1 | /* |
---|
2 | * hal_exception.c - implementation of exception handler for TSAR-MIPS32. |
---|
3 | * |
---|
4 | * Author Alain Greiner (2016, 2017) |
---|
5 | * |
---|
6 | * Copyright (c) UPMC Sorbonne Universites |
---|
7 | * |
---|
8 | * This file is part of ALMOS-MKH. |
---|
9 | * |
---|
10 | * ALMOS-MKH is free software; you can redistribute it and/or modify it |
---|
11 | * under the terms of the GNU General Public License as published by |
---|
12 | * the Free Software Foundation; version 2.0 of the License. |
---|
13 | * |
---|
14 | * ALMOS-MKH is distributed in the hope that it will be useful, but |
---|
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
17 | * General Public License for more details. |
---|
18 | * |
---|
19 | * You should have received a copy of the GNU General Public License |
---|
20 | * along with ALMOS-MKH; if not, write to the Free Software Foundation, |
---|
21 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
22 | */ |
---|
23 | |
---|
24 | #include <hal_kernel_types.h> |
---|
25 | #include <hal_irqmask.h> |
---|
26 | #include <hal_special.h> |
---|
27 | #include <hal_exception.h> |
---|
28 | #include <thread.h> |
---|
29 | #include <printk.h> |
---|
30 | #include <chdev.h> |
---|
31 | #include <vmm.h> |
---|
32 | #include <errno.h> |
---|
33 | #include <scheduler.h> |
---|
34 | #include <core.h> |
---|
35 | #include <syscalls.h> |
---|
36 | #include <shared_syscalls.h> |
---|
37 | #include <remote_spinlock.h> |
---|
38 | #include <hal_kentry.h> |
---|
39 | |
---|
40 | |
---|
41 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
42 | // Extern global variables |
---|
43 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
44 | |
---|
45 | extern chdev_directory_t chdev_dir; // allocated in the kernel_init.c file. |
---|
46 | |
---|
47 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
48 | // This enum defines the global exception types after analysis by the exception handler. |
---|
49 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
50 | |
---|
51 | typedef enum |
---|
52 | { |
---|
53 | EXCP_NON_FATAL, |
---|
54 | EXCP_USER_ERROR, |
---|
55 | EXCP_KERNEL_PANIC, |
---|
56 | } |
---|
57 | exception_handling_type_t; |
---|
58 | |
---|
59 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
60 | // This enum defines the mask values for an MMU exception code reported by the mips32. |
---|
61 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
62 | |
---|
63 | typedef enum |
---|
64 | { |
---|
65 | MMU_WRITE_PT1_UNMAPPED = 0x0001, |
---|
66 | MMU_WRITE_PT2_UNMAPPED = 0x0002, |
---|
67 | MMU_WRITE_PRIVILEGE_VIOLATION = 0x0004, |
---|
68 | MMU_WRITE_ACCESS_VIOLATION = 0x0008, |
---|
69 | MMU_WRITE_UNDEFINED_XTN = 0x0020, |
---|
70 | MMU_WRITE_PT1_ILLEGAL_ACCESS = 0x0040, |
---|
71 | MMU_WRITE_PT2_ILLEGAL_ACCESS = 0x0080, |
---|
72 | MMU_WRITE_DATA_ILLEGAL_ACCESS = 0x0100, |
---|
73 | |
---|
74 | MMU_READ_PT1_UNMAPPED = 0x1001, |
---|
75 | MMU_READ_PT2_UNMAPPED = 0x1002, |
---|
76 | MMU_READ_PRIVILEGE_VIOLATION = 0x1004, |
---|
77 | MMU_READ_EXEC_VIOLATION = 0x1010, |
---|
78 | MMU_READ_UNDEFINED_XTN = 0x1020, |
---|
79 | MMU_READ_PT1_ILLEGAL_ACCESS = 0x1040, |
---|
