source: trunk/boot/tsar_mips32/boot.c @ 531

Last change on this file since 531 was 530, checked in by nicolas.van.phan@…, 6 years ago

Hack to compile on both IOB and LETI for now

File size: 39.7 KB
Line 
1/*
2 * boot.c - TSAR bootloader implementation.
3 *
4 * Authors :   Alain Greiner / Vu Son  (2016)
5 *
6 * Copyright (c) UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/****************************************************************************
25 * This file contains the ALMOS-MKH. boot-loader for the TSAR architecture. *
26 *                                                                          *
27 * It supports clusterised shared memory multi-processor architectures,     *
28 * where each processor core is identified by a composite index [cxy,lid]   *
29 * with one physical memory bank per cluster.                               *
30 *                                                                          *
31 * The 'boot.elf' file (containing the boot-loader binary code) is stored   *
32 * on disk and is loaded into memory by core[0,0] (cxy = 0 / lid = 0),      *
33 * and is copied in each other cluter by the local CP0 (lid = 0].           *
34 *                                                                          *
35 * 1) The boot-loader first phase is executed by core[0,0], while           *
36 *    all other cores are waiting in the preloader.                         *
37 *    It does the following tasks:                                          *
38 *      - load into the memory bank of cluster 0 the 'arch_info.bin'        *
39 *        file (containing the hardware architecture description) and the   *
40 *        'kernel.elf' file, at temporary locations,                        *   
41 *      - initializes the 'boot_info_t' structure in cluster(0,0)           *
42 *        (there is 1 'boot_info_t' per cluster), which contains both       *
43 *        global and cluster specific information that will be used for     *
44 *        kernel initialisation.                                            *
45 *      - activate CP0s in all other clusters, using IPIs.                  *
46 *      - wait completion reports from CP0s on a global barrier.            *
47 *                                                                          *
48 * 2) The boot-loader second phase is then executed in parallel by all      *
49 *    CP0s (other than core[0,0]). Each CP0 performs the following tasks:   *
50 *      - copies into the memory bank of the local cluster the 'boot.elf',  *
51 *        the 'arch_info.bin' (at the same addresses as the 'boot.elf' and  *
52 *        the 'arch_info.bin' in the memory bank of the cluster(0,0), and   *
53 *        the kernel image (at address 0x0),                                *
54 *      - initializes the 'boot_info_t' structure of the local cluster,     *
55 *      - activate all other cores in the same cluster (CPi).               *
56 *      - wait local CPi completion reports on a local barrier.             *
57 *      - report completion to bscpu on the global barrier.                 *
58 *                                                                          *
59 * 3) The boot-loader third phase is executed in parallel by all cores.     *
60 *    After passing the global barrier the bscpu:                           *
61 *      - activates the CPi of cluster(0),                                  *
62 *      - blocks on the local barrier waiting for all local CPi to report   *
63 *        completion on the local barrier,                                  *
64 *      - moves the local kernel image from the temporary location to the   *
65 *        address 0x0, (erasing the preloader code).                        *
66 *                                                                          *
67 * 4) All cores have finished the boot phase, they jump to the kern_init()  *
68 *    function (maybe not at the same time).                                *
69 ****************************************************************************/
70
71#include <elf-types.h>
72#include <hal_kernel_types.h>
73
74#include <kernel_config.h>
75#include <boot_config.h>
76
77#include <arch_info.h>
78#include <boot_info.h>
79
80#include <boot_utils.h>
81#include <boot_fat32.h>
82#include <boot_bdv_driver.h>
83#include <boot_hba_driver.h>
84#include <boot_tty_driver.h>
85
86/*****************************************************************************
87 *                                 Macros.                             
88 ****************************************************************************/
89
90#define PAGE_ROUND_DOWN(x)  ((x) & (~PPM_PAGE_SIZE -1))
91#define PAGE_ROUND_UP(x)    (((x) + PPM_PAGE_SIZE-1) &   \
92                            (~(PPM_PAGE_SIZE-1)))
93
94/*****************************************************************************
95 *                             Global variables.                           
96 ****************************************************************************/
97
98// synchronization variables.
99
100volatile boot_remote_spinlock_t tty0_lock;       // protect TTY0 access
101volatile boot_remote_barrier_t  global_barrier;  // synchronize CP0 cores
102volatile boot_remote_barrier_t  local_barrier;   // synchronize cores in one cluster
103uint32_t                        active_cp0s_nr;  // number of expected CP0s
104 
105// kernel segments layout variables
106
107uint32_t                        seg_kcode_base;   // kcode segment base address
108uint32_t                        seg_kcode_size;   // kcode segment size (bytes)
109uint32_t                        seg_kdata_base;   // kdata segment base address
110uint32_t                        seg_kdata_size;   // kdata segment size (bytes)
111uint32_t                        seg_kentry_base;  // kcode segment base address
112uint32_t                        seg_kentry_size;  // kcode segment size (bytes)
113
114uint32_t                        kernel_entry;    // kernel entry point
115
116// address used by the WTI to activate remote CP0s
117
118// Functions called by boot_entry.S must be externs.
