[439] | 1 | /* |
---|
| 2 | * boot.c - TSAR bootloader implementation. |
---|
| 3 | * |
---|
[572] | 4 | * Authors : Vu Son (2016) |
---|
[623] | 5 | * Alain Greiner (2016,2017,2018,2019) |
---|
[439] | 6 | * |
---|
| 7 | * Copyright (c) UPMC Sorbonne Universites |
---|
| 8 | * |
---|
| 9 | * This file is part of ALMOS-MKH. |
---|
| 10 | * |
---|
| 11 | * ALMOS-MKH is free software; you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation; version 2.0 of the License. |
---|
| 14 | * |
---|
| 15 | * ALMOS-MKH is distributed in the hope that it will be useful, but |
---|
| 16 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
| 18 | * General Public License for more details. |
---|
| 19 | * |
---|
| 20 | * You should have received a copy of the GNU General Public License |
---|
| 21 | * along with ALMOS-MKH; if not, write to the Free Software Foundation, |
---|
| 22 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
| 23 | */ |
---|
| 24 | |
---|
| 25 | /**************************************************************************** |
---|
| 26 | * This file contains the ALMOS-MKH. boot-loader for the TSAR architecture. * |
---|
[624] | 27 | * that is a clusterised, shared memory, multi-processor architecture, * |
---|
[439] | 28 | * where each processor core is identified by a composite index [cxy,lid] * |
---|
| 29 | * with one physical memory bank per cluster. * |
---|
| 30 | * * |
---|
| 31 | * The 'boot.elf' file (containing the boot-loader binary code) is stored * |
---|
[623] | 32 | * on disk (not in the FAT file system), and must be loaded into memory by * |
---|
| 33 | * the preloader running on the core[0][0] (cxy = 0 / lid = 0). * |
---|
[439] | 34 | * * |
---|
[623] | 35 | * The main task of the boot-loader is to load in the first physical page * |
---|
| 36 | * of each cluster a copy of the kernel code (segments "kcode" and "kdata") * |
---|
| 37 | * and to build - in each cluster - a cluster specific description of the * |
---|
| 38 | * hardware archtecture, stored in the "kdata" segment as the boot_info_t * |
---|
| 39 | * structure. The "kernel.elf" and "arch_info.bin" files are supposed to be * |
---|
| 40 | * stored on disk in a FAT32 file system. * |
---|
[439] | 41 | * * |
---|
[623] | 42 | * All cores contribute to the boot procedure, but all cores are not * |
---|
| 43 | * simultaneously active: * |
---|
| 44 | * - in a first phase, only core[0][0] is running (core 0 in cluster 0). * |
---|
| 45 | * - in a second phase, only core[cxy][0] is running in each cluster. * |
---|
| 46 | * - in last phase, all core[cxy][lid] are running. * |
---|
[439] | 47 | * * |
---|
[623] | 48 | * Finally, all cores jump to the kernel_init() function that makes the * |
---|
| 49 | * actual kernel initialisation. * |
---|
[439] | 50 | * * |
---|
[623] | 51 | * Implementation note: * * * |
---|
| 52 | * To allows each core to use the local copy of both the boot code and the * |
---|
| 53 | * kernel code, the boot-loader builds a minimal and temporary BPT (Boot * |
---|
| 54 | * Page Table) containing only two big pages: page[0] maps the kernel code, * |
---|
| 55 | * and page 1 maps the boot code. * |
---|
[439] | 56 | ****************************************************************************/ |
---|
| 57 | |
---|
| 58 | #include <elf-types.h> |
---|
[457] | 59 | #include <hal_kernel_types.h> |
---|
[439] | 60 | |
---|
| 61 | #include <kernel_config.h> |
---|
| 62 | #include <boot_config.h> |
---|
| 63 | |
---|
| 64 | #include <arch_info.h> |
---|
| 65 | #include <boot_info.h> |
---|
| 66 | |
---|
| 67 | #include <boot_utils.h> |
---|
| 68 | #include <boot_fat32.h> |
---|
| 69 | #include <boot_bdv_driver.h> |
---|
| 70 | #include <boot_hba_driver.h> |
---|
| 71 | #include <boot_tty_driver.h> |
---|
| 72 | |
---|
| 73 | /***************************************************************************** |
---|
| 74 | * Macros. |
---|
| 75 | ****************************************************************************/ |
---|
| 76 | |
---|
| 77 | #define PAGE_ROUND_DOWN(x) ((x) & (~PPM_PAGE_SIZE -1)) |
---|
| 78 | #define PAGE_ROUND_UP(x) (((x) + PPM_PAGE_SIZE-1) & \ |
---|
| 79 | (~(PPM_PAGE_SIZE-1))) |
---|
| 80 | |
---|
| 81 | /***************************************************************************** |
---|
| 82 | * Global variables. |
---|
| 83 | ****************************************************************************/ |
---|
| 84 | |
---|
[623] | 85 | // the Boot Page Table contains two PTE1, and should be aligned on 8 Kbytes |
---|
| 86 | |
---|
[624] | 87 | uint32_t boot_pt[2] __attribute__((aligned(0x2000))); |
---|
[623] | 88 | |
---|
[439] | 89 | // synchronization variables. |
---|
| 90 | |
---|
[623] | 91 | volatile boot_remote_spinlock_t tty0_lock; // protect TTY0 access |
---|
| 92 | volatile boot_remote_barrier_t global_barrier; // synchronize CP0 cores |
---|
| 93 | volatile boot_remote_barrier_t local_barrier; // synchronize cores in one cluster |
---|
| 94 | uint32_t active_cores_nr; // number of expected CP0s |
---|
[439] | 95 | |
---|
| 96 | // kernel segments layout variables |
---|
| 97 | |
---|
| 98 | uint32_t seg_kcode_base; // kcode segment base address |
---|
| 99 | uint32_t seg_kcode_size; // kcode segment size (bytes) |
---|
| 100 | uint32_t seg_kdata_base; // kdata segment base address |
---|
| 101 | uint32_t seg_kdata_size; // kdata segment size (bytes) |
---|
| 102 | |
---|
[624] | 103 | uint32_t kernel_entry; // kernel_init() function |
---|
[439] | 104 | |
---|
[623] | 105 | // Functions |
---|
[439] | 106 | |
---|
[524] | 107 | extern void boot_entry( void ); // boot_loader entry point |
---|
| 108 | extern void boot_loader( lid_t lid, cxy_t cxy ); |
---|
[439] | 109 | |
---|
[572] | 110 | |
---|
| 111 | #if DEBUG_BOOT_INFO |
---|
[439] | 112 | /********************************************************************************* |