80 | MMU_READ_PT2_ILLEGAL_ACCESS = 0x1080, |
---|
81 | MMU_READ_DATA_ILLEGAL_ACCESS = 0x1100, |
---|
82 | } |
---|
83 | mmu_exception_subtype_t; |
---|
84 | |
---|
85 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
86 | // This enum defines the relevant values for XCODE field in mips32 CP0_CR register. |
---|
87 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
88 | |
---|
89 | typedef enum |
---|
90 | { |
---|
91 | XCODE_ADEL = 0x4, // Illegal address for data load |
---|
92 | XCODE_ADES = 0x5, // Illegal address for data store |
---|
93 | XCODE_IBE = 0x6, // Instruction MMU exception (can be NON-FATAL) |
---|
94 | XCODE_DBE = 0x7, // Data MMU exception (can be NON-FATAL) |
---|
95 | XCODE_RI = 0xA, // Reserved instruction exception |
---|
96 | XCODE_CPU = 0xB, // Coprocessor unusable exception (can be NON-FATAl) |
---|
97 | XCODE_OVR = 0xC, // Arithmetic Overflow exception |
---|
98 | } |
---|
99 | xcode_values_t; |
---|
100 | |
---|
101 | ///////////////////////////////////////////// |
---|
102 | char * hal_mmu_exception_str( uint32_t code ) |
---|
103 | { |
---|
104 | if ( code == MMU_WRITE_PT1_UNMAPPED ) return "WRITE_PT1_UNMAPPED"; |
---|
105 | else if( code == MMU_WRITE_PT2_UNMAPPED ) return "WRITE_PT2_UNMAPPED"; |
---|
106 | else if( code == MMU_WRITE_PRIVILEGE_VIOLATION ) return "WRITE_PRIVILEGE_VIOLATION"; |
---|
107 | else if( code == MMU_WRITE_ACCESS_VIOLATION ) return "WRITE_ACCESS_VIOLATION"; |
---|
108 | else if( code == MMU_WRITE_UNDEFINED_XTN ) return "WRITE_UNDEFINED_XTN"; |
---|
109 | else if( code == MMU_WRITE_PT1_ILLEGAL_ACCESS ) return "WRITE_PT1_ILLEGAL_ACCESS"; |
---|
110 | else if( code == MMU_WRITE_PT2_ILLEGAL_ACCESS ) return "WRITE_PT2_ILLEGAL_ACCESS"; |
---|
111 | else if( code == MMU_WRITE_DATA_ILLEGAL_ACCESS ) return "WRITE_DATA_ILLEGAL_ACCESS"; |
---|
112 | else if( code == MMU_READ_PT1_UNMAPPED ) return "READ_PT1_UNMAPPED"; |
---|
113 | else if( code == MMU_READ_PT2_UNMAPPED ) return "READ_PT2_UNMAPPED"; |
---|
114 | else if( code == MMU_READ_PRIVILEGE_VIOLATION ) return "READ_PRIVILEGE_VIOLATION"; |
---|
115 | else if( code == MMU_READ_EXEC_VIOLATION ) return "READ_EXEC_VIOLATION"; |
---|
116 | else if( code == MMU_READ_UNDEFINED_XTN ) return "READ_UNDEFINED_XTN"; |
---|
117 | else if( code == MMU_READ_PT1_ILLEGAL_ACCESS ) return "READ_PT1_ILLEGAL_ACCESS"; |
---|
118 | else if( code == MMU_READ_PT2_ILLEGAL_ACCESS ) return "READ_PT2_ILLEGAL_ACCESS"; |
---|
119 | else if( code == MMU_READ_DATA_ILLEGAL_ACCESS ) return "READ_DATA_ILLEGAL_ACCESS"; |
---|
120 | else return "undefined"; |
---|
121 | } |
---|
122 | |
---|
123 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
124 | // This function is called when a FPU Coprocessor Unavailable exception has been |
---|
125 | // detected for the calling thread. |
---|
126 | // It enables the FPU, It saves the current FPU context in the current owner thread |
---|
127 | // descriptor if required, and restore the FPU context from the calling thread descriptor. |
---|
128 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
129 | // @ this : pointer on faulty thread descriptor. |
---|
130 | // @ return always EXCP_NON_FATAL |
---|
131 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
