels and routers. For

one single fault injected, the total localisation time is 7.1×106 cycles (without hardware

test process) :

– Time for (DCCI) tree construction : 1.9×106 cycles

– Time for test task distribution : 1.2×106 cycles

– Time for test execution : 3.5×106 cycles

– Time for test result centralization : 0.5×106 cycles

As this procedure is executed using the system clock, it lasts 0.014 seconds using a

clock 500Mhz, which is fully acceptable.

6.3.3 Application Code Size

For a MIPS32 processor, the application code is split into : DCCI : 5 Kbytes per clus-

ter ; Test and localization procedure : 2.5 Kbytes per cluster. Embedding this application

in a MP2SoC is thus affordable.

6.4 Conclusion

In this chapter, we detailed a software-based diagnosis/localization of faulty/fault-

free components. This process is mandatory to implement the ODDR (“On the field”

Detection, De-activation & Reconfiguration) mechanism supporting fault-tolerance in the

context of permanent failures.

The “Black Hole” detection relies on a DCCI (Distributed Cooperative Configuration

Infrastructure) that dynamically builds a software-based communication tree, covering all

the nodes that have successfully passed the local BIST. The tree root is the configuration

master, the tree itself is the configuration bus.
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The proposed “Black Hole” detection software has been evaluated in a 16 nodes

MP2SoC architecture (4×4 mesh) modeled as a SystemC virtual prototype, in the frame-

work of the cycle accurate SoClib environment. It reaches a Detection Coverage of 100%

for one or multiple injected faults.

It should be noted that, the method proposed in this chapter, can be used in any shared

memory multi-core architecture with a 2D-Mesh NoC.
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In this chapter, we detail a deterministic, lightweight, deadlock-free and reconfig-

urable routing algorithm for a 2D-Mesh NoC. This algorithm has been implemented in

the DSPIN micro-network, and evaluated from the point of view of performance (penalty

on the network saturation threshold), and cost (extra silicon area occupied by the recon-

figurable version of the router). In addition, the reconfigurable routing function is proven

to be deadlock-free for any single-faulty-router topology.

7.1 The fault model of modification of topology

Once the faulty/de-activated components have been located, the modification of topol-

ogy is identified. The modification of topology involves five types of fault :

• Single faulty channel topology.

• Multiple faulty channels topology.

• Single faulty router topology.

• Multiple faulty routers topology.

• Mixed Single or Multiple faulty channel and router topology.

101
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In this chapter, we make the following simplification :

If an input channel of a router is identified as a “Black Hole”, the complete

router is considered as faulty.

Then, the five fault models can be reduced to two types : Single-faulty-router topology

and Multiple-faulty-routers topology. We define now a low cost, reconfigurable routing

algorithm that can handle any Single-faulty-router topology.

7.2 The reconfigurable routing algorithm for Single-faulty-
router topology

According to the default routing algorithm of DSPIN : X-First, the packets are firstly

routed on the X direction and then on the Y direction. One important feature of the X-First

routing algorithm is : the packet path from a node (y,x) to the node (y′,x′) is a Unique
Path :

L = {Router0(y,x), ...,Router|x′−x|(y,x
′), ...,Router|y′−y|+|x′−x|(y

′,x′)}

Once an unique path has been broken by a faulty router, the routing algorithm recon-

figuration mechanism must recover the broken unique path.

The main idea of the deterministic, reconfigurable routing algorithm is to route
the packets through a cycle-free contour surrounding a faulty router, aiming to re-
place all broken Unique Paths.

B

A

NNW NE

EW

SW S SE

Figure 7.1 – A generic faulty router’s neighbors and the natural contour.

Definition 1 : Neighbors. In a 2D-Mesh, a node (Y,X) has 4 direct neighboring nodes

(N,S,W,E) and 4 indirect neighboring nodes (NE,NW,SE,SW). We call those 8 nodes the

neighbors, as shown in Figure 7.1.
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Definition 2 : Natural Contour. The neighbors of a faulty router (Y,X) define a natural

contour as shown in Figure 7.1. It separates the network into two parts : normal part A and

defective part B. A single faulty router has N×M possible locations in a N×M 2D-Mesh.