---|
[572] | 113 | * This debug function returns the printable string for each device type. |
---|
[439] | 114 | ********************************************************************************/ |
---|
[572] | 115 | static char * device_type_str( enum device_types_e dev_type ) |
---|
| 116 | { |
---|
| 117 | switch ( dev_type ) |
---|
| 118 | { |
---|
[534] | 119 | case DEV_TYPE_RAM_SCL: return "RAM_SCL"; |
---|
| 120 | case DEV_TYPE_ROM_SCL: return "ROM_SCL"; |
---|
| 121 | case DEV_TYPE_FBF_SCL: return "FBF_SCL"; |
---|
| 122 | case DEV_TYPE_IOB_TSR: return "IOB_TSR"; |
---|
| 123 | case DEV_TYPE_IOC_BDV: return "IOC_BDV"; |
---|
| 124 | case DEV_TYPE_IOC_HBA: return "IOC_HBA"; |
---|
| 125 | case DEV_TYPE_IOC_SDC: return "IOC_SDC"; |
---|
| 126 | case DEV_TYPE_IOC_SPI: return "IOC_SPI"; |
---|
| 127 | case DEV_TYPE_IOC_RDK: return "IOC_RDK"; |
---|
| 128 | case DEV_TYPE_MMC_TSR: return "MMC_TSR"; |
---|
| 129 | case DEV_TYPE_DMA_SCL: return "DMA_SCL"; |
---|
| 130 | case DEV_TYPE_NIC_CBF: return "NIC_CBF"; |
---|
| 131 | case DEV_TYPE_TIM_SCL: return "TIM_SCL"; |
---|
| 132 | case DEV_TYPE_TXT_TTY: return "TXT_TTY"; |
---|
[557] | 133 | case DEV_TYPE_TXT_MTY: return "TXT_MTY"; |
---|
[534] | 134 | case DEV_TYPE_ICU_XCU: return "ICU_XCU"; |
---|
| 135 | case DEV_TYPE_PIC_TSR: return "PIC_TSR"; |
---|
| 136 | default: return "undefined"; |
---|
| 137 | } |
---|
[439] | 138 | } |
---|
[572] | 139 | #endif |
---|
[439] | 140 | |
---|
| 141 | /************************************************************************************ |
---|
| 142 | * This function loads the arch_info.bin file into the boot cluster memory. |
---|
| 143 | ***********************************************************************************/ |
---|
[474] | 144 | static void boot_archinfo_load( void ) |
---|
[439] | 145 | { |
---|
[624] | 146 | archinfo_header_t * header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
[439] | 147 | |
---|
| 148 | // Load file into memory |
---|
| 149 | if (boot_fat32_load(ARCHINFO_PATHNAME, ARCHINFO_BASE, ARCHINFO_MAX_SIZE)) |
---|
| 150 | { |
---|
[624] | 151 | boot_printf("\n[BOOT ERROR]in %s : <%s> file not found\n", |
---|
| 152 | __FUNCTION__, ARCHINFO_PATHNAME); |
---|
[439] | 153 | boot_exit(); |
---|
| 154 | } |
---|
| 155 | |
---|
| 156 | if (header->signature != ARCHINFO_SIGNATURE) |
---|
| 157 | { |
---|
| 158 | boot_printf("\n[BOOT_ERROR]: boot_archinfo_load(): " |
---|
[572] | 159 | "<%s> file signature should be %x\n", |
---|
| 160 | ARCHINFO_PATHNAME, ARCHINFO_SIGNATURE); |
---|
[439] | 161 | boot_exit(); |
---|
| 162 | } |
---|
| 163 | |
---|
| 164 | #if DEBUG_BOOT_INFO |
---|
| 165 | boot_printf("\n[BOOT INFO] in %s : file %s loaded at address = %x\n", |
---|
[572] | 166 | __FUNCTION__ , ARCHINFO_PATHNAME , ARCHINFO_BASE ); |
---|
[439] | 167 | #endif |
---|
| 168 | |
---|
| 169 | } // boot_archinfo_load() |
---|
| 170 | |
---|
| 171 | /************************************************************************************** |
---|
| 172 | * This function loads the 'kernel.elf' file into the boot cluster memory buffer, |
---|
[624] | 173 | * analyzes it, and places the kcode and kdata segments at their final physical |
---|
| 174 | * adresses (defined the .elf file), and set the kernel layout global variables. |
---|
[439] | 175 | *************************************************************************************/ |
---|
[474] | 176 | static void boot_kernel_load( void ) |
---|
[439] | 177 | { |
---|
| 178 | Elf32_Ehdr * elf_header; // pointer on kernel.elf header. |
---|
| 179 | Elf32_Phdr * program_header; // pointer on kernel.elf program header. |
---|
| 180 | uint32_t phdr_offset; // program header offset in kernel.elf file. |
---|
| 181 | uint32_t segments_nb; // number of segments in kernel.elf file. |
---|
| 182 | uint32_t seg_src_addr; // segment address in kernel.elf file (source). |
---|
| 183 | uint32_t seg_paddr; // segment local physical address of segment |
---|
| 184 | uint32_t seg_offset; // segment offset in kernel.elf file |
---|
| 185 | uint32_t seg_filesz; // segment size (bytes) in kernel.elf file |
---|
| 186 | uint32_t seg_memsz; // segment size (bytes) in memory image. |
---|
| 187 | bool_t kcode_found; // kcode segment found. |
---|
| 188 | bool_t kdata_found; // kdata segment found. |
---|
| 189 | uint32_t seg_id; // iterator for segments loop. |
---|
| 190 | |
---|
| 191 | #if DEBUG_BOOT_ELF |
---|
| 192 | boot_printf("\n[BOOT INFO] %s enters for file %s at cycle %d\n", |
---|
[572] | 193 | __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() ); |
---|
[439] | 194 | #endif |
---|
| 195 | |
---|
| 196 | // Load kernel.elf file into memory buffer |
---|
| 197 | if ( boot_fat32_load(KERNEL_PATHNAME, KERN_BASE, KERN_MAX_SIZE) ) |
---|
| 198 | { |
---|
| 199 | boot_printf("\n[BOOT ERROR] in %s : <%s> file not found\n", |
---|
| 200 | KERNEL_PATHNAME); |
---|
| 201 | boot_exit(); |
---|
| 202 | } |
---|
| 203 | |
---|
| 204 | // get pointer to kernel.elf header |
---|
| 205 | elf_header = (Elf32_Ehdr*)KERN_BASE; |
---|
| 206 | |
---|
| 207 | // check signature |
---|
| 208 | if ((elf_header->e_ident[EI_MAG0] != ELFMAG0) || |
---|
| 209 | (elf_header->e_ident[EI_MAG1] != ELFMAG1) || |
---|
| 210 | (elf_header->e_ident[EI_MAG2] != ELFMAG2) || |
---|
| 211 | (elf_header->e_ident[EI_MAG3] != ELFMAG3)) |
---|
| 212 | { |
---|
| 213 | boot_printf("\n[BOOT_ERROR]: boot_kernel_load(): " |
---|
| 214 | "<%s> is not an ELF file\n", |
---|
| 215 | KERNEL_PATHNAME); |
---|
| 216 | boot_exit(); |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | // Get program header table offset and number of segments |
---|
| 220 | phdr_offset = elf_header->e_phoff; |
---|
| 221 | segments_nb = elf_header->e_phnum; |
---|
| 222 | |
---|
| 223 | // Get program header table pointer |
---|