132 | error_t hal_fpu_exception( thread_t * this ) |
---|
133 | { |
---|
134 | core_t * core = this->core; |
---|
135 | |
---|
136 | // enable FPU (in core SR) |
---|
137 | hal_fpu_enable(); |
---|
138 | |
---|
139 | // save FPU register values in current owner thread if required |
---|
140 | if( core->fpu_owner != NULL ) |
---|
141 | { |
---|
142 | if( core->fpu_owner != this ) |
---|
143 | { |
---|
144 | // save the FPU registers to current owner thread context |
---|
145 | hal_fpu_context_save( XPTR( local_cxy , core->fpu_owner ) ); |
---|
146 | |
---|
147 | // restore FPU registers from requesting thread context |
---|
148 | hal_fpu_context_restore( this ); |
---|
149 | |
---|
150 | // attach the FPU to the requesting thread |
---|
151 | core->fpu_owner = this; |
---|
152 | } |
---|
153 | } |
---|
154 | else |
---|
155 | { |
---|
156 | // restore FPU registers from requesting thread context |
---|
157 | hal_fpu_context_restore( this ); |
---|
158 | |
---|
159 | // attach the FPU to the requesting thread |
---|
160 | core->fpu_owner = this; |
---|
161 | } |
---|
162 | |
---|
163 | return EXCP_NON_FATAL; |
---|
164 | |
---|
165 | } // end hal_fpu_exception() |
---|
166 | |
---|
167 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
168 | // This function is called when an MMU exception has been detected (IBE / DBE). |
---|
169 | // It get the relevant exception arguments from the MMU. |
---|
170 | // It signal a fatal error in case of illegal access. In case of page unmapped |
---|
171 | // it checks that the faulty address belongs to a registered vseg. It update the local |
---|
172 | // vseg list from the reference cluster if required, and signal a fatal user error |
---|
173 | // in case of illegal virtual address. Finally, it updates the local page table from the |
---|
174 | // reference cluster. |
---|
175 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
176 | // @ this : pointer on faulty thread descriptor. |
---|
177 | // @ excPC : |
---|
178 | // @ is_ins : IBE if true / DBE if false. |
---|
179 | // @ return EXCP_NON_FATAL / EXCP_USER_ERROR / EXCP_KERNEL_PANIC |
---|
180 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
181 | error_t hal_mmu_exception( thread_t * this, |
---|
182 | uint32_t excPC, |
---|
183 | bool_t is_ins ) |
---|
184 | { |
---|
185 | process_t * process; |
---|
186 | error_t error; |
---|
187 | |
---|
188 | uint32_t mmu_ins_excp_code; |
---|
189 | uint32_t mmu_ins_bad_vaddr; |
---|
190 | uint32_t mmu_dat_excp_code; |
---|
191 | uint32_t mmu_dat_bad_vaddr; |
---|
192 | |
---|
193 | uint32_t bad_vaddr; |
---|
194 | uint32_t excp_code; |
---|
195 | |
---|
196 | process = this->process; |
---|
197 | |
---|
198 | // get relevant values from MMU |
---|
199 | hal_get_mmu_excp( &mmu_ins_excp_code, |
---|
200 | &mmu_ins_bad_vaddr, |
---|
201 | &mmu_dat_excp_code, |
---|
202 | &mmu_dat_bad_vaddr ); |
---|
203 | |
---|
204 | // get exception code and faulty vaddr, depending on IBE/DBE |
---|
205 | if( is_ins ) |
---|
206 | { |
---|
207 | excp_code = mmu_ins_excp_code; |
---|
208 | bad_vaddr = mmu_ins_bad_vaddr; |
---|
209 | } |
---|
210 | else |
---|
211 | { |
---|
