
ADAM Pro ject
L IP6 – LIRMM - LETI

 1/8

Deliverable 5:

TECHNICAL REPORT DESCRIBING HOW
TO WRITE STATISTICAL ANALYSIS AND
INSTRUMENTATION THREADS THAT

EVENTUALLY TRIGGER ACTIONS

Editor : LIRMM

Authors:
G. Sassatelli
P. Benoit
G. Marchesan Almeida

STATISTICAL ANALYSIS AND INSTRUMENTATION THREADS

 ADAM 5 2010-03-18 LIRMM 1.1 2/8
 project Deliverable Date Editor Version n° page

Among the remapping strategies that will later be presented in WP3; some, or a
sequence of those applied over time may have hardly predictable effects on
application performance. In order to keep track of mid- or long-term
consequences of those remapping decisions, a statistical analysis of the DRET
and AIM databases will be performed. These information may later help refining
the decision-taking policy when, for instance, a previous task migration order
led to a worst global solution.
0 represents the three different levels of reactiveness of the system. Starting
from the monitoring system to the online application remapping, the system
has three different ways to take decisions at run-time. The first one, called
Level 1 is the more reactive among them. Getting information of the system
from the sensors (i.e temperature), the system in level 1 is responsible for
taking decisions as fast as possible. The phase responsible for online application
remapping (OAR) is not scope of this deliverable and will be further discussed in
the future. A real scenario where level 1 would be applied could be the
following: due some reason, the temperature of the chip goes up to a given
threshold. In this case, a decision has to be taken as soon as possible in order
to avoid the chip gets hot or even to be burned or non-functional. The
information received from the sensors is not stored in a DRET (Distributed Raw
Event Table) due the fact the time to store this information could be greater
then the reaction time, damaging the system.

Representation of reactiveness level 1

In the second level of reactiveness, the information received from the sensors
(i.e fifo load, cpu workload) is stored in a DRET. 0 depicts this scenario. After
the information has been stored in a DRET, in the diagnosis phase the
information will be analyzed and then a report of the actual state of the system
is generated. Based on this information, the system will take some decisions by
either changing some feature of the system or performing an online application
remapping. In the first case, it could be reducing/increasing the frequency of
the processor in order to cope with the goals of the system.

STATISTICAL ANALYSIS AND INSTRUMENTATION THREADS

 ADAM 5 2010-03-18 LIRMM 1.1 3/8
 project Deliverable Date Editor Version n° page

Representation of reactiveness level 2

In the first two examples all the information are processed as local without
taking into account the state of neighbors NPUs or others nodes in the
platform. In this case, an Application Instant Mapping (AIM) is used for storing
information of remote NPUs in order to keep a general view of the platform at a
given time. 0 represents the reactiveness level 3.

Representation of reactiveness level 3

Monitoring services are implemented to observe the system’s behavior. The
software threads implemented into the microkernel allow measuring the
processor load, the communication load and the locality of tasks. Once
monitoring data have been collected into the DRET, it is necessary to perform
an analysis in order to take decisions regarding the system policy: this stage of
the process is called diagnostic and decision, and will pilot the instrumentation
threads that will eventually trigger actions such as task migration or DVFS.
We have implemented two simple mechanisms to improve the system
performance (in terms of application throughput) based on the information of
processor load and software FIFO load. The decision mechanism can be an
order of migration, and/or frequency/voltage scaling (this part will be detailed
in the 3rd deliverables of the project).

STATISTICAL ANALYSIS AND INSTRUMENTATION THREADS

 ADAM 5 2010-03-18 LIRMM 1.1 4/8
 project Deliverable Date Editor Version n° page

Statistical analysis and instrumentation thread based on Processor load

The first algorithm is based on processor load monitoring; it consists of
triggering an action (e.g. task migration) on a given task when the CPU load is
lower or greater than given thresholds (0).

Time (s)

CP
U

 ti
m

e

Task migrate on NPU which compute the most of task

Task migrate on free NPU
80%

20%

Stable state

Processor load monitoring over time

The policy implemented here will tend to increase the usage of some
processors by freeing marginally used processors, and to provide more CPU
time to time-consuming tasks.
Two cases may be considered:

- If a set of tasks executed on a given NPU requires less than 20% of

the CPU time, the tasks will be migrated to another NPU in order to

reach a stable state (processor load average between 20 to 80%)

- If a set of tasks executed on a given NPU requires more than 80% of

the CPU time, the critical task will be migrated to a free NPU.

The 0 depicts the thread handling this decision making process.