| 224 | program_header = (Elf32_Phdr*)(KERN_BASE + phdr_offset); |
---|
| 225 | |
---|
| 226 | // loop on segments |
---|
| 227 | kcode_found = false; |
---|
| 228 | kdata_found = false; |
---|
| 229 | for (seg_id = 0; seg_id < segments_nb; seg_id++) |
---|
| 230 | { |
---|
| 231 | if (program_header[seg_id].p_type == PT_LOAD) // Found one loadable segment |
---|
| 232 | { |
---|
| 233 | // Get segment attributes. |
---|
| 234 | seg_paddr = program_header[seg_id].p_paddr; |
---|
| 235 | seg_offset = program_header[seg_id].p_offset; |
---|
| 236 | seg_filesz = program_header[seg_id].p_filesz; |
---|
| 237 | seg_memsz = program_header[seg_id].p_memsz; |
---|
| 238 | |
---|
| 239 | // get segment base address in buffer |
---|
| 240 | seg_src_addr = (uint32_t)KERN_BASE + seg_offset; |
---|
| 241 | |
---|
| 242 | // Load segment to its final physical memory address |
---|
| 243 | boot_memcpy( (void*)seg_paddr, |
---|
| 244 | (void*)seg_src_addr, |
---|
| 245 | seg_filesz ); |
---|
| 246 | |
---|
| 247 | #if DEBUG_BOOT_ELF |
---|
| 248 | boot_printf("\n[BOOT INFO] in %s for file %s : found loadable segment\n" |
---|
[572] | 249 | " base = %x / size = %x\n", |
---|
| 250 | __FUNCTION__ , KERNEL_PATHNAME , seg_paddr , seg_memsz ); |
---|
[439] | 251 | #endif |
---|
| 252 | |
---|
| 253 | // Fill remaining memory with zero if (filesz < memsz). |
---|
| 254 | if( seg_memsz < seg_filesz ) |
---|
| 255 | { |
---|
| 256 | boot_memset( (void*)(seg_paddr + seg_filesz), 0, seg_memsz - seg_filesz); |
---|
| 257 | } |
---|
| 258 | |
---|
| 259 | // Note: we suppose that the 'kernel.elf' file contains exactly |
---|
[624] | 260 | // two loadable segments : kcode & kdata |
---|
[439] | 261 | |
---|
[624] | 262 | if( program_header[seg_id].p_paddr == KCODE_BASE ) // kcode segment |
---|
[439] | 263 | { |
---|
| 264 | if( kcode_found ) |
---|
| 265 | { |
---|
| 266 | boot_printf("\n[BOOT_ERROR] in %s for file %s :\n" |
---|
[572] | 267 | " two kcode segments found\n", |
---|
| 268 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
[439] | 269 | boot_exit(); |
---|
| 270 | } |
---|
| 271 | |
---|
| 272 | kcode_found = true; |
---|
| 273 | seg_kcode_base = seg_paddr; |
---|
| 274 | seg_kcode_size = seg_memsz; |
---|
| 275 | } |
---|
| 276 | else // kdata segment |
---|
| 277 | { |
---|
| 278 | if( kdata_found ) |
---|
| 279 | { |
---|
| 280 | boot_printf("\n[BOOT_ERROR] in %s for file %s :\n" |
---|
[572] | 281 | " two kdata segments found\n", |
---|
| 282 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
[439] | 283 | boot_exit(); |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | kdata_found = true; |
---|
| 287 | seg_kdata_base = seg_paddr; |
---|
| 288 | seg_kdata_size = seg_memsz; |
---|
| 289 | } |
---|
| 290 | } |
---|
| 291 | } |
---|
| 292 | |
---|
| 293 | // check kcode & kdata segments found |
---|
| 294 | if( kcode_found == false ) |
---|
| 295 | { |
---|
| 296 | boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kcode not found\n", |
---|
[572] | 297 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
[439] | 298 | boot_exit(); |
---|
| 299 | } |
---|
| 300 | if( kdata_found == false ) |
---|
| 301 | { |
---|
| 302 | boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kdata not found\n", |
---|
[572] | 303 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
[439] | 304 | boot_exit(); |
---|
| 305 | } |
---|
| 306 | |
---|
| 307 | // check segments sizes |
---|
| 308 | if( (seg_kcode_size + seg_kdata_size) > KCODE_MAX_SIZE ) |
---|
| 309 | { |
---|
| 310 | boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kcode + seg_kdata too large\n", |
---|
[572] | 311 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
[439] | 312 | } |
---|
| 313 | |
---|
| 314 | // set entry point |
---|
| 315 | kernel_entry = (uint32_t)elf_header->e_entry; |
---|
| 316 | |
---|
| 317 | #if DEBUG_BOOT_ELF |
---|
| 318 | boot_printf("\n[BOOT INFO] %s completed for file %s at cycle %d\n", |
---|
[572] | 319 | __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() ); |
---|
[439] | 320 | #endif |
---|
| 321 | |
---|
| 322 | } // boot_kernel_load() |
---|
| 323 | |
---|
| 324 | /************************************************************************************* |
---|
| 325 | * This function initializes the boot_info_t structure for a given cluster. |
---|
| 326 | * @ boot_info : pointer to local boot_info_t structure |
---|
| 327 | * @ cxy : cluster identifier |
---|
| 328 | ************************************************************************************/ |
---|
| 329 | static void boot_info_init( boot_info_t * boot_info, |
---|
| 330 | cxy_t cxy ) |
---|
| 331 | { |
---|
| 332 | archinfo_header_t * header; |
---|
| 333 | archinfo_core_t * core_base; |
---|
| 334 | archinfo_cluster_t * cluster_base; |
---|
| 335 | archinfo_device_t * device_base; |
---|
| 336 | archinfo_irq_t * irq_base; |
---|
| 337 | |
---|
| 338 | archinfo_cluster_t * cluster; |
---|
| 339 | archinfo_cluster_t * my_cluster = NULL; // target cluster |
---|
[572] | 340 | archinfo_cluster_t * io_cluster = NULL; // external peripherals cluster |
---|
[439] | 341 | |
---|
| 342 | archinfo_core_t * core; |
---|
| 343 | uint32_t core_id; |
---|
| 344 | archinfo_device_t * device; |
---|
| 345 | uint32_t device_id; |
---|
| 346 | archinfo_irq_t * irq; |
---|
| 347 | uint32_t irq_id; |
---|
| 348 | uint32_t end; |
---|
| 349 | boot_device_t * boot_dev; |
---|
| 350 | |
---|
[624] | 351 | #if DEBUG_BOOT_INFO |
---|
| 352 | boot_printf("\n[BOOT INFO] %s : enter at cycle %d\n", |
---|
| 353 | __FUNCTION__ , boot_get_proctime() ); |
---|
| 354 | #endif |
---|
| 355 | |
---|
| 356 | // get pointer on ARCHINFO header and on the four arch_info arrays |
---|
[439] | 357 | header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
| 358 | core_base = archinfo_get_core_base (header); |
---|