212 | excp_code = mmu_dat_excp_code; |
---|
213 | bad_vaddr = mmu_dat_bad_vaddr; |
---|
214 | } |
---|
215 | |
---|
216 | #if DEBUG_HAL_EXCEPTIONS |
---|
217 | uint32_t cycle = (uint32_t)hal_get_cycles(); |
---|
218 | if( DEBUG_HAL_EXCEPTIONS < cycle ) |
---|
219 | printk("\n[DBG] %s : thread %x in process %x enter / is_ins %d / %s / vaddr %x / cycle %d\n", |
---|
220 | __FUNCTION__, this->trdid, process->pid, |
---|
221 | is_ins, hal_mmu_exception_str(excp_code), bad_vaddr, cycle); |
---|
222 | #endif |
---|
223 | |
---|
224 | // analyse exception code |
---|
225 | switch( excp_code ) |
---|
226 | { |
---|
227 | case MMU_WRITE_PT1_UNMAPPED: // non fatal |
---|
228 | case MMU_WRITE_PT2_UNMAPPED: |
---|
229 | case MMU_READ_PT1_UNMAPPED: |
---|
230 | case MMU_READ_PT2_UNMAPPED: |
---|
231 | { |
---|
232 | // try to map the unmapped PTE |
---|
233 | error = vmm_handle_page_fault( process, |
---|
234 | bad_vaddr >> CONFIG_PPM_PAGE_SHIFT, // vpn |
---|
235 | false ); // not a COW |
---|
236 | if( error ) |
---|
237 | { |
---|
238 | printk("\n[USER ERROR] in %s for thread %x in process %x\n" |
---|
239 | " cannot map vaddr = %x / is_ins %d / epc %x\n", |
---|
240 | __FUNCTION__, this->trdid, this->process->pid, bad_vaddr, is_ins, excPC ); |
---|
241 | |
---|
242 | return EXCP_USER_ERROR; |
---|
243 | } |
---|
244 | else // page fault successfull |
---|
245 | { |
---|
246 | |
---|
247 | #if DEBUG_HAL_EXCEPTIONS |
---|
248 | cycle = (uint32_t)hal_get_cycles(); |
---|
249 | if( DEBUG_HAL_EXCEPTIONS < cycle ) |
---|
250 | printk("\n[DBG] %s : thread %x in process %x exit / page-fault handled for vaddr = %x\n", |
---|
251 | __FUNCTION__, this->trdid, process->pid, bad_vaddr ); |
---|
252 | #endif |
---|
253 | |
---|
254 | return EXCP_NON_FATAL; |
---|
255 | } |
---|
256 | } |
---|
257 | case MMU_WRITE_PRIVILEGE_VIOLATION: // illegal access user error |
---|
258 | case MMU_READ_PRIVILEGE_VIOLATION: |
---|
259 | { |
---|
260 | printk("\n[USER ERROR] in %s for thread %x in process %x\n" |
---|
261 | " illegal user access to vaddr = %x / is_ins %d / epc %x\n", |
---|
262 | __FUNCTION__, this->trdid, this->process->pid, bad_vaddr, is_ins, excPC ); |
---|
263 | |
---|
264 | return EXCP_USER_ERROR; |
---|
265 | } |
---|
266 | case MMU_WRITE_ACCESS_VIOLATION: // user error, or Copy-on-Write |
---|
267 | { |
---|
268 | // access page table to get GPT_COW flag |
---|
269 | bool_t cow = hal_gpt_pte_is_cow( &(process->vmm.gpt), |
---|
270 | bad_vaddr >> CONFIG_PPM_PAGE_SHIFT ); |
---|
271 | |
---|
272 | if( cow ) // Copy-on-Write |
---|
273 | { |
---|
274 | // try to allocate and copy the page |
---|
275 | error = vmm_handle_page_fault( process, |
---|
276 | bad_vaddr >> CONFIG_PPM_PAGE_SHIFT, // vpn |
---|
277 | true ); // COW |
---|
278 | if( error ) |
---|
279 | { |
---|
280 | printk("\n[USER ERROR] in %s for thread %x in process %x\n" |
---|
281 | " cannot cow vaddr = %x / is_ins %d / epc %x\n", |
---|
282 | __FUNCTION__, this->trdid, this->process->pid, bad_vaddr, is_ins, excPC ); |
---|
283 | |
---|
284 | return EXCP_USER_ERROR; |
---|
285 | } |
---|
286 | else // Copy on write successfull |
---|
287 | { |
---|
288 | |
---|
289 | #if DEBUG_HAL_EXCEPTIONS |