119extern void boot_entry( void );    // boot_loader entry point
120extern void boot_loader( lid_t lid, cxy_t cxy );
121
122/*********************************************************************************
123 * This function returns the printable string for each device type
124 ********************************************************************************/
125static const char * device_type_str( uint32_t dev_type )
126{
127    if     ( dev_type == DEV_TYPE_RAM_SCL ) return "RAM_SCL";
128    else if( dev_type == DEV_TYPE_ROM_SCL ) return "ROM_SCL";
129    else if( dev_type == DEV_TYPE_FBF_SCL ) return "FBF_SCL";
130    else if( dev_type == DEV_TYPE_IOB_TSR ) return "IOB_TSR";
131    else if( dev_type == DEV_TYPE_IOC_BDV ) return "IOC_BDV";
132    else if( dev_type == DEV_TYPE_IOC_HBA ) return "IOC_HBA";
133    else if( dev_type == DEV_TYPE_IOC_SDC ) return "IOC_SDC";
134    else if( dev_type == DEV_TYPE_IOC_SPI ) return "IOC_SPI";
135    else if( dev_type == DEV_TYPE_IOC_RDK ) return "IOC_RDK";
136    else if( dev_type == DEV_TYPE_MMC_TSR ) return "MMC_TSR";
137    else if( dev_type == DEV_TYPE_DMA_SCL ) return "DMA_SCL";
138    else if( dev_type == DEV_TYPE_NIC_CBF ) return "NIC_CBF";
139    else if( dev_type == DEV_TYPE_TIM_SCL ) return "TIM_SCL";
140    else if( dev_type == DEV_TYPE_TXT_TTY ) return "TXT_TTY";
141    else if( dev_type == DEV_TYPE_ICU_XCU ) return "ICU_XCU";
142    else if( dev_type == DEV_TYPE_PIC_TSR ) return "PIC_TSR";
143    else                                    return "undefined";
144}
145
146/************************************************************************************
147 * This function loads the arch_info.bin file into the boot cluster memory.
148 ***********************************************************************************/
149static void boot_archinfo_load( void )
150{
151    archinfo_header_t* header = (archinfo_header_t*)ARCHINFO_BASE; 
152   
153    // Load file into memory
154    if (boot_fat32_load(ARCHINFO_PATHNAME, ARCHINFO_BASE, ARCHINFO_MAX_SIZE))
155    {
156        boot_printf("\n[BOOT ERROR]: boot_archinfo_load(): "
157                    "<%s> file not found\n",
158                    ARCHINFO_PATHNAME);
159        boot_exit();
160    }
161
162    if (header->signature != ARCHINFO_SIGNATURE)
163    {
164        boot_printf("\n[BOOT_ERROR]: boot_archinfo_load(): "
165                    "<%s> file signature should be %x\n",
166                    ARCHINFO_PATHNAME, ARCHINFO_SIGNATURE);
167        boot_exit();
168    }
169
170#if DEBUG_BOOT_INFO
171boot_printf("\n[BOOT INFO] in %s : file %s loaded at address = %x\n",
172            __FUNCTION__ , ARCHINFO_PATHNAME , ARCHINFO_BASE );
173#endif
174
175} // boot_archinfo_load()
176
177/**************************************************************************************
178 * This function loads the 'kernel.elf' file into the boot cluster memory buffer,
179 * analyzes it, and places the three kcode, kentry, kdata segments at their final
180 * physical adresses (defined the .elf file).       
181 * It set the global variables defining the kernel layout.
182 *************************************************************************************/
183static void boot_kernel_load( void )
184{
185    Elf32_Ehdr * elf_header;      // pointer on kernel.elf header. 
186    Elf32_Phdr * program_header;  // pointer on kernel.elf program header.
187    uint32_t     phdr_offset;     // program header offset in kernel.elf file.
188    uint32_t     segments_nb;     // number of segments in kernel.elf file.
189    uint32_t     seg_src_addr;    // segment address in kernel.elf file (source).
190    uint32_t     seg_paddr;       // segment local physical address of segment
191    uint32_t     seg_offset;      // segment offset in kernel.elf file
192    uint32_t     seg_filesz;      // segment size (bytes) in kernel.elf file
193    uint32_t     seg_memsz;       // segment size (bytes) in memory image.
194    bool_t       kcode_found;     // kcode segment found.
195    bool_t       kdata_found;     // kdata segment found.
196    bool_t       kentry_found;    // kentry segment found.
197    uint32_t     seg_id;          // iterator for segments loop.