| 359 | cluster_base = archinfo_get_cluster_base(header); |
---|
| 360 | device_base = archinfo_get_device_base (header); |
---|
| 361 | irq_base = archinfo_get_irq_base (header); |
---|
| 362 | |
---|
| 363 | // Initialize global platform parameters |
---|
| 364 | boot_info->x_size = header->x_size; |
---|
| 365 | boot_info->y_size = header->y_size; |
---|
| 366 | boot_info->x_width = header->x_width; |
---|
| 367 | boot_info->y_width = header->y_width; |
---|
| 368 | boot_info->paddr_width = header->paddr_width; |
---|
| 369 | boot_info->io_cxy = header->io_cxy; |
---|
| 370 | |
---|
| 371 | // Initialize kernel segments from global variables |
---|
| 372 | boot_info->kcode_base = seg_kcode_base; |
---|
| 373 | boot_info->kcode_size = seg_kcode_size; |
---|
| 374 | boot_info->kdata_base = seg_kdata_base; |
---|
| 375 | boot_info->kdata_size = seg_kdata_size; |
---|
| 376 | |
---|
[572] | 377 | // loop on arch_info clusters to build cluster_info[][] array |
---|
| 378 | // and get io_cluster and my_cluster pointers |
---|
[439] | 379 | for (cluster = cluster_base; |
---|
| 380 | cluster < &cluster_base[header->x_size * header->y_size]; |
---|
| 381 | cluster++) |
---|
| 382 | { |
---|
[557] | 383 | int x = cluster->cxy >> Y_WIDTH; |
---|
| 384 | int y = cluster->cxy & ((1 << Y_WIDTH) - 1); |
---|
[572] | 385 | boot_info->cluster_info[x][y] = (uint8_t)cluster->cores; |
---|
[557] | 386 | |
---|
[572] | 387 | if( cluster->cxy == cxy ) my_cluster = cluster; |
---|
| 388 | if( cluster->cxy == header->io_cxy ) io_cluster = cluster; |
---|
[439] | 389 | } |
---|
| 390 | |
---|
| 391 | if( my_cluster == NULL ) |
---|
| 392 | { |
---|
| 393 | boot_printf("\n[ERROR] in %s : cannot found cluster %x in arch_info\n", |
---|
[572] | 394 | __FUNCTION__ , cxy ); |
---|
[439] | 395 | boot_exit(); |
---|
| 396 | } |
---|
| 397 | |
---|
| 398 | if( io_cluster == NULL ) |
---|
| 399 | { |
---|
| 400 | boot_printf("\n[ERROR] in %s : cannot found io_cluster %x in arch_info\n", |
---|
[572] | 401 | __FUNCTION__ , cxy ); |
---|
[439] | 402 | boot_exit(); |
---|
| 403 | } |
---|
| 404 | |
---|
| 405 | ////////////////////////////////////////////////////////// |
---|
| 406 | // initialize the boot_info array of external peripherals |
---|
| 407 | |
---|
| 408 | #if DEBUG_BOOT_INFO |
---|
| 409 | boot_printf("\n[BOOT INFO] %s : external peripherals at cycle %d\n", |
---|
[572] | 410 | __FUNCTION__ , boot_get_proctime() ); |
---|
[439] | 411 | #endif |
---|
| 412 | |
---|
| 413 | device_id = 0; |
---|
| 414 | for (device = &device_base[io_cluster->device_offset]; |
---|
| 415 | device < &device_base[io_cluster->device_offset + io_cluster->devices]; |
---|
| 416 | device++ ) |
---|
| 417 | { |
---|
| 418 | if( device_id >= CONFIG_MAX_EXT_DEV ) |
---|
| 419 | { |
---|
| 420 | boot_printf("\n[ERROR] in %s : too much external devices in arch_info\n", |
---|
[572] | 421 | __FUNCTION__ ); |
---|
[439] | 422 | boot_exit(); |
---|
| 423 | } |
---|
| 424 | |
---|
| 425 | // keep only external devices |
---|
| 426 | if( (device->type != DEV_TYPE_RAM_SCL) && |
---|
| 427 | (device->type != DEV_TYPE_ICU_XCU) && |
---|
| 428 | (device->type != DEV_TYPE_MMC_TSR) && |
---|
[550] | 429 | (device->type != DEV_TYPE_DMA_SCL) && |
---|
| 430 | (device->type != DEV_TYPE_TXT_MTY) && |
---|
| 431 | (device->type != DEV_TYPE_IOC_SPI) ) |
---|
[439] | 432 | { |
---|
| 433 | boot_dev = &boot_info->ext_dev[device_id]; |
---|
| 434 | |
---|
| 435 | boot_dev->type = device->type; |
---|
| 436 | boot_dev->base = device->base; |
---|
| 437 | boot_dev->channels = device->channels; |
---|
| 438 | boot_dev->param0 = device->arg0; |
---|
| 439 | boot_dev->param1 = device->arg1; |
---|
| 440 | boot_dev->param2 = device->arg2; |
---|
| 441 | boot_dev->param3 = device->arg3; |
---|
| 442 | boot_dev->irqs = device->irqs; |
---|
| 443 | |
---|
| 444 | device_id++; |
---|
| 445 | |
---|
| 446 | #if DEBUG_BOOT_INFO |
---|
| 447 | boot_printf(" - %s : base = %l / size = %l / channels = %d / irqs = %d\n", |
---|
[572] | 448 | device_type_str(device->type), device->base, device->size, device->channels, device->irqs ); |
---|
[439] | 449 | #endif |
---|
| 450 | } |
---|
| 451 | |
---|
| 452 | // handle IRQs for PIC |
---|
| 453 | if (device->type == DEV_TYPE_PIC_TSR) |
---|
| 454 | { |
---|
| 455 | for (irq_id = 0; irq_id < CONFIG_MAX_EXTERNAL_IRQS ; irq_id++) |
---|
| 456 | { |
---|
| 457 | boot_dev->irq[irq_id].valid = 0; |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | for (irq = &irq_base[device->irq_offset]; |
---|
| 461 | irq < &irq_base[device->irq_offset + device->irqs]; |
---|
| 462 | irq++) |
---|
| 463 | { |
---|
| 464 | boot_dev->irq[irq->port].valid = 1; |
---|
| 465 | boot_dev->irq[irq->port].dev_type = irq->dev_type; |
---|
| 466 | boot_dev->irq[irq->port].channel = irq->channel; |
---|
| 467 | boot_dev->irq[irq->port].is_rx = irq->is_rx; |
---|
| 468 | |
---|
| 469 | #if DEBUG_BOOT_INFO |
---|
| 470 | boot_printf(" . irq_port = %d / source = %s / channel = %d / is_rx = %d\n", |
---|
[572] | 471 | irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx ); |
---|
[439] | 472 | #endif |
---|
| 473 | } |
---|
| 474 | } |
---|
| 475 | } // end loop on io_cluster peripherals |
---|
| 476 | |
---|
| 477 | // initialize number of external peripherals |
---|
| 478 | boot_info->ext_dev_nr = device_id; |
---|
| 479 | |
---|
| 480 | // Initialize cluster specific resources |
---|
| 481 | boot_info->cxy = my_cluster->cxy; |
---|
| 482 | |
---|
| 483 | #if DEBUG_BOOT_INFO |
---|
| 484 | boot_printf("\n[BOOT INFO] %s : cores in cluster %x\n", __FUNCTION__ , cxy ); |
---|
| 485 | #endif |
---|
| 486 | |
---|
| 487 | //////////////////////////////////////// |
---|
| 488 | // Initialize array of core descriptors |
---|
| 489 | core_id = 0; |
---|
| 490 | for (core = &core_base[my_cluster->core_offset]; |
---|