STATISTICAL ANALYSIS AND INSTRUMENTATION THREADS

 ADAM 5 2010-03-18 LIRMM 1.1 5/8
 project Deliverable Date Editor Version n° page

Instrumentation thread responsible of triggering actions based on

CPU load

 Statistical analysis of CPU load monitoring will allow the system to make
some decisions according the better load balancing in the platform. By
identifying the most critical tasks (most CPU time consuming), the system can
trigger some tasks migrations in order to better distribute the load among all
the NPUs.

 Parameters of CPU load monitoring depend basically on the observation
window. For a given time period, all the tasks in the NPU are monitored and the
information regarding the CPU load for each task is stored into the DRET. The
chose of the observation window plays an important rule in the life of the
system. If the frequency of the monitoring system is high, the monitoring
system can cause an overhead of the system. Otherwise, if it is very low, it can
be dangerous when some urgent decision has to be ensured based on the

STATISTICAL ANALYSIS AND INSTRUMENTATION THREADS

 ADAM 5 2010-03-18 LIRMM 1.1 6/8
 project Deliverable Date Editor Version n° page

values recovered from the monitoring system. A good trade-off value is an
important choice for the reactiveness/performance of the system.

The second algorithm is based on FIFO monitoring; the idea is to trigger an
action on a given task whenever the FIFO usage is greater than a given
threshold. Basically, if one SW FIFO is used above 80%, it means that
computation and communication is not well balanced for a given task. Assuming
a fixed incoming communication throughput, the computational speed should
be increased in order to improve the application throughput. It would be
possible for instance to adjust the operating frequency of the NPU to improve
computational to communication load balancing. Considering remapping
decisions, one possibility is to give more CPU time to the considered task, if it is
sharing a processor with other tasks. As a consequence, if the SW FIFO of a
given task exceeds the 80% threshold, the task will be moved to a “free”
processor. The 0 depicts an example of such a situation.

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1

T2

T3

T1

T2

T3

NPU1

NPU1

NPU1

NPU1

NPU2

NPU1

NPU2

Step1

Step2

Step3

Step4

Step5

Software FIFO load monitoring and remapping decisions

Initially, in the Step 1 the input FIFO usage of T2 is 50% and T3 is 30%. Step 2
shows T1 is sending packet faster than T2 is capable to process. So, the FIFO
usage increases rapidly and reaches 90% of usage, as shown in Step 3.
Following the algorithm based on FIFO usage, whenever the FIFO usage is
greater than a given threshold (80%), the task must be migrated. Therefore T2
is migrated to the first “free” NPU, in this case NPU2 (Step 4), and the whole
FIFO content is copied to the new NPU. As a result, the FIFO usage decreases
(Step 5) resulting in a well-balanced communication / computational trade-off.
The 0 shows an implementation of the instrumentation thread responsible of
triggering task migration based on communication load. The presented

STATISTICAL ANALYSIS AND INSTRUMENTATION THREADS

 ADAM 5 2010-03-18 LIRMM 1.1 7/8
 project Deliverable Date Editor Version n° page

algorithm simply activates task migration, in case that one of the FIFO queues
of a task is used over 80%.

Instrumentation thread responsible of triggering actions based on SW

FIFO load

Statistical analysis of SW FIFO load monitoring is one more mechanism that will
allow the platform to take some decisions in order to have a better load
balancing.

DRET functions profiling

In order to calculate the performance of the DRET API, we have profiled some
functions available in the DRET API developed by one of the partners of the
project (LIP6). 0 shows the performance, in number of clock cycles, for six
different functions available in the DRET API (create table, insert, sort table,
dump table, get first row, delete table).

STATISTICAL ANALYSIS AND INSTRUMENTATION THREADS

 ADAM 5 2010-03-18 LIRMM 1.1 8/8
 project Deliverable Date Editor Version n° page

Profiling DRET API functions

For each function, we present the number of clock cycles required for executing
the action varying the number of rows/columns. By this analysis, it is possible
to observe that the dump table is the most critical function in the API. This is
justified by the fact that this function calls many times the printf function which
has access to the UART and its processing it is very slow. Therefore, this
function will be used only for debugging purposes, not affecting the
performance of the system.
The same analysis can be done for create and delete table functions. These
functions are used only in the initialization of the system as well in the end of
the processing. Then, the performance of the system is affected only twice, at
the beginning and at the end of the processing, not being a considerable
overhead.
In terms of memory footprint, the DRET API with all the available functions
occupies 8848 bytes only. It validates the usage of the DRET API in terms of
memory occupation for the context of the ADAM project.
Although the memory overhead of the system imposed by the usage of the
DRET, the overall gain can be very beneficial for the system. By using a
database for storing monitoring information, it gives to the system the
possibility to handle some decisions through the analysis and diagnosis and
then allowing the system to better decide the application mapping for tuning it
according to the requirements.