Thus, a natural contour has 9 possible shapes corresponding to 9 different locations : at

each corner, at each side and at other positions, as shown in Figure 7.2.
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Figure 7.2 – 9 natural contours.
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Figure 7.3 – The CDGs of 9 natural contours. 2 cycles are found in the C5’s CDG, so C5
can introduce deadlock.

Definition 3 : CDG of Natural Contour. As presented in chapter 2 section 2.2.3 (a node
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means a channel, a directed edge from a channel to another, means a possible path defined

by the routing algorithm), the Channel Dependency Graphs (CDG) can be used to prove

that the 8 natural contours (C1,...,C4,C6,..,C9) are deadlock-free. And the natural contour

C5 is NOT deadlock-free, as there is 2 cycles in C5’s CDG, as shown in Figure 7.3.

In order to break the 2 cycles in C5’s CDG, two NE turns are prohibited as shown in

Figure 7.4. As a result, we defined 9 cycle-free contours, corresponding to the 9 possible

locations for a faulty router.
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NENW

W E

SESSW

N

Figure 7.4 – The two turns prohibited (dotted line) in C5’s NE can break the 2 cycles.

Definition 4 : New Path. For C5, the 12 broken paths Li, listed in Table 7.1, described in

Figure 7.5, are replaced by the 12 new path NewLi, listed in Table 7.1.
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Figure 7.5 – the 12 Li (dotted line) broken by
a hole are replaced by the 12 NewLi (solid
lines).

L1 {RW ,Rx,RN}
NewL1 {RW ,RNW ,RN}
L2 {RE ,Rx,RN}
NewL2 {RE ,RSE ,RS,RSW ,RW ,RNW ,RN}
L3 {RW ,Rx,RS}
NewL3 {RW ,RSW ,RS}
L4 {RE ,Rx,RS}
NewL4 {RE ,RSE ,RS}
L5 {RW ,Rx,RE}
NewL5 {RW ,RSW ,RS,RSE ,RE}
L6 {RE ,Rx,RW }
NewL6 {RE ,RSE ,RS,RSW ,RW }
L7 {RN ,Rx,RS}
NewL7 {RN ,RNW ,RW ,RSW ,RS}
L8 {RS,Rx,RN}
NewL8 {RS,RSW ,RW ,RNW ,RN}
L9 {RSW ,RS,Rx,RN}
NewL9 {RSW ,RW ,RNW ,RN}
L10 {RSE ,RS,Rx,RN}
NewL10 {RSE ,RS,RSW ,RW ,RNW ,RN}
L11 {RNW ,RN ,Rx,RS}
NewL11 {RNW ,RW ,RSW ,RS}
L12 {RNE ,RN ,Rx,RS}
NewL12 {RNE ,RE ,RSE ,RS}

Table 7.1 – 12 Li and 12 NewLi.
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As shown in Figure 7.6, all broken paths are restored for the 8 other cycle-free con-

tours.
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Figure 7.6 – The broken Li and NewLi in other cycle-free contours.

7.2.1 Routing Function Definition

A given router R can be in 9 different situations : if none of the 8 neighboring routers is

faulty, R is configured as NORMAL, it implements the classical X-First routing function.

If one of the neighbors is faulty, R is part of a cycle-free contour, and must be accordingly

configured (N_OF_x 1, S_OF_x, E_OF_x, W_OF_x, NE_OF_x, NW_OF_x, SE_OF_x,

SW_OF_x), where x is the index of the contour (from C1 to C9). In theory, there are 41

different routing functions as shown in Table 7.2.

In fact, some routing functions are identical, there are thus 15 different routing func-

tions presented in Table 7.3.

All 15 routing functions are merged into one unique routing function that is presented

in Listing 7.1. This function will be (Logic-block-based) hardware implemented and dis-

1. N_OF_x means that the current router plays the role of N in the faulty router’s contour x
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Configuration Contour Routing Function
N_OF_x C4, C5, C6, C7, C8, C9 NC4, NC5, NC6, NC7, NC8, NC9
S_OF_x C1, C2, C3, C4, C5, C6 SC1, SC2, SC3, SC4, SC5, SC6
E_OF_x C1, C2, C4, C5, C7, C8 EC1, EC2, EC4, EC5, EC7, EC8
W_OF_x C2, C3, C5, C6, C8, C9 WC2, WC3, WC5, WC6, WC8, WC9
NE_OF_x C4, C5, C7, C8 NEC4, NEC5, NEC7, NEC8
NW_OF_x C5, C6, C8, C9 NWC5, NWC6, NWC8, NWC9
SE_OF_x C1, C2, C4, C5 SEC1, SEC2, SEC4, SEC5
SW_OF_x C2, C3, C5, C6 SWC2, SWC3, SWC5, SWC6

Normal X-First

Table 7.2 – The configuration values and the routing functions.