| 491 | core < &core_base[my_cluster->core_offset + my_cluster->cores]; |
---|
| 492 | core++ ) |
---|
| 493 | { |
---|
| 494 | boot_info->core[core_id].gid = (gid_t)core->gid; |
---|
| 495 | boot_info->core[core_id].lid = (lid_t)core->lid; |
---|
| 496 | boot_info->core[core_id].cxy = (cxy_t)core->cxy; |
---|
| 497 | |
---|
| 498 | #if DEBUG_BOOT_INFO |
---|
| 499 | boot_printf(" - core_gid = %x : cxy = %x / lid = %d\n", |
---|
[572] | 500 | core->gid , core->cxy , core->lid ); |
---|
[439] | 501 | #endif |
---|
| 502 | core_id++; |
---|
| 503 | } |
---|
| 504 | |
---|
| 505 | // Initialize number of cores in my_cluster |
---|
| 506 | boot_info->cores_nr = core_id; |
---|
| 507 | |
---|
| 508 | ////////////////////////////////////////////////////////////////////// |
---|
| 509 | // initialise boot_info array of internal devices (RAM, ICU, MMC, DMA) |
---|
| 510 | |
---|
| 511 | #if DEBUG_BOOT_INFO |
---|
[572] | 512 | boot_printf("\n[BOOT INFO] %s : internal peripherals in cluster %x\n", |
---|
| 513 | __FUNCTION__ , cxy ); |
---|
[439] | 514 | #endif |
---|
| 515 | |
---|
| 516 | device_id = 0; |
---|
| 517 | for (device = &device_base[my_cluster->device_offset]; |
---|
| 518 | device < &device_base[my_cluster->device_offset + my_cluster->devices]; |
---|
| 519 | device++ ) |
---|
| 520 | { |
---|
| 521 | // keep only internal devices |
---|
| 522 | if( (device->type == DEV_TYPE_RAM_SCL) || |
---|
| 523 | (device->type == DEV_TYPE_ICU_XCU) || |
---|
| 524 | (device->type == DEV_TYPE_MMC_TSR) || |
---|
[534] | 525 | (device->type == DEV_TYPE_DMA_SCL) || |
---|
[550] | 526 | (device->type == DEV_TYPE_TXT_MTY) || |
---|
| 527 | (device->type == DEV_TYPE_IOC_SPI) ) |
---|
[439] | 528 | { |
---|
| 529 | if (device->type == DEV_TYPE_RAM_SCL) // RAM |
---|
| 530 | { |
---|
[550] | 531 | // set number of physical memory pages |
---|
[439] | 532 | boot_info->pages_nr = device->size >> CONFIG_PPM_PAGE_SHIFT; |
---|
| 533 | |
---|
| 534 | #if DEBUG_BOOT_INFO |
---|
| 535 | boot_printf(" - RAM : %x pages\n", boot_info->pages_nr ); |
---|
| 536 | #endif |
---|
| 537 | } |
---|
[534] | 538 | else // ICU / MMC / DMA / MTY |
---|
[439] | 539 | { |
---|
| 540 | if( device_id >= CONFIG_MAX_INT_DEV ) |
---|
| 541 | { |
---|
| 542 | boot_printf("\n[ERROR] in %s : too much internal devices in cluster %x\n", |
---|
| 543 | __FUNCTION__ , cxy ); |
---|
| 544 | boot_exit(); |
---|
| 545 | } |
---|
| 546 | |
---|
| 547 | boot_dev = &boot_info->int_dev[device_id]; |
---|
| 548 | |
---|
| 549 | boot_dev->type = device->type; |
---|
| 550 | boot_dev->base = device->base; |
---|
| 551 | boot_dev->channels = device->channels; |
---|
| 552 | boot_dev->param0 = device->arg0; |
---|
| 553 | boot_dev->param1 = device->arg1; |
---|
| 554 | boot_dev->param2 = device->arg2; |
---|
| 555 | boot_dev->param3 = device->arg3; |
---|
| 556 | boot_dev->irqs = device->irqs; |
---|
| 557 | |
---|
| 558 | device_id++; |
---|
| 559 | |
---|
| 560 | #if DEBUG_BOOT_INFO |
---|
| 561 | boot_printf(" - %s : base = %l / size = %l / channels = %d / irqs = %d\n", |
---|
[572] | 562 | device_type_str( device->type ) , device->base , device->size , |
---|
| 563 | device->channels , device->irqs ); |
---|
[439] | 564 | #endif |
---|
| 565 | |
---|
| 566 | // handle IRQs for ICU |
---|
| 567 | if (device->type == DEV_TYPE_ICU_XCU) |
---|
| 568 | { |
---|
| 569 | for (irq_id = 0; irq_id < CONFIG_MAX_INTERNAL_IRQS ; irq_id++) |
---|
| 570 | { |
---|
| 571 | boot_dev->irq[irq_id].valid = 0; |
---|
| 572 | } |
---|
| 573 | |
---|
| 574 | for (irq = &irq_base[device->irq_offset]; |
---|
| 575 | irq < &irq_base[device->irq_offset + device->irqs] ; irq++) |
---|
| 576 | { |
---|
| 577 | boot_dev->irq[irq->port].valid = 1; |
---|
| 578 | boot_dev->irq[irq->port].dev_type = irq->dev_type; |
---|
| 579 | boot_dev->irq[irq->port].channel = irq->channel; |
---|
| 580 | boot_dev->irq[irq->port].is_rx = irq->is_rx; |
---|
| 581 | |
---|
| 582 | #if DEBUG_BOOT_INFO |
---|
| 583 | boot_printf(" . irq_port = %d / source = %s / channel = %d / is_rx = %d\n", |
---|
[572] | 584 | irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx ); |
---|
[439] | 585 | #endif |
---|
| 586 | |
---|
| 587 | } |
---|
| 588 | } |
---|
| 589 | } |
---|
| 590 | } |
---|
| 591 | } // end loop on local peripherals |
---|
| 592 | |
---|
| 593 | // initialize number of internal peripherals |
---|
| 594 | boot_info->int_dev_nr = device_id; |
---|
| 595 | |
---|
| 596 | // Get the top address of the kernel segments |
---|
| 597 | end = boot_info->kdata_base + boot_info->kdata_size; |
---|
| 598 | |
---|
| 599 | // compute number of physical pages occupied by the kernel code |
---|
| 600 | boot_info->pages_offset = ( (end & CONFIG_PPM_PAGE_MASK) == 0 ) ? |
---|
| 601 | (end >> CONFIG_PPM_PAGE_SHIFT) : (end >> CONFIG_PPM_PAGE_SHIFT) + 1; |
---|
| 602 | |
---|
[572] | 603 | // no reserved zones for TSAR architecture |
---|
[439] | 604 | boot_info->rsvd_nr = 0; |
---|
| 605 | |
---|
| 606 | // set boot_info signature |
---|
| 607 | boot_info->signature = BOOT_INFO_SIGNATURE; |
---|
| 608 | |
---|
| 609 | } // boot_info_init() |
---|
| 610 | |
---|
| 611 | /*********************************************************************************** |
---|
| 612 | * This function check the local boot_info_t structure for a given core. |
---|
| 613 | * @ boot_info : pointer to local 'boot_info_t' structure to be checked. |
---|
| 614 | * @ lid : core local identifier, index the core descriptor table. |
---|
| 615 | **********************************************************************************/ |
---|
| 616 | static void boot_check_core( boot_info_t * boot_info, |
---|
| 617 | lid_t lid) |
---|
| 618 | { |
---|
| 619 | gid_t gid; // global hardware identifier of this core |
---|
| 620 | boot_core_t * this; // BOOT_INFO core descriptor of this core. |
---|
| 621 | |
---|
