1 | /* |
---|
2 | * hal_exception.c - implementation of exception handler for TSAR-MIPS32. |
---|
3 | * |
---|
4 | * Author Alain Greiner (2016, 2017) |
---|
5 | * |
---|
6 | * Copyright (c) UPMC Sorbonne Universites |
---|
7 | * |
---|
8 | * This file is part of ALMOS-MKH. |
---|
9 | * |
---|
10 | * ALMOS-MKH is free software; you can redistribute it and/or modify it |
---|
11 | * under the terms of the GNU General Public License as published by |
---|
12 | * the Free Software Foundation; version 2.0 of the License. |
---|
13 | * |
---|
14 | * ALMOS-MKH is distributed in the hope that it will be useful, but |
---|
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
17 | * General Public License for more details. |
---|
18 | * |
---|
19 | * You should have received a copy of the GNU General Public License |
---|
20 | * along with ALMOS-MKH; if not, write to the Free Software Foundation, |
---|
21 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
22 | */ |
---|
23 | |
---|
24 | #include <hal_kernel_types.h> |
---|
25 | #include <hal_irqmask.h> |
---|
26 | #include <hal_special.h> |
---|
27 | #include <hal_exception.h> |
---|
28 | #include <thread.h> |
---|
29 | #include <printk.h> |
---|
30 | #include <chdev.h> |
---|
31 | #include <vmm.h> |
---|
32 | #include <errno.h> |
---|
33 | #include <scheduler.h> |
---|
34 | #include <core.h> |
---|
35 | #include <syscalls.h> |
---|
36 | #include <shared_syscalls.h> |
---|
37 | #include <remote_busylock.h> |
---|
38 | #include <hal_kentry.h> |
---|
39 | #include <hal_exception.h> |
---|
40 | |
---|
41 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
42 | // Extern global variables |
---|
43 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
44 | |
---|
45 | extern chdev_directory_t chdev_dir; // allocated in the kernel_init.c file. |
---|
46 | |
---|
47 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
48 | // This enum defines the mask values for an MMU exception code reported by the mips32. |
---|
49 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
50 | |
---|
51 | typedef enum |
---|
52 | { |
---|
53 | MMU_WRITE_PT1_UNMAPPED = 0x0001, |
---|
54 | MMU_WRITE_PT2_UNMAPPED = 0x0002, |
---|
55 | MMU_WRITE_PRIVILEGE_VIOLATION = 0x0004, |
---|
56 | MMU_WRITE_ACCESS_VIOLATION = 0x0008, |
---|
57 | MMU_WRITE_UNDEFINED_XTN = 0x0020, |
---|
58 | MMU_WRITE_PT1_ILLEGAL_ACCESS = 0x0040, |
---|
59 | MMU_WRITE_PT2_ILLEGAL_ACCESS = 0x0080, |
---|
60 | MMU_WRITE_DATA_ILLEGAL_ACCESS = 0x0100, |
---|
61 | |
---|
62 | MMU_READ_PT1_UNMAPPED = 0x1001, |
---|
63 | MMU_READ_PT2_UNMAPPED = 0x1002, |
---|
64 | MMU_READ_PRIVILEGE_VIOLATION = 0x1004, |
---|
65 | MMU_READ_EXEC_VIOLATION = 0x1010, |
---|
66 | MMU_READ_UNDEFINED_XTN = 0x1020, |
---|
67 | MMU_READ_PT1_ILLEGAL_ACCESS = 0x1040, |
---|
68 | MMU_READ_PT2_ILLEGAL_ACCESS = 0x1080, |
---|
69 | MMU_READ_DATA_ILLEGAL_ACCESS = 0x1100, |
---|
70 | } |
---|
71 | mmu_exception_subtype_t; |
---|
72 | |
---|
73 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
74 | // This enum defines the relevant values for XCODE field in mips32 CP0_CR register. |
---|
75 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
76 | |
---|
77 | typedef enum |
---|
78 | { |
---|