198
199#if DEBUG_BOOT_ELF
200boot_printf("\n[BOOT INFO] %s enters for file %s at cycle %d\n",
201            __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() );
202#endif
203
204    // Load kernel.elf file into memory buffer
205    if ( boot_fat32_load(KERNEL_PATHNAME, KERN_BASE, KERN_MAX_SIZE) )
206    {
207        boot_printf("\n[BOOT ERROR] in %s : <%s> file not found\n",
208                    KERNEL_PATHNAME);
209        boot_exit();
210    }
211
212    // get pointer to kernel.elf header 
213    elf_header = (Elf32_Ehdr*)KERN_BASE;
214
215    // check signature
216    if ((elf_header->e_ident[EI_MAG0] != ELFMAG0)   ||
217        (elf_header->e_ident[EI_MAG1] != ELFMAG1)   ||
218        (elf_header->e_ident[EI_MAG2] != ELFMAG2)   ||
219        (elf_header->e_ident[EI_MAG3] != ELFMAG3))
220    {
221        boot_printf("\n[BOOT_ERROR]: boot_kernel_load(): "
222                    "<%s> is not an ELF file\n",
223                    KERNEL_PATHNAME);
224        boot_exit();
225    }
226
227    // Get program header table offset and number of segments
228    phdr_offset     = elf_header->e_phoff;
229    segments_nb     = elf_header->e_phnum;
230
231    // Get program header table pointer
232    program_header  = (Elf32_Phdr*)(KERN_BASE + phdr_offset);
233
234    // loop on segments
235    kcode_found  = false;
236    kdata_found  = false;
237    kentry_found = false;
238    for (seg_id = 0; seg_id < segments_nb; seg_id++) 
239    {
240        if (program_header[seg_id].p_type == PT_LOAD)   // Found one loadable segment
241        {
242            // Get segment attributes.
243            seg_paddr    = program_header[seg_id].p_paddr;   
244            seg_offset   = program_header[seg_id].p_offset;
245            seg_filesz   = program_header[seg_id].p_filesz;
246            seg_memsz    = program_header[seg_id].p_memsz;
247
248            // get segment base address in buffer
249            seg_src_addr = (uint32_t)KERN_BASE + seg_offset;
250
251            // Load segment to its final physical memory address
252            boot_memcpy( (void*)seg_paddr, 
253                         (void*)seg_src_addr, 
254                         seg_filesz );
255
256#if DEBUG_BOOT_ELF
257boot_printf("\n[BOOT INFO] in %s for file %s : found loadable segment\n"
258            "   base = %x / size = %x\n",
259            __FUNCTION__ , KERNEL_PATHNAME , seg_paddr , seg_memsz );
260#endif
261
262            // Fill remaining memory with zero if (filesz < memsz).
263            if( seg_memsz < seg_filesz )
264            {
265                boot_memset( (void*)(seg_paddr + seg_filesz), 0, seg_memsz - seg_filesz);
266            }
267
268            // Note: we suppose that the 'kernel.elf' file contains exactly
269            // three loadable segments ktext, kentry, & kdata:
270            // - the kcode segment is read-only and base == KCODE_BASE
271            // - the kentry segment is read-only and base == KENTRY_BASE
272
273            if( ((program_header[seg_id].p_flags & PF_W) == 0) &&
274                 (program_header[seg_id].p_paddr == KCODE_BASE) )     // kcode segment
275            {
276                if( kcode_found )
277                {
278                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
279                                "   two kcode segments found\n",
280                                __FUNCTION__ , KERNEL_PATHNAME );
281                    boot_exit();
282                } 
283
284                kcode_found     = true;
285                seg_kcode_base = seg_paddr;
286                seg_kcode_size = seg_memsz;
287            }
288            else if( program_header[seg_id].p_paddr == KENTRY_BASE ) // kentry segment
289            {
290                if( kentry_found )
291                {
292                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
293                                "   two kentry segments found\n",
294                                __FUNCTION__ , KERNEL_PATHNAME );
295                    boot_exit();
296                } 
297
298                kentry_found     = true;
299                seg_kentry_base = seg_paddr;
300                seg_kentry_size = seg_memsz;
301            }
302            else                                                    // kdata segment
303            {
304                if( kdata_found )
305                {
306                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
307                                "   two loadable kdata segments found\n",
308                                __FUNCTION__ , KERNEL_PATHNAME );
309                    boot_exit();
310                } 
311
312                kdata_found     = true;
313                seg_kdata_base = seg_paddr;
314                seg_kdata_size = seg_memsz;
315            }
316        }
317    }
318
319    // check kcode & kdata segments found
320    if( kcode_found == false )
321    {
322        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kcode not found\n",
323                    __FUNCTION__ , KERNEL_PATHNAME );
324        boot_exit();
325    }
326    if( kentry_found == false )
327    {
328        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kentry not found\n",
329                    __FUNCTION__ , KERNEL_PATHNAME );
330        boot_exit();
331    }
332    if( kdata_found == false )
333    {
334        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kdata not found\n",
335                    __FUNCTION__ , KERNEL_PATHNAME );
336        boot_exit();
337    }
338
339    // check segments sizes
340    if( seg_kentry_size > KENTRY_MAX_SIZE )
341    {
342        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kentry too large\n",
343                    __FUNCTION__ , KERNEL_PATHNAME );
344        boot_exit();
345    }
346
347    if( (seg_kcode_size + seg_kdata_size) > KCODE_MAX_SIZE )
348    {
349        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kcode + seg_kdata too large\n",
350                    __FUNCTION__ , KERNEL_PATHNAME );
351    }
352
353    // set entry point
354    kernel_entry = (uint32_t)elf_header->e_entry;
355
356#if DEBUG_BOOT_ELF
357boot_printf("\n[BOOT INFO] %s completed for file %s at cycle %d\n",
358            __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() );
359#endif
360
361} // boot_kernel_load()
362
363/*************************************************************************************
364 * This function initializes the  boot_info_t structure for a given cluster.