---|
290 | cycle = (uint32_t)hal_get_cycles(); |
---|
291 | if( DEBUG_HAL_EXCEPTIONS < cycle ) |
---|
292 | printk("\n[DBG] %s : thread %x in process %x exit / copy-on-write handled for vaddr = %x\n", |
---|
293 | __FUNCTION__, this->trdid, process->pid, bad_vaddr ); |
---|
294 | #endif |
---|
295 | |
---|
296 | return EXCP_NON_FATAL; |
---|
297 | } |
---|
298 | } |
---|
299 | else // non writable user error |
---|
300 | { |
---|
301 | printk("\n[USER ERROR] in %s for thread %x in process %x\n" |
---|
302 | " non-writable vaddr = %x / is_ins %d / epc %x\n", |
---|
303 | __FUNCTION__, this->trdid, this->process->pid, bad_vaddr, is_ins, excPC ); |
---|
304 | |
---|
305 | return EXCP_USER_ERROR; |
---|
306 | } |
---|
307 | } |
---|
308 | case MMU_READ_EXEC_VIOLATION: // user error |
---|
309 | { |
---|
310 | printk("\n[USER_ERROR] in %s for thread %x in process %x\n" |
---|
311 | " non-executable vaddr = %x / is_ins %d / epc %x\n", |
---|
312 | __FUNCTION__, this->trdid, this->process->pid, bad_vaddr, is_ins, excPC ); |
---|
313 | |
---|
314 | return EXCP_USER_ERROR; |
---|
315 | } |
---|
316 | default: // this is a kernel error |
---|
317 | { |
---|
318 | printk("\n[KERNEL ERROR] in %s for thread %x in process %x\n" |
---|
319 | " epc %x / badvaddr %x / is_ins %d\n", |
---|
320 | __FUNCTION__, this->trdid, this->process->pid, excPC, bad_vaddr, is_ins ); |
---|
321 | |
---|
322 | return EXCP_KERNEL_PANIC; |
---|
323 | } |
---|
324 | } |
---|
325 | } // end hal_mmu_exception() |
---|
326 | |
---|
327 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
328 | // This static function prints on the kernel terminal the saved context (core registers) |
---|
329 | // and the thread state of a faulty thread. |
---|
330 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
331 | // @ this : pointer on faulty thread descriptor. |
---|
332 | // @ uzone : pointer on register array. |
---|
333 | // @ error : EXCP_USER_ERROR or EXCP_KERNEL_PANIC |
---|
334 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
335 | static void hal_exception_dump( thread_t * this, |
---|
336 | reg_t * uzone, |
---|
337 | error_t error ) |
---|
338 | { |
---|
339 | uint32_t save_sr; |
---|
340 | core_t * core = this->core; |
---|
341 | process_t * process = this->process; |
---|
342 | |
---|
343 | // get pointers on TXT0 chdev |
---|
344 | xptr_t txt0_xp = chdev_dir.txt_tx[0]; |
---|
345 | cxy_t txt0_cxy = GET_CXY( txt0_xp ); |
---|
346 | chdev_t * txt0_ptr = GET_PTR( txt0_xp ); |
---|
347 | |
---|
348 | // get extended pointer on remote TXT0 chdev lock |
---|
349 | xptr_t lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock ); |
---|
350 | |
---|
351 | // get TXT0 lock in busy waiting mode |
---|
352 | remote_spinlock_lock_busy( lock_xp , &save_sr ); |
---|
353 | |
---|
354 | if( error == EXCP_USER_ERROR ) |
---|
355 | { |
---|
356 | nolock_printk("\n=== USER ERROR / trdid %x / pid %x / core[%x,%d] / cycle %d ===\n", |
---|
357 | this->trdid, process->pid, local_cxy, core->lid , (uint32_t)hal_get_cycles() ); |
---|
358 | } |
---|
359 | else |
---|
360 | { |
---|
361 | nolock_printk("\n=== KERNEL ERROR / trdid %x / pid %x / core[%x,%d] / cycle %d ===\n", |
---|