Configuration Contour Routing Function Difference
N_OF_x C4 NS1 Packet from N to S : N, NE, E, SE, S

C5, C6 NS2 Packet N to S : N, NW, W, SW, S
C7, C8, C9 X-First No packet from N to S

S_OF_x C4 SN1 Packet from S to N : S, SE, E, NE, N
C5, C6 SN2 Packet from S to N : S, SW, W, NW, N
C1, C2, C3 X-First No packet from S to N

E_OF_x C2, C5 EW1 Packet from E to W : E, SE, S, SW, W
C8 EW2 Packet from E to W : E, NE, N, NW, W
C1, C4, C7 Y-First No packet from E to W

W_OF_x C2, C5 WE1 Packet from W to E : W, SW, S, SE, E
C8 WE2 Packet from W to E : W, NW, N, WE, E
C3, C6, C9 Y-First No packet from W to E

NE_OF_x C4, C5 NES Packet from NE to S : NE, E, SE, S
C7, C8 X-First No packet from NE to S

NW_OF_x C5, C6 NWS Packet from NW to S : NW, W, SW, S
C8, C9 X-First No packet from NW to S

SE_OF_x C4 SEN1 Packet from SE to N : SE, E, NE, N
C5 SEN2 Packet from SE to N : SE, S, SW, W, NW, N
C1, C2 X-First No packet from SE to N

SW_OF_x C5, C6 SWN Packet from SW to N : SW, W, NW, N
C2, C3 X-First No packet from SW to N

Table 7.3 – The configuration value and the local routing function.

tributed in each router. Its form is :

Out put = Func({Y _Destination,X_Destination},{Y _Local,X_Local},REGIST ER)

The parameter :

• {Y_Destination, X_Destination} is the coordinates of the packet destination.

• {Y_Local, X_Local} is the coordinates of current router.

• REGISTER is the configuration register value.

In this function, we only need 9 reconfiguration values
1if (X_Destination > X_Local){
2if (REGISTER == NE_OF_x || REGISTER == E_OF_x || REGISTER == SE_OF_x ||
3REGISTER == S_OF_x || REGISTER == NORMAL)
4OUT = EAST;
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5else if (REGISTER == N_OF_x){
6if (Y_Local == 1 || X_Local == 0 || Y_Destination >= Y_Local ||
7X_Destination > X_Local + 1)
8OUT = EAST;
9else
10OUT = WEST;
11}
12else if (REGISTER == NW_OF_x){
13if (Y_Local == 1 || Y_Destination >= Y_Local ||
14X_Destination > X_Local + 2)
15OUT = EAST;
16else
17OUT = SOUTH;
18}
19else if (REGISTER == W_OF_x){
20if (Y_Local == 0 || Y_Destination > Y_Local)
21OUT = NORTH;
22else
23OUT = SOUTH;
24}
25else{
26if (Y_Destination <= Y_Local || X_Destination > X_Local + 1)
27OUT = EAST;
28else
29OUT = NORTH;
30}
31}
32else if (X_Destination < X_Local){
33if (REGISTER == N_OF_x || REGISTER == NW_OF_x || REGISTER == W_OF_x ||
34REGISTER == SW_OF_x || REGISTER == S_OF_x || REGISTER == NORMAL)
35OUT = WEST;
36else if (REGISTER == NE_OF_x){
37if (X_Destination < X_Local - 1 || Y_Destination >= Y_Local)
38OUT = WEST;
39else
40OUT = SOUTH;
41}
42else if (REGISTER == SE_OF_x){
43if (X_Local == 1 && Y_Destination > Y_Local + 1)
44OUT = NORTH;
45else
46OUT = WEST;
47}
48else{
49if (Y_Local == 0 || ( X_Local == 1 && Y_Destination > Y_Local))
50OUT = NORTH;
51else
52OUT = SOUTH;
53}
54}
55else if (Y_Destination > Y_Local){
56if (REGISTER != S_OF_x)
57OUT = NORTH;
58else if (X_Local != 0)
59OUT = WEST;
60else
61OUT = EAST;
62}
63else if(Y_Destination < Y_Local){
64if (REGISTER != N_OF_x)
65OUT = SOUTH;
66else if (X_Local != 0)
67OUT = WEST;
68else
69OUT = EAST;
70}
71else
72OUT = LOCAL;