365 * @ boot_info  : pointer to local boot_info_t structure 
366 * @ cxy        : cluster identifier                   
367 ************************************************************************************/
368static void boot_info_init( boot_info_t * boot_info,
369                            cxy_t         cxy )
370{
371    archinfo_header_t  * header;
372    archinfo_core_t    * core_base;     
373    archinfo_cluster_t * cluster_base; 
374    archinfo_device_t  * device_base;
375    archinfo_irq_t     * irq_base; 
376
377    archinfo_cluster_t * cluster; 
378    archinfo_cluster_t * my_cluster = NULL;   // target cluster
379    archinfo_cluster_t * io_cluster = NULL;   // cluster containing ext. peripherals
380
381    archinfo_core_t    * core;
382    uint32_t             core_id; 
383    archinfo_device_t  * device;
384    uint32_t             device_id;
385    archinfo_irq_t     * irq; 
386    uint32_t             irq_id;
387    uint32_t             end;
388    boot_device_t      * boot_dev; 
389
390    // get pointer on ARCHINFO header  and on the four arch_info arrays
391    header       = (archinfo_header_t*)ARCHINFO_BASE;
392    core_base    = archinfo_get_core_base   (header);
393    cluster_base = archinfo_get_cluster_base(header);
394    device_base  = archinfo_get_device_base (header);
395    irq_base     = archinfo_get_irq_base    (header);
396
397    // Initialize global platform parameters
398    boot_info->x_size       = header->x_size;
399    boot_info->y_size       = header->y_size;
400    boot_info->x_width      = header->x_width;
401    boot_info->y_width      = header->y_width;
402    boot_info->x_max        = header->x_size; // [FIXME]
403    boot_info->y_max        = header->name[5] == 'l' ? header->y_size - 1 : header->y_size; // [FIXME]
404    boot_info->paddr_width  = header->paddr_width;
405    boot_info->io_cxy       = header->io_cxy;
406
407    // Initialize kernel segments from global variables
408    boot_info->kcode_base  = seg_kcode_base;
409    boot_info->kcode_size  = seg_kcode_size;
410    boot_info->kdata_base  = seg_kdata_base;
411    boot_info->kdata_size  = seg_kdata_size;
412    boot_info->kentry_base = seg_kentry_base;
413    boot_info->kentry_size = seg_kentry_size;
414
415    // loop on arch_info clusters to get relevant pointers
416    for (cluster =  cluster_base;
417         cluster < &cluster_base[header->x_size * header->y_size];
418         cluster++)
419    {
420        if( cluster->cxy  == cxy )            my_cluster = cluster;
421        if( cluster->cxy  == header->io_cxy ) io_cluster = cluster;
422    }
423
424    if( my_cluster == NULL ) 
425    {
426        boot_printf("\n[ERROR] in %s : cannot found cluster %x in arch_info\n",
427                    __FUNCTION__ , cxy );
428        boot_exit();
429    }
430
431    if( io_cluster == NULL ) 
432    {
433        boot_printf("\n[ERROR] in %s : cannot found io_cluster %x in arch_info\n",
434                    __FUNCTION__ , header->io_cxy );
435        boot_exit();
436    }
437
438    //////////////////////////////////////////////////////////
439    // initialize the boot_info array of external peripherals
440
441#if DEBUG_BOOT_INFO
442boot_printf("\n[BOOT INFO] %s : external peripherals at cycle %d\n",
443            __FUNCTION__ , boot_get_proctime() );
444#endif
445
446    device_id = 0;
447    for (device = &device_base[io_cluster->device_offset];
448         device < &device_base[io_cluster->device_offset + io_cluster->devices];
449         device++ )
450    {
451        if( device_id >= CONFIG_MAX_EXT_DEV ) 
452        {
453            boot_printf("\n[ERROR] in %s : too much external devices in arch_info\n",
454                        __FUNCTION__ );
455            boot_exit();
456        }
457       
458        // keep only external devices
459        if( (device->type != DEV_TYPE_RAM_SCL) &&
460            (device->type != DEV_TYPE_ICU_XCU) &&
461            (device->type != DEV_TYPE_MMC_TSR) &&
462            (device->type != DEV_TYPE_DMA_SCL) ) 
463        {
464            boot_dev = &boot_info->ext_dev[device_id];
465
466            boot_dev->type     = device->type;
467            boot_dev->base     = device->base;
468            boot_dev->channels = device->channels;
469            boot_dev->param0   = device->arg0;   
470            boot_dev->param1   = device->arg1;   
471            boot_dev->param2   = device->arg2;   
472            boot_dev->param3   = device->arg3;   
473            boot_dev->irqs     = device->irqs;   
474
475            device_id++;
476
477#if DEBUG_BOOT_INFO
478boot_printf("  - %s : base = %l / size = %l / channels = %d / irqs = %d\n",
479            device_type_str( device->type ) , device->base , device->size ,
480            device->channels , device->irqs );   
481#endif
482        }
483   
484        // handle IRQs for PIC
485        if (device->type == DEV_TYPE_PIC_TSR) 
486        {
487            for (irq_id = 0; irq_id < CONFIG_MAX_EXTERNAL_IRQS ; irq_id++)
488            {
489                boot_dev->irq[irq_id].valid  = 0;
490            }
491
492            for (irq = &irq_base[device->irq_offset];
493                 irq < &irq_base[device->irq_offset + device->irqs];
494                 irq++)
495            {
496                boot_dev->irq[irq->port].valid    = 1;