79 | XCODE_ADEL = 0x4, // Illegal address for data load |
---|
80 | XCODE_ADES = 0x5, // Illegal address for data store |
---|
81 | XCODE_IBE = 0x6, // Instruction MMU exception (can be NON-FATAL) |
---|
82 | XCODE_DBE = 0x7, // Data MMU exception (can be NON-FATAL) |
---|
83 | XCODE_RI = 0xA, // Reserved instruction exception |
---|
84 | XCODE_CPU = 0xB, // Coprocessor unusable exception (can be NON-FATAl) |
---|
85 | XCODE_OVR = 0xC, // Arithmetic Overflow exception |
---|
86 | } |
---|
87 | xcode_values_t; |
---|
88 | |
---|
89 | ///////////////////////////////////////////// |
---|
90 | char * hal_mmu_exception_str( uint32_t code ) |
---|
91 | { |
---|
92 | switch (code) { |
---|
93 | case (MMU_WRITE_PT1_UNMAPPED): return "WRITE_PT1_UNMAPPED"; |
---|
94 | case (MMU_WRITE_PT2_UNMAPPED): return "WRITE_PT2_UNMAPPED"; |
---|
95 | case (MMU_WRITE_PRIVILEGE_VIOLATION): return "WRITE_PRIVILEGE_VIOLATION"; |
---|
96 | case (MMU_WRITE_ACCESS_VIOLATION): return "WRITE_ACCESS_VIOLATION"; |
---|
97 | case (MMU_WRITE_UNDEFINED_XTN): return "WRITE_UNDEFINED_XTN"; |
---|
98 | case (MMU_WRITE_PT1_ILLEGAL_ACCESS): return "WRITE_PT1_ILLEGAL_ACCESS"; |
---|
99 | case (MMU_WRITE_PT2_ILLEGAL_ACCESS): return "WRITE_PT2_ILLEGAL_ACCESS"; |
---|
100 | case (MMU_WRITE_DATA_ILLEGAL_ACCESS): return "WRITE_DATA_ILLEGAL_ACCESS"; |
---|
101 | case (MMU_READ_PT1_UNMAPPED): return "READ_PT1_UNMAPPED"; |
---|
102 | case (MMU_READ_PT2_UNMAPPED): return "READ_PT2_UNMAPPED"; |
---|
103 | case (MMU_READ_PRIVILEGE_VIOLATION): return "READ_PRIVILEGE_VIOLATION"; |
---|
104 | case (MMU_READ_EXEC_VIOLATION): return "READ_EXEC_VIOLATION"; |
---|
105 | case (MMU_READ_UNDEFINED_XTN): return "READ_UNDEFINED_XTN"; |
---|
106 | case (MMU_READ_PT1_ILLEGAL_ACCESS): return "READ_PT1_ILLEGAL_ACCESS"; |
---|
107 | case (MMU_READ_PT2_ILLEGAL_ACCESS): return "READ_PT2_ILLEGAL_ACCESS"; |
---|
108 | case (MMU_READ_DATA_ILLEGAL_ACCESS): return "READ_DATA_ILLEGAL_ACCESS"; |
---|
109 | default: return "undefined"; |
---|
110 | } |
---|
111 | } |
---|
112 | |
---|
113 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
114 | // This function is called when a FPU Coprocessor Unavailable exception has been |
---|
115 | // detected for the calling thread. |
---|
116 | // It enables the FPU, It saves the current FPU context in the current owner thread |
---|
117 | // descriptor if required, and restore the FPU context from the calling thread descriptor. |
---|
118 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
119 | // @ this : pointer on faulty thread descriptor. |
---|
120 | // @ return always EXCP_NON_FATAL |
---|
121 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
122 | error_t hal_fpu_exception( thread_t * this ) |
---|
123 | { |
---|
124 | core_t * core = this->core; |
---|
125 | |
---|
126 | // enable FPU (in core SR) |
---|
127 | hal_fpu_enable(); |
---|
128 | |
---|
129 | // save FPU register values in current owner thread if required |
---|
130 | if( core->fpu_owner != NULL ) |
---|
131 | { |
---|
132 | if( core->fpu_owner != this ) |
---|
133 | { |
---|
134 | // save the FPU registers to current owner thread context |
---|
135 | hal_fpu_context_save( XPTR( local_cxy , core->fpu_owner ) ); |
---|
136 | |