362 | this->trdid, process->pid, local_cxy, core->lid , (uint32_t)hal_get_cycles() ); |
---|
363 | } |
---|
364 | |
---|
365 | nolock_printk("local locks = %d / remote locks = %d / blocked_vector = %X\n\n", |
---|
366 | this->local_locks, this->remote_locks, this->blocked ); |
---|
367 | |
---|
368 | nolock_printk("c0_cr %X c0_epc %X c0_sr %X c0_th %X\n", |
---|
369 | uzone[UZ_CR], uzone[UZ_EPC], uzone[UZ_SR], uzone[UZ_TH] ); |
---|
370 | |
---|
371 | nolock_printk("c2_mode %X c2_ptpr %X\n", |
---|
372 | uzone[UZ_MODE], uzone[UZ_PTPR] ); |
---|
373 | |
---|
374 | nolock_printk("at_01 %X v0_2 %X v1_3 %X a0_4 %X a1_5 %X\n", |
---|
375 | uzone[UZ_AT], uzone[UZ_V0], uzone[UZ_V1], uzone[UZ_A0], uzone[UZ_A1] ); |
---|
376 | |
---|
377 | nolock_printk("a2_6 %X a3_7 %X t0_8 %X t1_9 %X t2_10 %X\n", |
---|
378 | uzone[UZ_A2], uzone[UZ_A3], uzone[UZ_T0], uzone[UZ_T1], uzone[UZ_T2] ); |
---|
379 | |
---|
380 | nolock_printk("t3_11 %X t4_12 %X t5_13 %X t6_14 %X t7_15 %X\n", |
---|
381 | uzone[UZ_T3], uzone[UZ_T4], uzone[UZ_T5], uzone[UZ_T6], uzone[UZ_T7] ); |
---|
382 | |
---|
383 | nolock_printk("s0_16 %X s1_17 %X s2_18 %X s3_19 %X s4_20 %X\n", |
---|
384 | uzone[UZ_S0], uzone[UZ_S1], uzone[UZ_S2], uzone[UZ_S3], uzone[UZ_S4] ); |
---|
385 | |
---|
386 | nolock_printk("s5_21 %X s6_22 %X s7_23 %X s8_24 %X ra_25 %X\n", |
---|
387 | uzone[UZ_S5], uzone[UZ_S6], uzone[UZ_S7], uzone[UZ_T8], uzone[UZ_T9] ); |
---|
388 | |
---|
389 | nolock_printk("gp_28 %X sp_29 %X S8_30 %X ra_31 %X\n", |
---|
390 | uzone[UZ_GP], uzone[UZ_SP], uzone[UZ_S8], uzone[UZ_RA] ); |
---|
391 | |
---|
392 | // release the lock |
---|
393 | remote_spinlock_unlock_busy( lock_xp , save_sr ); |
---|
394 | |
---|
395 | } // end hal_exception_dump() |
---|
396 | |
---|
397 | /////////////////////// |
---|
398 | void hal_do_exception() |
---|
399 | { |
---|
400 | uint32_t * uzone; |
---|
401 | thread_t * this; |
---|
402 | error_t error; |
---|
403 | uint32_t excCode; // 4 bits XCODE from CP0_CR |
---|
404 | uint32_t excPC; // fauty instruction address |
---|
405 | |
---|
406 | // get pointer on faulty thread uzone |
---|
407 | this = CURRENT_THREAD; |
---|
408 | uzone = (uint32_t *)CURRENT_THREAD->uzone_current; |
---|
409 | |
---|
410 | // get XCODE and EPC from UZONE |
---|
411 | excCode = (uzone[UZ_CR] >> 2) & 0xF; |
---|
412 | excPC = uzone[UZ_EPC]; |
---|
413 | |
---|
414 | #if DEBUG_HAL_EXCEPTIONS |
---|
415 | uint32_t cycle = (uint32_t)hal_get_cycles(); |
---|
416 | if( DEBUG_HAL_EXCEPTIONS < cycle ) |
---|
417 | printk("\n[DBG] %s : thread %x in process %x enter / core[%x,%d] / epc %x / xcode %x / cycle %d\n", |
---|
418 | __FUNCTION__, this->trdid, this->process->pid, local_cxy, this->core->lid, excPC, excCode, cycle ); |
---|
419 | #endif |
---|
420 | |
---|
421 | switch(excCode) |
---|
422 | { |
---|
423 | case XCODE_DBE: // Data Bus Error : can be non fatal if page fault |
---|
424 | { |
---|
425 | error = hal_mmu_exception( this , excPC , false ); // data MMU exception |
---|
426 | break; |
---|
427 | } |
---|
428 | case XCODE_IBE: // Instruction Bus Error : can be non fatal if page fault |
---|
429 | { |
---|
430 | error = hal_mmu_exception( this , excPC , true ); // ins MMU exception |