Listing 7.1 – The routing function of cycle-free contour for single-faulty-router-topology
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7.2.2 Deadlock-free Proof

In order to prove that this reconfigurable routing function is deadlock-free, we used

the formal proof tool ODI [Taktak et al., 2008], which is developed at LIP6. This tool is

dedicated to deadlock analysis in packet switching networks. It is based on the analysis of

“Strongly Connected Components” (SCC) of the Extended Dependency Graph defined by

the micro-network topology on one hand, and by the routing algorithm on the other hand.

That is to say, this tool can prove there is a cycle or not in CDG for the reconfigurable

routing algorithm in a topology. It can thus build a sufficient condition of deadlock-free

property.

With this tools, we have proved the above mentioned routing function to be deadlock-

free in any single-faulty-router topology, for a 5×5 and 10×10 2D-Mesh. Thus, this re-

configurable routing algorithm can fit the minimum fault-tolerant requirement (described

in chapter 1 section 1.5.2).

7.3 Experimental Results

7.3.1 Performance (penalty on the network saturation threshold) :

With the cycle-accurate SoClib virtual prototyping platform [SoClib, 2011], we simu-

lated a 2D-Mesh containing 5×5 clusters. Each cluster contains one traffic generator and

one target. For each initiator, the offered load (defined as the ratio between the number of

injected flits and the total number of cycles) can be precisely adjusted. The traffic has a

uniform random distribution (each initiator sends packets to all targets). The packet length

is 8. The average network latency is measured as the average number of cycles for a round

trip from an initiator to a target, and back to the same initiator.

If we plot the average latency versus the offered load, the saturation threshold is the

maximal accepted load where the latency increases to infinity. We simulated all single-

faulty-router topologies, and the Figure 7.7 presents the results for 5 cases : no hole 2,

hole in (0,0), hole in (0,2), hole in (1,1), hole in (2,2).

According to this simulation, we find out that :

• When the load is not too high (<10%), the impact on the average latency is negli-

gible.

• When the hole is located at the corner of the mesh, the saturation threshold isn’t

modified.

2. Hole means a faulty router.
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Figure 7.7 – Some saturation thresholds in 5×5 2D-Mesh.

• When the hole is located at the center of the mesh, the saturation threshold is

strongly modified (as a 2D-Mesh topology has central symmetry, the center is a

hotspot in the simulation of uniform random distribution. When the hotspot is faulty,

the saturation threshold is strongly modified).

7.3.2 Cost (extra silicon area) :

The reconfigurable routing function described in Listing 7.1 has been synthesized with

Synopsys synthesis environment using the SXLIB standard cell library [Alliance, 2011],

to evaluate the cost of silicon area.

Component NAND
Original DSPIN Router 13500.75

X-First Routing Algorithm 71.25
Reconfigurable Routing Algorithm 240

Overhead (%) 168.75 (1.25%)

Due to reconfigurable routing algorithm, the router (whole NoC) footprint is increased

by only 1.25%. This is a very low cost. It should be noted that, this 1.25% is already
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contained in all overhead presented in chapter 5 section 5.10.

7.4 conclusion

We propose an ultra-low-cost reconfigurable routing algorithm. It requires only a 4bits

configuration register per router. It has been physically implemented in the DSPIN micro-

network. The silicon area penalty is only 1.25% of the router footprint.

The impact on the latency and saturation threshold has been evaluated. The reconfig-

urable routing algorithm is fully scalable. It has been demonstrated in the DSPIN micro-

network, but can be used in any 2D-Mesh Network-on-Chip. This routing algorithm is

proven to be deadlock-free with any single-faulty-router topology.