| 622 | // Get core hardware identifier |
---|
| 623 | gid = (gid_t)boot_get_procid(); |
---|
| 624 | |
---|
| 625 | // get pointer on core descriptor |
---|
| 626 | this = &boot_info->core[lid]; |
---|
| 627 | |
---|
| 628 | if ( (this->gid != gid) || (this->cxy != boot_info->cxy) ) |
---|
| 629 | { |
---|
| 630 | boot_printf("\n[BOOT ERROR] in boot_check_core() :\n" |
---|
| 631 | " - boot_info cxy = %x\n" |
---|
| 632 | " - boot_info lid = %d\n" |
---|
| 633 | " - boot_info gid = %x\n" |
---|
| 634 | " - actual gid = %x\n", |
---|
| 635 | this->cxy , this->lid , this->gid , gid ); |
---|
| 636 | boot_exit(); |
---|
| 637 | } |
---|
| 638 | |
---|
| 639 | } // boot_check_core() |
---|
| 640 | |
---|
| 641 | /********************************************************************************* |
---|
| 642 | * This function is called by CP0 in cluster(0,0) to activate all other CP0s. |
---|
| 643 | * It returns the number of CP0s actually activated. |
---|
| 644 | ********************************************************************************/ |
---|
[527] | 645 | static uint32_t boot_wake_all_cp0s( void ) |
---|
[439] | 646 | { |
---|
| 647 | archinfo_header_t* header; // Pointer on ARCHINFO header |
---|
| 648 | archinfo_cluster_t* cluster_base; // Pointer on ARCHINFO clusters base |
---|
| 649 | archinfo_cluster_t* cluster; // Iterator for loop on clusters |
---|
| 650 | archinfo_device_t* device_base; // Pointer on ARCHINFO devices base |
---|
| 651 | archinfo_device_t* device; // Iterator for loop on devices |
---|
| 652 | uint32_t cp0_nb = 0; // CP0s counter |
---|
| 653 | |
---|
| 654 | header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
| 655 | cluster_base = archinfo_get_cluster_base(header); |
---|
| 656 | device_base = archinfo_get_device_base (header); |
---|
| 657 | |
---|
| 658 | // loop on all clusters |
---|
| 659 | for (cluster = cluster_base; |
---|
| 660 | cluster < &cluster_base[header->x_size * header->y_size]; |
---|
| 661 | cluster++) |
---|
| 662 | { |
---|
| 663 | // Skip boot cluster. |
---|
| 664 | if (cluster->cxy == BOOT_CORE_CXY) |
---|
| 665 | continue; |
---|
| 666 | |
---|
| 667 | // Skip clusters without core (thus without CP0). |
---|
| 668 | if (cluster->cores == 0) |
---|
| 669 | continue; |
---|
| 670 | |
---|
| 671 | // Skip clusters without device (thus without XICU). |
---|
| 672 | if (cluster->devices == 0) |
---|
| 673 | continue; |
---|
| 674 | |
---|
| 675 | // search XICU device associated to CP0, and send a WTI to activate it |
---|
| 676 | for (device = &device_base[cluster->device_offset]; |
---|
| 677 | device < &device_base[cluster->device_offset + cluster->devices]; |
---|
| 678 | device++) |
---|
| 679 | { |
---|
| 680 | if (device->type == DEV_TYPE_ICU_XCU) |
---|
| 681 | { |
---|
| 682 | |
---|
| 683 | #if DEBUG_BOOT_WAKUP |
---|
| 684 | boot_printf("\n[BOOT] core[%x,0] activated at cycle %d\n", |
---|
[572] | 685 | cluster->cxy , boot_get_proctime ); |
---|
[439] | 686 | #endif |
---|
| 687 | |
---|
| 688 | boot_remote_sw((xptr_t)device->base, (uint32_t)boot_entry); |
---|
| 689 | cp0_nb++; |
---|
| 690 | } |
---|
| 691 | } |
---|
| 692 | } |
---|
| 693 | return cp0_nb; |
---|
| 694 | |
---|
| 695 | } // boot_wake_cp0() |
---|
| 696 | |
---|
| 697 | /********************************************************************************* |
---|
[623] | 698 | * This function is called by all CP0s to activate the other CPi cores. |
---|
[439] | 699 | * @ boot_info : pointer to local 'boot_info_t' structure. |
---|
| 700 | *********************************************************************************/ |
---|
| 701 | static void boot_wake_local_cores(boot_info_t * boot_info) |
---|
| 702 | { |
---|
| 703 | unsigned int core_id; |
---|
| 704 | |
---|
| 705 | // get pointer on XCU device descriptor in boot_info |
---|
| 706 | boot_device_t * xcu = &boot_info->int_dev[0]; |
---|
| 707 | |
---|
| 708 | // loop on cores |
---|
| 709 | for (core_id = 1; core_id < boot_info->cores_nr; core_id++) |
---|
| 710 | { |
---|
| 711 | |
---|
| 712 | #if DEBUG_BOOT_WAKUP |
---|
| 713 | boot_printf("\n[BOOT] core[%x,%d] activated at cycle %d\n", |
---|
[572] | 714 | boot_info->cxy , core_id , boot_get_proctime() ); |
---|
[439] | 715 | #endif |
---|
| 716 | // send an IPI |
---|
| 717 | boot_remote_sw( (xptr_t)(xcu->base + (core_id << 2)) , (uint32_t)boot_entry ); |
---|
| 718 | } |
---|
| 719 | } // boot_wake_local_cores() |
---|
| 720 | |
---|
[623] | 721 | /********************************************************************************* |
---|
| 722 | * This function is called by all core[cxy][0] to initialize the Boot Page Table: |
---|
| 723 | * map two local big pages for the boot code and kernel code. |
---|
| 724 | * @ cxy : local cluster identifier. |
---|
| 725 | *********************************************************************************/ |
---|
| 726 | void boot_page_table_init( cxy_t cxy ) |
---|
| 727 | { |
---|
| 728 | // set PTE1 in slot[0] for kernel code |
---|
| 729 | uint32_t kernel_attr = 0x8A800000; // flagss : V,C,X,G |
---|
| 730 | uint32_t kernel_ppn1 = (cxy << 20) >> 9; // big physical page index == 0 |
---|
| 731 | boot_pt[0] = kernel_attr | kernel_ppn1; |
---|
[439] | 732 | |
---|
[623] | 733 | // set PTE1 in slot[1] for boot code (no global flag) |
---|
| 734 | uint32_t boot_attr = 0x8A000000; // flags : V,C,X |
---|
| 735 | uint32_t boot_ppn1 = ((cxy << 20) + 512) >> 9; // big physical page index == 1 |
---|
| 736 | boot_pt[1] = boot_attr | boot_ppn1; |
---|
| 737 | } |
---|
| 738 | |
---|
[439] | 739 | /********************************************************************************* |
---|
[623] | 740 | * This function is called by all cores to activate the instruction MMU, |
---|
| 741 | * and use the local copy of boot code. |
---|
| 742 | *********************************************************************************/ |