---|
137 | // restore FPU registers from requesting thread context |
---|
138 | hal_fpu_context_restore( this ); |
---|
139 | |
---|
140 | // attach the FPU to the requesting thread |
---|
141 | core->fpu_owner = this; |
---|
142 | } |
---|
143 | } |
---|
144 | else |
---|
145 | { |
---|
146 | // restore FPU registers from requesting thread context |
---|
147 | hal_fpu_context_restore( this ); |
---|
148 | |
---|
149 | // attach the FPU to the requesting thread |
---|
150 | core->fpu_owner = this; |
---|
151 | } |
---|
152 | |
---|
153 | return EXCP_NON_FATAL; |
---|
154 | |
---|
155 | } // end hal_fpu_exception() |
---|
156 | |
---|
157 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
158 | // This function is called when an MMU exception has been detected (IBE / DBE). |
---|
159 | // It get the relevant exception arguments from the MMU. |
---|
160 | // It signal a fatal error in case of illegal access. In case of page unmapped, |
---|
161 | // it get the client process to access the relevant VMM: for a RPC thread, the client |
---|
162 | // process is NOT the calling thread process. |
---|
163 | // Then, it checks that the faulty address belongs to a registered vseg, update the local |
---|
164 | // vseg list from the reference cluster if required, and signal a fatal user error |
---|
165 | // in case of illegal virtual address. Finally, it updates the local page table from the |
---|
166 | // reference cluster. |
---|
167 | // WARNING : In order to prevent deadlocks, this function enable IRQs before calling the |
---|
168 | // vmm_handle_page_fault() and the vmm_handle_cow() functions, because concurrent calls |
---|
169 | // to these functions can create cross dependencies... |
---|
170 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
171 | // @ this : pointer on faulty thread descriptor. |
---|
172 | // @ excPC : |
---|
173 | // @ is_ins : IBE if true / DBE if false. |
---|
174 | // @ return EXCP_NON_FATAL / EXCP_USER_ERROR / EXCP_KERNEL_PANIC |
---|
175 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
176 | error_t hal_mmu_exception( thread_t * this, |
---|
177 | uint32_t excPC, |
---|
178 | bool_t is_ins ) |
---|
179 | { |
---|
180 | process_t * process; |
---|
181 | error_t error; |
---|
182 | |
---|
183 | uint32_t mmu_ins_excp_code; |
---|
184 | uint32_t mmu_ins_bad_vaddr; |
---|
185 | uint32_t mmu_dat_excp_code; |
---|
186 | uint32_t mmu_dat_bad_vaddr; |
---|
187 | |
---|
188 | uint32_t bad_vaddr; |
---|
189 | uint32_t excp_code; |
---|
190 | |
---|
191 | // get faulty thread process |
---|
192 | process = this->process; |
---|
193 | |
---|
194 | // get relevant values from MMU |
---|
195 | hal_get_mmu_excp( &mmu_ins_excp_code, |
---|
196 | &mmu_ins_bad_vaddr, |
---|
197 | &mmu_dat_excp_code, |
---|
198 | &mmu_dat_bad_vaddr ); |
---|
199 | |
---|
200 | // get exception code and faulty vaddr, depending on IBE/DBE |
---|
201 | if( is_ins ) |
---|
202 | { |
---|
203 | excp_code = mmu_ins_excp_code; |
---|
204 | bad_vaddr = mmu_ins_bad_vaddr; |
---|
205 | } |
---|
206 | else |
---|
207 | { |
---|
208 | excp_code = mmu_dat_excp_code; |
---|
209 | bad_vaddr = mmu_dat_bad_vaddr; |
---|
210 | } |
---|
211 | |
---|
212 | #if DEBUG_HAL_EXCEPTIONS |