In any 2D-Mesh NoC-based, MP2SoC architecture, this reconfigurable routing algo-

rithm capability is mandatory to implement the “on the field” fault-tolerant approach.



Conclusion

In this thesis, we presented a complete ODDR (“On the field” Detection, De-activation

and Reconfiguration) mechanism, used to establish permanent fault-tolerance for a 2D-

Mesh NoC in shared memory MP2SoC architecture. This mechanism contains three stages :

1 Initialization stage / NoC Test

2 Pre-configuration stage / Configuration Infrastructure

3 Configuration stage / Routing Algorithm

With these three stages, a damaged 2D-Mesh NoC can structurally self-test, partially

self-disable, globally self-reconfigure and functionally self-recover, after a simple system

reboot or at chip power-on. Moreover, these stages can be used in any 2D-Mesh NoC

based, shared memory, multi-cores architecture.

Initialization Stage

A fully distributed off-line BIST dedicated to 2D-Mesh NoC in a GALS context, is

proposed. This BIST is implemented as an initialization procedure, and executed at each

system reboot or chip power-on. With the help of this procedure, the fault-free components

are activated, while the faulty components are detected, de-activated and configured to

behave as “Black Hole”. Therefore, this procedure avoids the failure propagation and

cleans the malfunctions of the overall Network-on-Chip through a simple reboot of the

chip, and it makes the NoC ready for pre-reconfiguration. In addition, this test procedure

provides a global SAF coverage about 91%, for an acceptable silicon area overhead (NoC

footprint increased by 50.50%).

The initialization procedure can be performed not only “on the field”, but also at fab-

rication time. It can thus help to improve the yield by avoiding to throw the whole chip

when one single component is faulty.

It should be noted that, the initialization procedure can be reused, as a test infrastruc-

ture in various 2D-Mesh Network-on-Chip.

111
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Pre-configuration Stage

With the help of a distributed & embedded Configuration Firmware (CF), the DCCI

tree (Distributed Cooperative Configuration Infrastructure developed by D.Refauvelet) is

constructed on top of an initialized NoC. With this tree, all usable clusters can be covered

and connected. Each tree node is an embedded processor core of a cluster. The tree root

is the global configuration master. The tree itself is the global configuration bus.

Through the tree, at first, the root makes each node to execute the software application

called “Black Hole” detection. Then, the root centralizes each local result to globally iden-

tify the “Black Holes” and the modification of topology. Finally, the root can configure

the global routing function of NoC in the configuration stage.

The proposed “Black Hole” detection software has been evaluated in a 16 nodes

MP2SoC architecture (4×4 mesh) modeled as a SystemC virtual prototype, in the frame-

work of the cycle accurate SoClib environment. It reaches a Detection Coverage of 100%

for all single or multiple injected faults. Moreover, the software execution time is evalu-

ated, the value is fully acceptable (0.014 seconds at 500Mhz). And the application code

size is affordable (7.5 Kbytes).

It should be noted that, this configuration infrastructure and the detection software,

can be used in any shared memory multi-core architecture with a 2D-Mesh NoC.

Configuration Stage

An ultra-low-cost reconfigurable routing algorithm is proposed to handle the modifi-

cation of topology. With this routing algorithm, the network itself is split into two regions :

normal region and faulty region. The routers of normal region are not reconfigured, but

the border routers of the faulty region are configured to create a cycle-free contour, aiming

to bypass the faulty/disable routers.

This routing algorithm requires only a 4bits configuration register per router. And it

induces only 1.25% silicon area overhead on the router footprint. Furthermore, the re-

configurable routing function is proven to be deadlock-free with any Single-faulty-router

topology. And it can be extended to handle the Multi-faulty-router topology. In addition,

this reconfigurable routing algorithm can be used in any 2D-Mesh Network-on-Chip.

In conclusion, with these three stages, we have successfully solved three problems iden-

tified in chapter 2, concerning the state of the art of the ODDR mechanism.

1. NoC Test : In order to support “on the field” NoC reconfiguration strategy, an off-

line, “test for de-activation” BIST mechanism is necessary. As far as we know, there
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is not yet such BIST, and we must solve this important problem. This problem has

been solved in the initialization stage.