497                boot_dev->irq[irq->port].dev_type = irq->dev_type;
498                boot_dev->irq[irq->port].channel  = irq->channel;
499                boot_dev->irq[irq->port].is_rx    = irq->is_rx;
500
501#if DEBUG_BOOT_INFO
502boot_printf("    . irq_port = %d / source = %s / channel = %d / is_rx = %d\n",
503            irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx );
504#endif
505            }
506        }
507    }   // end loop on io_cluster peripherals
508
509    // initialize number of external peripherals
510    boot_info->ext_dev_nr = device_id;
511
512    // Initialize cluster specific resources
513    boot_info->cxy  = my_cluster->cxy;
514
515#if DEBUG_BOOT_INFO
516boot_printf("\n[BOOT INFO] %s : cores in cluster %x\n", __FUNCTION__ , cxy );
517#endif
518
519    ////////////////////////////////////////
520    // Initialize array of core descriptors
521    core_id = 0;
522    for (core = &core_base[my_cluster->core_offset];
523         core < &core_base[my_cluster->core_offset + my_cluster->cores];
524         core++ )
525    {
526        boot_info->core[core_id].gid = (gid_t)core->gid;
527        boot_info->core[core_id].lid = (lid_t)core->lid; 
528        boot_info->core[core_id].cxy = (cxy_t)core->cxy;
529
530#if DEBUG_BOOT_INFO
531boot_printf("  - core_gid = %x : cxy = %x / lid = %d\n", 
532            core->gid , core->cxy , core->lid );
533#endif
534        core_id++;
535    }
536
537    // Initialize number of cores in my_cluster
538    boot_info->cores_nr = core_id;
539
540    //////////////////////////////////////////////////////////////////////
541    // initialise boot_info array of internal devices (RAM, ICU, MMC, DMA)
542
543#if DEBUG_BOOT_INFO
544boot_printf("\n[BOOT INFO] %s : internal peripherals in cluster %x\n", __FUNCTION__ , cxy );
545#endif
546
547    device_id = 0;
548    for (device = &device_base[my_cluster->device_offset];
549         device < &device_base[my_cluster->device_offset + my_cluster->devices];
550         device++ )
551    {
552        // keep only internal devices
553        if( (device->type == DEV_TYPE_RAM_SCL) ||
554            (device->type == DEV_TYPE_ICU_XCU) ||
555            (device->type == DEV_TYPE_MMC_TSR) ||
556            (device->type == DEV_TYPE_DMA_SCL) ) 
557        {
558            if (device->type == DEV_TYPE_RAM_SCL)   // RAM
559            {
560                // set number of physical memory pages
561                boot_info->pages_nr   = device->size >> CONFIG_PPM_PAGE_SHIFT;
562
563#if DEBUG_BOOT_INFO
564boot_printf("  - RAM : %x pages\n", boot_info->pages_nr );
565#endif
566            }
567            else                                    // ICU / MMC / DMA
568            {
569                if( device_id >= CONFIG_MAX_INT_DEV ) 
570                {
571                    boot_printf("\n[ERROR] in %s : too much internal devices in cluster %x\n",
572                                __FUNCTION__ , cxy );
573                    boot_exit();
574                }
575       
576                boot_dev = &boot_info->int_dev[device_id];
577
578                boot_dev->type     = device->type;
579                boot_dev->base     = device->base;
580                boot_dev->channels = device->channels;
581                boot_dev->param0   = device->arg0;   
582                boot_dev->param1   = device->arg1;   
583                boot_dev->param2   = device->arg2;   
584                boot_dev->param3   = device->arg3;   
585                boot_dev->irqs     = device->irqs; 
586
587                device_id++;
588
589#if DEBUG_BOOT_INFO
590boot_printf("  - %s : base = %l / size = %l / channels = %d / irqs = %d\n",
591            device_type_str( device->type ) , device->base , device->size ,
592            device->channels , device->irqs );   
593#endif
594
595                // handle IRQs for ICU
596                if (device->type == DEV_TYPE_ICU_XCU) 
597                {
598                    for (irq_id = 0; irq_id < CONFIG_MAX_INTERNAL_IRQS ; irq_id++)
599                    {
600                        boot_dev->irq[irq_id].valid  = 0;
601                    }
602
603                    for (irq = &irq_base[device->irq_offset];
604                         irq < &irq_base[device->irq_offset + device->irqs] ; irq++)
605                    {
606                        boot_dev->irq[irq->port].valid    = 1;
607                        boot_dev->irq[irq->port].dev_type = irq->dev_type;
608                        boot_dev->irq[irq->port].channel  = irq->channel;
609                        boot_dev->irq[irq->port].is_rx    = irq->is_rx;
610
611#if DEBUG_BOOT_INFO
612boot_printf("    . irq_port = %d / source = %s / channel = %d / is_rx = %d\n",
613            irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx );
614#endif
615
616                    }
617                }
618            }
619        }
620    }  // end loop on local peripherals
621
622    // initialize number of internal peripherals
623    boot_info->int_dev_nr = device_id;
624
625   // Get the top address of the kernel segments
626    end = boot_info->kdata_base + boot_info->kdata_size;
627
628    // compute number of physical pages occupied by the kernel code
629    boot_info->pages_offset = ( (end & CONFIG_PPM_PAGE_MASK) == 0 ) ?