---|
| 743 | void boot_activate_ins_mmu( cxy_t cxy ) |
---|
| 744 | { |
---|
| 745 | // set mmu_ptpr register |
---|
| 746 | uint32_t ptpr = ((uint32_t)boot_pt >> 13) | (cxy << 19); |
---|
| 747 | asm volatile ( "mtc2 %0, $0 \n" : : "r" (ptpr) ); |
---|
| 748 | |
---|
| 749 | // set ITLB bit in mmu_mode |
---|
| 750 | asm volatile ( "mfc2 $26, $1 \n" |
---|
| 751 | "ori $26, $26, 0x8 \n" |
---|
| 752 | "mtc2 $26, $1 \n" ); |
---|
| 753 | } |
---|
| 754 | |
---|
| 755 | /********************************************************************************* |
---|
[439] | 756 | * This main function of the boot-loader is called by the boot_entry() |
---|
| 757 | * function, and executed by all cores. |
---|
| 758 | * The arguments values are computed by the boot_entry code. |
---|
| 759 | * @ lid : core local identifier, |
---|
| 760 | * @ cxy : cluster identifier, |
---|
| 761 | *********************************************************************************/ |
---|
[524] | 762 | void boot_loader( lid_t lid, |
---|
| 763 | cxy_t cxy ) |
---|
[439] | 764 | { |
---|
| 765 | boot_info_t * boot_info; // pointer on local boot_info_t structure |
---|
| 766 | |
---|
| 767 | if (lid == 0) |
---|
| 768 | { |
---|
[623] | 769 | /************************************i********************** |
---|
| 770 | * PHASE Sequencial : only core[0][0] executes it |
---|
| 771 | **********************************************************/ |
---|
| 772 | if (cxy == 0) |
---|
[439] | 773 | { |
---|
[624] | 774 | boot_printf("\n[BOOT] core[%x,%d] active at cycle %d\n", |
---|
| 775 | cxy, lid, boot_get_proctime() ); |
---|
[439] | 776 | |
---|
| 777 | // Initialize IOC driver |
---|
| 778 | if (USE_IOC_BDV) boot_bdv_init(); |
---|
| 779 | else if (USE_IOC_HBA) boot_hba_init(); |
---|
| 780 | // else if (USE_IOC_SDC) boot_sdc_init(); |
---|
[572] | 781 | // else if (USE_IOC_SPI) boot_spi_init(); |
---|
[439] | 782 | else if (!USE_IOC_RDK) |
---|
| 783 | { |
---|
| 784 | boot_printf("\n[BOOT ERROR] in %s : no IOC driver\n"); |
---|
| 785 | boot_exit(); |
---|
| 786 | } |
---|
| 787 | |
---|
| 788 | // Initialize FAT32. |
---|
| 789 | boot_fat32_init(); |
---|
| 790 | |
---|
| 791 | // Load the 'kernel.elf' file into memory from IOC, and set |
---|
| 792 | // the global variables defining the kernel layout |
---|
| 793 | boot_kernel_load(); |
---|
| 794 | |
---|
| 795 | boot_printf("\n[BOOT] core[%x,%d] loaded kernel at cycle %d\n", |
---|
[572] | 796 | cxy , lid , boot_get_proctime() ); |
---|
[439] | 797 | |
---|
| 798 | // Load the arch_info.bin file into memory. |
---|
| 799 | boot_archinfo_load(); |
---|
| 800 | |
---|
[572] | 801 | boot_printf("\n[BOOT] core[%x,%d] loaded arch_info at cycle %d\n", |
---|
| 802 | cxy , lid , boot_get_proctime() ); |
---|
| 803 | |
---|
[439] | 804 | // Get local boot_info_t structure base address. |
---|
| 805 | // It is the first structure in the .kdata segment. |
---|
| 806 | boot_info = (boot_info_t *)seg_kdata_base; |
---|
| 807 | |
---|
| 808 | // Initialize local boot_info_t structure. |
---|
| 809 | boot_info_init( boot_info , cxy ); |
---|
| 810 | |
---|
[572] | 811 | boot_printf("\n[BOOT] core[%x,%d] initialised boot_info at cycle %d\n", |
---|
| 812 | cxy , lid , boot_get_proctime() ); |
---|
| 813 | |
---|
[439] | 814 | // check boot_info signature |
---|
| 815 | if (boot_info->signature != BOOT_INFO_SIGNATURE) |
---|
| 816 | { |
---|
| 817 | boot_printf("\n[BOOT ERROR] in %s reported by core[%x,%d]\n" |
---|
[572] | 818 | " illegal boot_info signature / should be %x\n", |
---|
| 819 | __FUNCTION__ , cxy , lid , BOOT_INFO_SIGNATURE ); |
---|
[439] | 820 | boot_exit(); |
---|
| 821 | } |
---|
| 822 | |
---|
| 823 | // Check core information. |
---|
| 824 | boot_check_core(boot_info, lid); |
---|
| 825 | |
---|
[624] | 826 | // identity maps two big pages for the boot and kernel code, |
---|
| 827 | boot_page_table_init( 0 ); |
---|
[439] | 828 | |
---|
[624] | 829 | // activate the instruction MMU to use the local copy of boot code |
---|
| 830 | boot_activate_ins_mmu( 0 ); |
---|
[623] | 831 | |
---|
| 832 | // Activate other core[cxy][0] / get number of activated cores |
---|
| 833 | active_cores_nr = boot_wake_all_cp0s() + 1; |
---|
| 834 | |
---|
[439] | 835 | // Wait until all clusters (i.e all CP0s) ready to enter kernel. |
---|
| 836 | boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) , |
---|
[623] | 837 | active_cores_nr ); |
---|
[439] | 838 | |
---|
| 839 | // activate other local cores |
---|
| 840 | boot_wake_local_cores( boot_info ); |
---|
| 841 | |
---|
| 842 | // Wait until all local cores in cluster ready |
---|
| 843 | boot_remote_barrier( XPTR( cxy , &local_barrier ) , |
---|
| 844 | boot_info->cores_nr ); |
---|
| 845 | } |
---|
[623] | 846 | /************************************************************************** |
---|
| 847 | * PHASE partially parallel : all core[cxy][0] with (cxy != 0) execute it |
---|
| 848 | **************************************************************************/ |
---|
[439] | 849 | else |
---|
| 850 | { |
---|
[623] | 851 | // at this point, the DATA extension registers point |
---|
| 852 | // already on the local cluster cxy to use the local stack, |
---|
| 853 | // but all cores must access the code stored in cluster 0 |
---|
| 854 | |
---|
[624] | 855 | #if DEBUG_BOOT_MULTI |
---|
| 856 | boot_printf("\n[BOOT] core[%x,%d] active at cycle %d\n", |
---|
| 857 | cxy, lid, boot_get_proctime() ); |
---|
| 858 | #endif |
---|
| 859 | // Each core[cxy][0] copies the boot code (data and instructions) |
---|
[623] | 860 | // from the cluster 0 to the local cluster. |
---|
[439] | 861 | boot_remote_memcpy( XPTR( cxy , BOOT_BASE ), |
---|
| 862 | XPTR( BOOT_CORE_CXY , BOOT_BASE ), |
---|
| 863 | BOOT_MAX_SIZE ); |
---|
| 864 | |
---|