2. Configuration Infrastructure : The DCCI will be used in this thesis as the con-

figuration infrastructure. However, DCCI doesn’t allow the diagnosis/localization

of the faulty/fault-free components. Thus, the modification of topology can not be

identified. So, this problem must be solved. This problem has been solved in the

pre-configuration stage.

3. Routing Algorithm : As far as we analyze, the published fault-tolerant, determin-

istic reconfigurable routing algorithms either are expensive, or can not handle some

single-faulty-router topologies. Moreover, they haven’t been formally proven to be

deadlock-free. Therefore, we have to define a new fault-tolerant routing algorithm.

This problem has been solved in the configuration stage.

Answers to the Questions asked in chapter 1 (Problem Def-
inition)

The related open questions listed in chapter 1 (Problem Definition), on three topics :

NoC Test, Configuration Infrastructure and Routing Algorithm, are answered in this sec-

tion.

NoC Test

Question 1 : How to handle the interaction between the router test and the channel test ?

Answer : As shown in chapter 5 section 5.2 Figure 5.3, we propose an algorithm to im-

plement BIST test process, distributed in each router, to achieve two levels of par-

allelism. In the first level of parallelism, the test of all routers start at each system

reboot or chip power-on. And then, when the router test is OK, the tests of all asso-

ciated channels start at the same time. Thus, the router test and the channel test can

be coordinated without mutual interference.

Question 2 : How to generate efficient test patterns for channel test and router switch

module (crossbar) test ?

Answer : As shown in chapter 5 section 5.7 and section 5.8, we propose and detail an

ad-hoc test pattern generation, for channel test and crossbar test. The main idea is

to determine the form and the value of test patterns by the analysis of component’s

function and structure, and to evaluate the fault coverage by fault simulation.
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Question 3 : How to realize the de-activation approach within the BIST strategy ? And

How to configure the fault component to behave as a “Black Hole” ?

Answer : The de-activation and “Black Hole” configuration of the faulty components are

realized through controlling the additional multiplexer using the states of ATC, ATG

and ATA. The detail is presented in chapter 5 section 5.4.

Question 4 : Can the proposed communication channel test handle the clock bound-

aries ? And How ?

Answer : The proposed communication channel test can handle the clock boundaries. As

shown in chapter 5 section 5.8, the bi-synchronous communication channel is tested

by a couple of ATG/ATA FSMs. ATG/ATA work at each border of the channel, in

two different clock domains. Their cooperation is achieved with the help of some

asynchronous handshake signals, like a ping-pong game, as shown in Figure 5.15.

This cooperation is verified to be robust against large variations of clock frequencies

as presented in section 5.8.5.

Question 5 : How many test patterns are generated for the NoC test ?

Answer : The total number of test patterns are

383 = 52 For Routing Function Test +225 For Crossbar Test +106 For Channel Test

Question 6 : What is the cost of the NoC test ?

Answer : According to the timeout mechanism, the test times is 40000 clock cycles,

0.00008 seconds at 500 MHz. The NoC footprint is increased by 50.50% (that also

includes the overhead due to the reconfigurable routing algorithm). This is much

smaller than 200%, the overhead due to TMR : Triple Modular Redundancy. This

is an affordable cost, since the DSPIN NoC is a very compact design and typically

represents less than 3% [Panades et al., 2008] of the silicon area in a typical MP2SoC

architecture.

Question 6 : What is the SAF coverage respectively reached by the channel test and the

router test ? What is the SAF coverage reached by the whole network (with the BIST

circuit) test ?

Answer : The SAF coverage is presented in chapter 5 section 5.10 : 100% for routing

function test, 99.33% for crossbar test, 98.57% for channel test and 90.95% for the

whole network test.

Configuration Infrastructure

Question 1 : Can the test software 100% diagnose/locate faulty/disabled component ?
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Answer : The software application of “Black Hole” detection can 100% locate faulty/dis-

abled component.

Question 2 : Can the test software 100% diagnose/locate the fault-free component ?

Answer : The software application of “Black Hole” detection can not 100% locate fault-

free component. Due to the channel dependencies, some fault-free components are

identified as “Black Hole”. The detail is presented in chapter 6 section 6.3.1. How-

ever, this result doesn’t induce any destructive problem, but only leads to wasting

some fault-free channels.