---|
213 | uint32_t cycle = (uint32_t)hal_get_cycles(); |
---|
214 | if( DEBUG_HAL_EXCEPTIONS < cycle ) |
---|
215 | printk("\n[%s] thread[%x,%x] on core [%x,%x] enter\n is_ins %d / %s / vaddr %x / cycle %d\n", |
---|
216 | __FUNCTION__, process->pid, this->trdid, local_cxy, this->core->lid, |
---|
217 | is_ins, hal_mmu_exception_str(excp_code), bad_vaddr, cycle); |
---|
218 | #endif |
---|
219 | |
---|
220 | // analyse exception code |
---|
221 | switch( excp_code ) |
---|
222 | { |
---|
223 | case MMU_WRITE_PT1_UNMAPPED: // can be non fatal |
---|
224 | case MMU_WRITE_PT2_UNMAPPED: // can be non fatal |
---|
225 | case MMU_READ_PT1_UNMAPPED: // can be non fatal |
---|
226 | case MMU_READ_PT2_UNMAPPED: // can be non fatal |
---|
227 | { |
---|
228 | // try to map the unmapped PTE |
---|
229 | error = vmm_handle_page_fault( process, |
---|
230 | bad_vaddr >> CONFIG_PPM_PAGE_SHIFT ); |
---|
231 | |
---|
232 | if( error == EXCP_NON_FATAL ) // page-fault successfully handled |
---|
233 | { |
---|
234 | |
---|
235 | #if DEBUG_HAL_EXCEPTIONS |
---|
236 | cycle = (uint32_t)hal_get_cycles(); |
---|
237 | if( DEBUG_HAL_EXCEPTIONS < cycle ) |
---|
238 | printk("\n[%s] thread[%x,%x] on core [%x,%x] exit\n page-fault handled for vaddr = %x\n", |
---|
239 | __FUNCTION__, process->pid, this->trdid, local_cxy, this->core->lid, bad_vaddr ); |
---|
240 | #endif |
---|
241 | |
---|
242 | return EXCP_NON_FATAL; |
---|
243 | } |
---|
244 | else if( error == EXCP_USER_ERROR ) // illegal vaddr |
---|
245 | { |
---|
246 | printk("\n[ERROR] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n" |
---|
247 | " %s : epc %x / badvaddr %x / is_ins %d\n", |
---|
248 | __FUNCTION__, this->process->pid, this->trdid, local_cxy, |
---|
249 | this->core->lid, (uint32_t)hal_get_cycles(), |
---|
250 | hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins ); |
---|
251 | |
---|
252 | return EXCP_USER_ERROR; |
---|
253 | } |
---|
254 | else // error == EXCP_KERNEL_PANIC |
---|
255 | { |
---|
256 | printk("\n[PANIC] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n" |
---|
257 | " %s : epc %x / badvaddr %x / is_ins %d\n", |
---|
258 | __FUNCTION__, this->process->pid, this->trdid, local_cxy, |
---|
259 | this->core->lid, (uint32_t)hal_get_cycles(), |
---|
260 | hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins ); |
---|
261 | |
---|
262 | return EXCP_KERNEL_PANIC; |
---|
263 | } |
---|
264 | } |
---|
265 | case MMU_WRITE_PRIVILEGE_VIOLATION: // illegal user error |
---|
266 | case MMU_READ_PRIVILEGE_VIOLATION: // illegal |
---|
267 | { |
---|
268 | printk("\n[ERROR] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n" |
---|
269 | " %s : epc %x / badvaddr %x / is_ins %d\n", |
---|
270 | __FUNCTION__, this->process->pid, this->trdid, local_cxy, |
---|
271 | this->core->lid, (uint32_t)hal_get_cycles(), |
---|
272 | hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins ); |
---|
273 | |
---|
274 | return EXCP_USER_ERROR; |
---|
275 | } |
---|
276 | case MMU_WRITE_ACCESS_VIOLATION: // can be non fatal if COW |
---|
277 | { |
---|
278 | // try to handle a possible COW |
---|
279 | error = vmm_handle_cow( process, |
---|
280 | bad_vaddr >> CONFIG_PPM_PAGE_SHIFT ); |
---|
281 | |