630                 (end >> CONFIG_PPM_PAGE_SHIFT) : (end >> CONFIG_PPM_PAGE_SHIFT) + 1;
631
632    // no reserved sones for TSAR architecture
633    boot_info->rsvd_nr = 0;
634
635    // set boot_info signature
636    boot_info->signature = BOOT_INFO_SIGNATURE;
637
638} // boot_info_init()
639
640/***********************************************************************************
641 * This function check the local boot_info_t structure for a given core.
642 * @ boot_info  : pointer to local 'boot_info_t' structure to be checked.
643 * @ lid        : core local identifier, index the core descriptor table.
644 **********************************************************************************/
645static void boot_check_core( boot_info_t * boot_info, 
646                             lid_t         lid)
647{
648    gid_t         gid;        // global hardware identifier of this core
649    boot_core_t * this;       // BOOT_INFO core descriptor of this core. 
650
651    // Get core hardware identifier
652    gid = (gid_t)boot_get_procid();
653
654    // get pointer on core descriptor
655    this = &boot_info->core[lid];
656
657    if ( (this->gid != gid) ||  (this->cxy != boot_info->cxy) )
658    {
659        boot_printf("\n[BOOT ERROR] in boot_check_core() :\n"
660                    " - boot_info cxy = %x\n"
661                    " - boot_info lid = %d\n"
662                    " - boot_info gid = %x\n"
663                    " - actual    gid = %x\n",
664                    this->cxy , this->lid , this->gid , gid );
665        boot_exit();
666    }
667
668} // boot_check_core()
669
670/*********************************************************************************
671 * This function is called by CP0 in cluster(0,0) to activate all other CP0s.
672 * It returns the number of CP0s actually activated.
673 ********************************************************************************/
674static uint32_t boot_wake_all_cp0s( void )
675{
676    archinfo_header_t*  header;         // Pointer on ARCHINFO header
677    archinfo_cluster_t* cluster_base;   // Pointer on ARCHINFO clusters base
678    archinfo_cluster_t* cluster;        // Iterator for loop on clusters
679    archinfo_device_t*  device_base;    // Pointer on ARCHINFO devices base
680    archinfo_device_t*  device;         // Iterator for loop on devices
681    uint32_t            cp0_nb = 0;     // CP0s counter
682
683    header       = (archinfo_header_t*)ARCHINFO_BASE;
684    cluster_base = archinfo_get_cluster_base(header);
685    device_base  = archinfo_get_device_base (header); 
686
687    // loop on all clusters
688    for (cluster = cluster_base;
689         cluster < &cluster_base[header->x_size * header->y_size];
690         cluster++)
691    {
692        // Skip boot cluster.
693        if (cluster->cxy == BOOT_CORE_CXY)
694            continue;
695           
696        // Skip clusters without core (thus without CP0).
697        if (cluster->cores == 0)
698            continue;
699
700        // Skip clusters without device (thus without XICU).
701        if (cluster->devices == 0)
702            continue;
703
704        // search XICU device associated to CP0, and send a WTI to activate it
705        for (device = &device_base[cluster->device_offset];
706             device < &device_base[cluster->device_offset + cluster->devices];
707             device++)
708        {
709            if (device->type == DEV_TYPE_ICU_XCU)
710            {
711
712#if DEBUG_BOOT_WAKUP
713boot_printf("\n[BOOT] core[%x,0] activated at cycle %d\n",
714            cluster->cxy , boot_get_proctime );
715#endif
716
717                boot_remote_sw((xptr_t)device->base, (uint32_t)boot_entry);
718                cp0_nb++;
719            }
720        }
721    }
722    return cp0_nb;
723
724} // boot_wake_cp0()
725
726/*********************************************************************************
727 * This function is called by all CP0 to activate the other CPi cores.
728 * @ boot_info  : pointer to local 'boot_info_t' structure.
729 *********************************************************************************/
730static void boot_wake_local_cores(boot_info_t * boot_info)
731{
732    unsigned int     core_id;       
733
734    // get pointer on XCU device descriptor in boot_info
735    boot_device_t *  xcu = &boot_info->int_dev[0];
736 
737    // loop on cores
738    for (core_id = 1; core_id < boot_info->cores_nr; core_id++)
739    {
740
741#if DEBUG_BOOT_WAKUP
742boot_printf("\n[BOOT] core[%x,%d] activated at cycle %d\n",
743             boot_info->cxy , core_id , boot_get_proctime() );
744#endif
745        // send an IPI
746        boot_remote_sw( (xptr_t)(xcu->base + (core_id << 2)) , (uint32_t)boot_entry ); 
747    }
748} // boot_wake_local_cores()
749
750
751/*********************************************************************************
752 * This main function of the boot-loader is called by the  boot_entry() 
753 * function, and executed by all cores.