Question 3 : What is the performance of the test software ?

Answer : The execution time of the software was simulated on a 4×4 2D-mesh MP2SoC

architecture containing 16 processors, modeled with the cycle-accurate SoClib vir-

tual prototyping platform [SoClib, 2011]. This architecture contained one single faulty

router. The software execution time is 4×106 cycles, 0.008 seconds at 500Mhz. Be-

sides, for a MIPS32 processor, the test software application code requires 2.5 Kbytes.

Routing Algorithm

Question 1 : Which fault model of modification of topology can be handled by the pro-

posed routing algorithm ? And can all of single-faulty-router topologies be handled ?

Answer : As presented in chapter 7 section 7.1, all five fault models are simplified to two

types : Single-faulty-router topology and Multi-faulty-routers topology. These two

fault models can be handled by our proposed reconfigurable routing algorithm. And

the proposed reconfigurable routing algorithm can handle any single-faulty-router

topologies.

Question 2 : Can we formally prove that the proposed fault-tolerant reconfigurable rout-

ing algorithm is deadlock-free and livelock-free for all of single-faulty-router topolo-

gies ?

Answer : We proved that the fault-tolerant reconfigurable routing algorithm is deadlock-

free with all single-faulty-router topologies using the ODI tool [Taktak et al., 2008].

As the reconfigurable routing algorithm is deterministic, it’s thus livelock-free.

Question 3 : What is the impact or penalty on the network transmission performance ?

Answer : As presented in chapter 7 section 7.3.1, the traffic simulation is done on a

2D-Mesh MP2SoC architecture containing 5× 5 clusters. We simulated all single-

faulty-router topologies, and we find out that :

• When the load is not too high (<10%), the impact on the average latency is negli-

gible.
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• When the hole is located at the border of the mesh, the saturation threshold isn’t

modified.

• When the hole is located at the center of the mesh, the saturation threshold is

strongly modified.

Question 4 : What is the cost on the silicon area (comparing with X-First routing algo-

rithm implementation) ?

Answer : The silicon area increases only 1.25% the NoC footprint.

Question 5 : Is it possible to generalize the proposed fault-tolerant reconfigurable routing

algorithm to handle other topologies than the 2D-Mesh ?

Answer : We think that this routing algorithm can be extended to 2D-Torus topology and

3D-Mesh topology, since these two topologies are an extension of 2D-Mesh.

Future Work

The presented ODDR (“On the field” Detection, De-activation and Reconfiguration)

mechanism, supporting “on the field” permanent fault-tolerance for 2D-Mesh NoC, is the

first complete solution in the world as far as we known. This mechanism can be used

to improve both the chip manufacture yield, the chip function reliability and the chip

lifetime.

The presented mechanism follows the graceful degradation theory, where the faulty

channel or faulty router are completely de-activated. However, this de-activation rule is

seen to be strict but wasteful. Because, the de-activation of a channel (of local port) or

a router, leads to dropping down the whole associated cluster. But, the area of a router

only takes few (3%) of cluster. Thus, we can try to define more fine-grained detection and

de-activation mechanisms, such as the de-activation of an inner routing path between a

couple of input/output port of the router crossbar. As far as, we know, such mechanisms

have not been studied until now.
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ATE Automated Test Equipment

ATPG Automatic Test Pattern Generation

BIST Built-In Self-Test

CAM Configuration Access Mechanism

CF Configuration Firmware

CRC Cyclic-Redundancy Check

DCCI Distributed Cooperative Configuration Infrastructure

DFT Design For Test

DSPIN Distributed Scalable Predictable Interconnect Network

ECC Error Control Code

GALS Globally Asynchronous, Locally Synchronous

IP Intellectual Property

LFSR Linear Feedback Shift Register

MP2SoC Massively-Parallel Multi-Processors System-on-Chip

NIC Network Interface Controller

NMR N Module Redundancy

NoC Network-on-Chip

ODDR “On the field” Detection, De-activation & Reconfiguration

OS Operating System

PRSG Pseudo-Random Sequence Generator

SAF Stuck-At Fault

SCC Single-chip Cloud Computer

SoC System-on-Chip

VLSI Very Large Scale Integration
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