Changes between Version 6 and Version 7 of projectstructure
- Timestamp:
- Jun 16, 2008, 4:15:38 PM (17 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
projectstructure
v6 v7 28 28 Software and hardware monitoring for performance, power/voltage/temperature and fault detection work as first level instrumentation tasks, and are studied in WP tasks 1.a,1.b and 1.c. They deliver raw monitored digital information on a periodic basis or permanently (online behaviour). This information is then modelled in the form of classified events in the task 1.d. The event model specifies the event format, fixed for the architecture. Formatted events are stored on the local memories of the architecture tiles, in fixed-size cyclic buffers designed to be easily accessible. Altogether, the disseminated buffers represent the “Distributed Raw Event Tables” (DRET) available at all times within the architecture. The monitoring capabilities are summarized in figure 4. 29 29 30 || Task 1.a: Performance measurement Task manager : LETI Partners : LETI, LIRMM In this task, the performance of the tile is monitored. The difficulty is to reach the minimum perturbation requirement. We propose to develop two mechanisms. The first one is SW oriented and consists on measuring periodically, or on-line the processors as well as their communication workloads. The Network Interface of the NoC will help to have a generic way to perform in/out throughput on-line monitoring. The second mechanism is HW oriented and consists in probing some chosen critical paths. The advantage of this kind of monitoring is the non-intrusive property, but the difficulty is to have access to the data paths or the control part. Both HW and SW solutions will be studied and compared in this task.30 || '''Task 1.a''' : Performance measurement Task manager : LETI Partners : LETI, LIRMM In this task, the performance of the tile is monitored. The difficulty is to reach the minimum perturbation requirement. We propose to develop two mechanisms. The first one is SW oriented and consists on measuring periodically, or on-line the processors as well as their communication workloads. The Network Interface of the NoC will help to have a generic way to perform in/out throughput on-line monitoring. The second mechanism is HW oriented and consists in probing some chosen critical paths. The advantage of this kind of monitoring is the non-intrusive property, but the difficulty is to have access to the data paths or the control part. Both HW and SW solutions will be studied and compared in this task. 31 31 || T0 → T0+18|| 32 [[BR]] 33 [[BR]] 34 || Task 1.b : PVT management Task manager : LETI Partners : LETI, LIP6 The objective of this task is the monitoring of physical information, such as temperature, voltage and power consumption. This can be obtained by the way of direct measurement, with on-site temperature sensors for example, or with non direct measurement, thanks to SW load evaluation and equivalent tables. Due to parameters dispersions throughout the chip in nanotechnologies, HW on-site sensors will be probably necessary. Nevertheless, non direct measurement will add another dimension and help the diagnosis phase. These two techniques will be studied and evaluated in this task. Some of the chosen techniques will also be implemented. 35 || T0 → T0+24|| 32 36 33