754 * The arguments values are computed by the boot_entry code.
755 * @ lid    : core local identifier,
756 * @ cxy    : cluster identifier,
757 *********************************************************************************/
758void boot_loader( lid_t lid,
759                  cxy_t cxy )
760{
761    boot_info_t * boot_info;       // pointer on local boot_info_t structure
762
763    if (lid == 0) 
764    {
765        /****************************************************
766         * PHASE A : only CP0 in boot cluster executes it
767         ***************************************************/
768        if (cxy == BOOT_CORE_CXY)
769        {
770            boot_printf("\n[BOOT] core[%x,%d] enters at cycle %d\n",
771                        cxy , lid , boot_get_proctime() );
772
773            // Initialize IOC driver
774            if      (USE_IOC_BDV) boot_bdv_init();
775            else if (USE_IOC_HBA) boot_hba_init();
776            // else if (USE_IOC_SDC) boot_sdc_init();
777            // else if (USE_IOC_SPI) boot_spi_init();
778            else if (!USE_IOC_RDK)
779            {
780                boot_printf("\n[BOOT ERROR] in %s : no IOC driver\n");
781                boot_exit();
782            }
783
784            // Initialize FAT32.
785            boot_fat32_init();
786
787            // Load the 'kernel.elf' file into memory from IOC, and set   
788            // the global variables defining the kernel layout     
789            boot_kernel_load();
790
791            boot_printf("\n[BOOT] core[%x,%d] loaded kernel at cycle %d\n",
792                        cxy , lid , boot_get_proctime() );
793
794            // Load the arch_info.bin file into memory.
795            boot_archinfo_load();
796
797            // Get local boot_info_t structure base address.
798            // It is the first structure in the .kdata segment.
799            boot_info = (boot_info_t *)seg_kdata_base;
800
801            // Initialize local boot_info_t structure.
802            boot_info_init( boot_info , cxy );
803
804            // check boot_info signature
805            if (boot_info->signature != BOOT_INFO_SIGNATURE)
806            {
807                boot_printf("\n[BOOT ERROR] in %s reported by core[%x,%d]\n"
808                            "  illegal boot_info signature / should be %x\n",
809                            __FUNCTION__ , cxy , lid , BOOT_INFO_SIGNATURE );
810                boot_exit();
811            }
812
813            boot_printf("\n[BOOT] core[%x,%d] loaded arch_info at cycle %d\n",
814                        cxy , lid , boot_get_proctime() );
815
816            // Check core information.
817            boot_check_core(boot_info, lid);
818
819            // Activate other CP0s / get number of active CP0s
820            active_cp0s_nr = boot_wake_all_cp0s() + 1;
821
822            // Wait until all clusters (i.e all CP0s) ready to enter kernel.
823            boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) ,
824                                 active_cp0s_nr );
825
826            // activate other local cores
827            boot_wake_local_cores( boot_info );
828
829// display address extensions
830// uint32_t cp2_data_ext;
831// uint32_t cp2_ins_ext;
832// asm volatile( "mfc2   %0,  $24" : "=&r" (cp2_data_ext) );
833// asm volatile( "mfc2   %0,  $25" : "=&r" (cp2_ins_ext) );
834// boot_printf("\n[BOOT] core[%x,%d] CP2_DATA_EXT = %x / CP2_INS_EXT = %x\n",
835// cxy , lid , cp2_data_ext , cp2_ins_ext );
836
837            // Wait until all local cores in cluster ready
838            boot_remote_barrier( XPTR( cxy , &local_barrier ) , 
839                                 boot_info->cores_nr );
840        }
841        /******************************************************************
842         * PHASE B : all CP0s other than CP0 in boot cluster execute it
843         *****************************************************************/
844        else
845        {
846            // at this point, all INSTRUCTION address extension registers
847            // point on cluster(0,0), but the DATA extension registers point
848            // already on the local cluster to use the local stack.
849            // To access the bootloader global variables we must first copy
850            // the boot code (data and instructions) in the local cluster.
851            boot_remote_memcpy( XPTR( cxy           , BOOT_BASE ),
852                                XPTR( BOOT_CORE_CXY , BOOT_BASE ),
853                                BOOT_MAX_SIZE );
854
855            // from now, it is safe to refer to the boot code global variables
856            boot_printf("\n[BOOT] core[%x,%d] replicated boot code at cycle %d\n",
857                        cxy , lid , boot_get_proctime() );
858
859                        // switch to the INSTRUCTION local memory space, to avoid contention.
860            asm volatile("mtc2  %0, $25" :: "r"(cxy));
861
862            // Copy the arch_info.bin file into the local memory.