[623] | 865 | // from now, it is safe to refer to the boot global variables |
---|
[439] | 866 | boot_printf("\n[BOOT] core[%x,%d] replicated boot code at cycle %d\n", |
---|
[572] | 867 | cxy , lid , boot_get_proctime() ); |
---|
[439] | 868 | |
---|
[624] | 869 | // identity maps two big pages for the boot and kernel code, |
---|
| 870 | boot_page_table_init( cxy ); |
---|
[439] | 871 | |
---|
[624] | 872 | // activate the instruction MMU to use the local copy of boot code |
---|
| 873 | boot_activate_ins_mmu( cxy ); |
---|
[623] | 874 | |
---|
| 875 | // Each CP0 copies the arch_info.bin into the local memory. |
---|
[439] | 876 | boot_remote_memcpy(XPTR(cxy, ARCHINFO_BASE), |
---|
| 877 | XPTR(BOOT_CORE_CXY, ARCHINFO_BASE), |
---|
| 878 | ARCHINFO_MAX_SIZE ); |
---|
| 879 | |
---|
| 880 | boot_printf("\n[BOOT] core[%x,%d] replicated arch_info at cycle %d\n", |
---|
[572] | 881 | cxy , lid , boot_get_proctime() ); |
---|
[439] | 882 | |
---|
[624] | 883 | // copy the kcode segment into local memory |
---|
[439] | 884 | boot_remote_memcpy( XPTR( cxy , seg_kcode_base ), |
---|
| 885 | XPTR( BOOT_CORE_CXY , seg_kcode_base ), |
---|
| 886 | seg_kcode_size ); |
---|
| 887 | |
---|
[623] | 888 | // Each CP0 copies the kdata segment into local memory |
---|
[439] | 889 | boot_remote_memcpy( XPTR( cxy , seg_kdata_base ), |
---|
| 890 | XPTR( BOOT_CORE_CXY , seg_kdata_base ), |
---|
| 891 | seg_kdata_size ); |
---|
| 892 | |
---|
| 893 | boot_printf("\n[BOOT] core[%x,%d] replicated kernel code at cycle %d\n", |
---|
[572] | 894 | cxy , lid , boot_get_proctime() ); |
---|
[439] | 895 | |
---|
[623] | 896 | // Each CP0 get local boot_info_t structure base address. |
---|
[439] | 897 | boot_info = (boot_info_t*)seg_kdata_base; |
---|
| 898 | |
---|
[623] | 899 | // Each CP0 initializes local boot_info_t structure. |
---|
[439] | 900 | boot_info_init( boot_info , cxy ); |
---|
| 901 | |
---|
[572] | 902 | boot_printf("\n[BOOT] core[%x,%d] initialised boot_info at cycle %d\n", |
---|
| 903 | cxy , lid , boot_get_proctime() ); |
---|
| 904 | |
---|
[623] | 905 | // Each CP0 checks core information. |
---|
[439] | 906 | boot_check_core( boot_info , lid ); |
---|
| 907 | |
---|
[623] | 908 | // Each CP0 get number of active clusters from BOOT_CORE cluster |
---|
| 909 | uint32_t count = boot_remote_lw( XPTR( 0 , &active_cores_nr ) ); |
---|
[439] | 910 | |
---|
[623] | 911 | // Wait until all clusters (i.e all CP0s) ready |
---|
[439] | 912 | boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) , count ); |
---|
| 913 | |
---|
| 914 | // activate other local cores |
---|
| 915 | boot_wake_local_cores( boot_info ); |
---|
| 916 | |
---|
| 917 | // Wait until all local cores in cluster ready |
---|
| 918 | boot_remote_barrier( XPTR( cxy , &local_barrier ) , |
---|
| 919 | boot_info->cores_nr ); |
---|
| 920 | } |
---|
| 921 | } |
---|
| 922 | else |
---|
| 923 | { |
---|
[623] | 924 | /*********************************************************************** |
---|
| 925 | * PHASE fully parallel : all cores[cxy][lid] with (lid! = 0) execute it |
---|
| 926 | **********************************************************************/ |
---|
[439] | 927 | |
---|
[624] | 928 | #if DEBUG_BOOT_MULTI |
---|
| 929 | boot_printf("\n[BOOT] core[%x,%d] active at cycle %d\n", |
---|
| 930 | cxy, lid, boot_get_proctime() ); |
---|
| 931 | #endif |
---|
| 932 | // activate the instruction MMU to use the local copy of the boot code |
---|
| 933 | boot_activate_ins_mmu( cxy ); |
---|
[439] | 934 | |
---|
| 935 | // Get local boot_info_t structure base address. |
---|
| 936 | boot_info = (boot_info_t *)seg_kdata_base; |
---|
| 937 | |
---|
| 938 | // Check core information |
---|
| 939 | boot_check_core(boot_info, lid); |
---|
| 940 | |
---|
| 941 | // Wait until all local cores in cluster ready |
---|
| 942 | boot_remote_barrier( XPTR( cxy , &local_barrier ) , boot_info->cores_nr ); |
---|
| 943 | } |
---|
| 944 | |
---|
[624] | 945 | // All cores enter the kernel_init() function. The address is contained in |
---|
| 946 | // the "kernel_entry" global variable, set by boot_kernel_load() function. |
---|
[439] | 947 | // Each core initialise the following registers before jumping to kernel: |
---|
[623] | 948 | // - gr_29 : stack pointer / kernel stack allocated in idle thread descriptor, |
---|
| 949 | // - c0_sr : status register / reset BEV bit |
---|
| 950 | // - gr_04 : kernel_init() argument / pointer on boot_info structure |
---|
[439] | 951 | // The array of idle-thread descriptors is allocated in the kdata segment, |
---|
[623] | 952 | // just after the boot_info structure. |
---|
[624] | 953 | |
---|
| 954 | #if DEBUG_BOOT_MULTI |
---|
| 955 | boot_printf("\n[BOOT] core[%x,%d] jump to kernel_init = %x at cycle %d\n", |
---|
| 956 | cxy, lid, __FUNCTION__, kernel_entry, boot_get_proctime() ); |
---|
| 957 | #endif |
---|
| 958 | |
---|
[439] | 959 | uint32_t base; |
---|
| 960 | uint32_t offset = sizeof( boot_info_t ); |
---|
| 961 | uint32_t pmask = CONFIG_PPM_PAGE_MASK; |
---|
| 962 | uint32_t psize = CONFIG_PPM_PAGE_SIZE; |
---|
| 963 | if( offset & pmask ) base = seg_kdata_base + (offset & ~pmask) + psize; |
---|
| 964 | else base = seg_kdata_base + offset; |
---|
[623] | 965 | uint32_t sp = base + ((lid + 1) * CONFIG_THREAD_DESC_SIZE) - 16; |
---|
[439] | 966 | |
---|
| 967 | asm volatile( "mfc0 $27, $12 \n" |
---|
| 968 | "lui $26, 0xFFBF \n" |
---|
| 969 | "ori $26, $26, 0xFFFF \n" |
---|
| 970 | "and $27, $27, $26 \n" |
---|
| 971 | "mtc0 $27, $12 \n" |
---|
| 972 | "move $4, %0 \n" |
---|
| 973 | "move $29, %1 \n" |
---|
[624] | 974 | "jr %2 \n" |
---|
[439] | 975 | : |
---|
| 976 | : "r"(boot_info) , |
---|
| 977 | "r"(sp) , |
---|
| 978 | "r"(kernel_entry) |
---|
| 979 | : "$26" , "$27" , "$29" , "$4" ); |
---|
| 980 | |
---|
| 981 | |
---|
| 982 | } // boot_loader() |
---|