---|
431 | break; |
---|
432 | } |
---|
433 | case XCODE_CPU: // Coprocessor unavailable : can be non fatal if FPU |
---|
434 | { |
---|
435 | if( ((uzone[UZ_CR] >> 28) & 0x3) == 1 ) // FPU |
---|
436 | { |
---|
437 | error = hal_fpu_exception( this ); |
---|
438 | } |
---|
439 | else // undefined coprocessor |
---|
440 | { |
---|
441 | printk("\n[USER_ERROR] in %s for thread %x in process %x\n" |
---|
442 | " undefined coprocessor / epc %x\n", |
---|
443 | __FUNCTION__, this->trdid, this->process->pid, excPC ); |
---|
444 | |
---|
445 | error = EXCP_USER_ERROR; |
---|
446 | } |
---|
447 | break; |
---|
448 | } |
---|
449 | case XCODE_OVR: // Arithmetic Overflow : user fatal error |
---|
450 | { |
---|
451 | printk("\n[USER_ERROR] in %s for thread %x in process %x\n" |
---|
452 | " arithmetic overflow / epc %x\n", |
---|
453 | __FUNCTION__, this->trdid, this->process->pid, excPC ); |
---|
454 | |
---|
455 | error = EXCP_USER_ERROR; |
---|
456 | break; |
---|
457 | } |
---|
458 | case XCODE_RI: // Reserved Instruction : user fatal error |
---|
459 | { |
---|
460 | printk("\n[USER_ERROR] in %s for thread %x in process %x\n" |
---|
461 | " reserved instruction / epc %x\n", |
---|
462 | __FUNCTION__, this->trdid, this->process->pid, excPC ); |
---|
463 | |
---|
464 | error = EXCP_USER_ERROR; |
---|
465 | break; |
---|
466 | } |
---|
467 | case XCODE_ADEL: // user fatal error |
---|
468 | { |
---|
469 | printk("\n[USER_ERROR] in %s for thread %x in process %x\n" |
---|
470 | " illegal data load address / epc %x\n", |
---|
471 | __FUNCTION__, this->trdid, this->process->pid, excPC ); |
---|
472 | |
---|
473 | error = EXCP_USER_ERROR; |
---|
474 | break; |
---|
475 | } |
---|
476 | case XCODE_ADES: // user fatal error |
---|
477 | { |
---|
478 | printk("\n[USER_ERROR] in %s for thread %x in process %x\n" |
---|
479 | " illegal data store address / epc %x\n", |
---|
480 | __FUNCTION__, this->trdid, this->process->pid, excPC ); |
---|
481 | |
---|
482 | error = EXCP_USER_ERROR; |
---|
483 | break; |
---|
484 | } |
---|
485 | default: |
---|
486 | { |
---|
487 | error = EXCP_KERNEL_PANIC; |
---|
488 | } |
---|
489 | } |
---|
490 | |
---|
491 | // analyse error code |
---|
492 | if( error == EXCP_USER_ERROR ) // user error => kill user process |
---|
493 | { |
---|
494 | hal_exception_dump( this , uzone , error ); |
---|
495 | |
---|
496 | sys_exit( EXIT_FAILURE ); |
---|
497 | } |
---|
498 | else if( error == EXCP_KERNEL_PANIC ) // kernel error => kernel panic |
---|
499 | { |
---|
500 | hal_exception_dump( this , uzone , error ); |
---|
501 | |
---|
502 | assert( false , __FUNCTION__ , "core[%x,%d] blocked\n", local_cxy, this->core->lid ); |
---|
503 | } |
---|
504 | |
---|
505 | #if DEBUG_HAL_EXCEPTIONS |
---|
506 | cycle = (uint32_t)hal_get_cycles(); |
---|
507 | if( DEBUG_HAL_EXCEPTIONS < cycle ) |
---|
508 | printk("\n[DBG] %s : thread %x in process %x exit / core[%x,%d] / epc %x / xcode %x / cycle %d\n", |
---|
509 | __FUNCTION__, this->trdid, this->process->pid, local_cxy, this->core->lid, excPC, excCode, cycle ); |
---|
510 | #endif |
---|
511 | |
---|
512 | } // end hal_do_exception() |
---|
513 | |
---|
514 | |
---|