863            boot_remote_memcpy(XPTR(cxy,           ARCHINFO_BASE),
864                               XPTR(BOOT_CORE_CXY, ARCHINFO_BASE),
865                               ARCHINFO_MAX_SIZE );
866
867            boot_printf("\n[BOOT] core[%x,%d] replicated arch_info at cycle %d\n",
868                        cxy , lid , boot_get_proctime() );
869
870            // Copy the kcode segment into local memory
871            boot_remote_memcpy( XPTR( cxy           , seg_kcode_base ),
872                                XPTR( BOOT_CORE_CXY , seg_kcode_base ),
873                                seg_kcode_size );
874
875            // Copy the kdata segment into local memory
876            boot_remote_memcpy( XPTR( cxy           , seg_kdata_base ),
877                                XPTR( BOOT_CORE_CXY , seg_kdata_base ),
878                                seg_kdata_size );
879
880            // Copy the kentry segment into local memory
881            boot_remote_memcpy( XPTR( cxy           , seg_kentry_base ),
882                                XPTR( BOOT_CORE_CXY , seg_kentry_base ),
883                                seg_kentry_size );
884
885            boot_printf("\n[BOOT] core[%x,%d] replicated kernel code at cycle %d\n",
886                        cxy , lid , boot_get_proctime() );
887
888            // Get local boot_info_t structure base address.
889            boot_info = (boot_info_t*)seg_kdata_base;
890
891            // Initialize local boot_info_t structure.
892            boot_info_init( boot_info , cxy );
893
894            // Check core information.
895            boot_check_core( boot_info , lid );
896
897            // get number of active clusters from BOOT_CORE cluster
898            uint32_t count = boot_remote_lw( XPTR( BOOT_CORE_CXY , &active_cp0s_nr ) );
899
900            // Wait until all clusters (i.e all CP0s) ready to enter kernel
901            boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) , count );
902
903            // activate other local cores
904            boot_wake_local_cores( boot_info );
905
906// display address extensions
907// uint32_t cp2_data_ext;
908// uint32_t cp2_ins_ext;
909// asm volatile( "mfc2   %0,  $24" : "=&r" (cp2_data_ext) );
910// asm volatile( "mfc2   %0,  $25" : "=&r" (cp2_ins_ext) );
911// boot_printf("\n[BOOT] core[%x,%d] CP2_DATA_EXT = %x / CP2_INS_EXT = %x\n",
912// cxy , lid , cp2_data_ext , cp2_ins_ext );
913
914            // Wait until all local cores in cluster ready
915            boot_remote_barrier( XPTR( cxy , &local_barrier ) , 
916                                 boot_info->cores_nr );
917        }
918    }
919    else
920    {
921        /***************************************************************
922         * PHASE C: all non CP0 cores in all clusters execute it
923         **************************************************************/
924
925        // Switch to the INSTRUCTIONS local memory space
926        // to avoid contention at the boot cluster.
927        asm volatile("mtc2  %0, $25" :: "r"(cxy));
928
929        // Get local boot_info_t structure base address.
930        boot_info = (boot_info_t *)seg_kdata_base;
931
932        // Check core information
933        boot_check_core(boot_info, lid);
934
935// display address extensions
936// uint32_t cp2_data_ext;
937// uint32_t cp2_ins_ext;
938// asm volatile( "mfc2   %0,  $24" : "=&r" (cp2_data_ext) );
939// asm volatile( "mfc2   %0,  $25" : "=&r" (cp2_ins_ext) );
940// boot_printf("\n[BOOT] core[%x,%d] CP2_DATA_EXT = %x / CP2_INS_EXT = %x\n",
941// cxy , lid , cp2_data_ext , cp2_ins_ext );
942
943        // Wait until all local cores in cluster ready
944        boot_remote_barrier( XPTR( cxy , &local_barrier ) , boot_info->cores_nr );
945    }
946
947    // Each core initialise the following registers before jumping to kernel:
948    // - sp_29    : stack pointer on idle thread,
949    // - c0_sr    : reset BEV bit
950    // - a0_04    : pointer on boot_info structure
951    // - c0_ebase : kentry_base(and jump to kernel_entry.
952
953    // The array of idle-thread descriptors is allocated in the kdata segment,
954    // just after the boot_info structure
955    uint32_t sp;
956    uint32_t base;
957    uint32_t offset = sizeof( boot_info_t );
958    uint32_t pmask  = CONFIG_PPM_PAGE_MASK;
959    uint32_t psize  = CONFIG_PPM_PAGE_SIZE;
960
961    // compute base address of idle thread descriptors array
962    if( offset & pmask ) base = seg_kdata_base + (offset & ~pmask) + psize;
963    else                 base = seg_kdata_base + offset;
964
965    // compute stack pointer
966    sp = base + ((lid + 1) * CONFIG_THREAD_DESC_SIZE) - 16;
967
968    asm volatile( "mfc0  $27,  $12           \n"
969                  "lui   $26,  0xFFBF        \n"
970                  "ori   $26,  $26,  0xFFFF  \n"
971                  "and   $27,  $27,  $26     \n"
972                  "mtc0  $27,  $12           \n"
973                  "move  $4,   %0            \n"
974                  "move  $29,  %1            \n"
975                  "mtc0  %2,   $15,  1       \n"
976                  "jr    %3                  \n"
977                  :
978                  : "r"(boot_info) ,
979                    "r"(sp) ,
980                    "r"(boot_info->kentry_base) ,
981                    "r"(kernel_entry) 
982                  : "$26" , "$27" , "$29" , "$4" );
983
984
985} // boot_loader()
Note: See TracBrowser for help on using the repository browser.