---|
282 | if( error == EXCP_NON_FATAL ) // COW successfully handled |
---|
283 | { |
---|
284 | |
---|
285 | #if DEBUG_HAL_EXCEPTIONS |
---|
286 | cycle = (uint32_t)hal_get_cycles(); |
---|
287 | if( DEBUG_HAL_EXCEPTIONS < cycle ) |
---|
288 | printk("\n[%s] thread[%x,%x] exit / copy-on-write handled for vaddr = %x\n", |
---|
289 | __FUNCTION__, process->pid, this->trdid, bad_vaddr ); |
---|
290 | #endif |
---|
291 | return EXCP_NON_FATAL; |
---|
292 | } |
---|
293 | else if( error == EXCP_USER_ERROR ) // illegal write access |
---|
294 | { |
---|
295 | printk("\n[ERROR] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n" |
---|
296 | " %s : epc %x / badvaddr %x / is_ins %d\n", |
---|
297 | __FUNCTION__, this->process->pid, this->trdid, local_cxy, |
---|
298 | this->core->lid, (uint32_t)hal_get_cycles(), |
---|
299 | hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins ); |
---|
300 | |
---|
301 | return EXCP_USER_ERROR; |
---|
302 | } |
---|
303 | else // error == EXCP_KERNEL_PANIC |
---|
304 | { |
---|
305 | printk("\n[PANIC] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n" |
---|
306 | " %s : epc %x / badvaddr %x / is_ins %d\n", |
---|
307 | __FUNCTION__, this->process->pid, this->trdid, local_cxy, |
---|
308 | this->core->lid, (uint32_t)hal_get_cycles(), |
---|
309 | hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins ); |
---|
310 | |
---|
311 | return EXCP_USER_ERROR; |
---|
312 | } |
---|
313 | } |
---|
314 | case MMU_READ_EXEC_VIOLATION: // user error |
---|
315 | { |
---|
316 | printk("\n[ERROR] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n" |
---|
317 | " %s : epc %x / badvaddr %x / is_ins %d\n", |
---|
318 | __FUNCTION__, this->process->pid, this->trdid, local_cxy, |
---|
319 | this->core->lid, (uint32_t)hal_get_cycles(), |
---|
320 | hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins ); |
---|
321 | |
---|
322 | return EXCP_USER_ERROR; |
---|
323 | } |
---|
324 | default: // this is a kernel error |
---|
325 | { |
---|
326 | printk("\n[PANIC] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n" |
---|
327 | " %s : epc %x / badvaddr %x / is_ins %d\n", |
---|
328 | __FUNCTION__, this->process->pid, this->trdid, local_cxy, |
---|
329 | this->core->lid, (uint32_t)hal_get_cycles(), |
---|
330 | hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins ); |
---|
331 | |
---|
332 | return EXCP_KERNEL_PANIC; |
---|
333 | } |
---|
334 | } |
---|
335 | } // end hal_mmu_exception() |
---|
336 | |
---|
337 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
338 | // This function prints on the kernel terminal the saved context (core registers) |
---|
339 | // and the thread state of a faulty thread. |
---|
340 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
341 | // @ this : pointer on faulty thread descriptor. |
---|
342 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
343 | static void hal_exception_dump( thread_t * this ) |
---|
344 | { |
---|
345 | core_t * core = this->core; |
---|
346 | process_t * process = this->process; |
---|
347 | reg_t * uzone = this->uzone_current; |
---|
348 | |
---|
349 | // get pointers on TXT0 chdev |
---|
350 | xptr_t txt0_xp = chdev_dir.txt_tx[0]; |
---|
351 | cxy_t txt0_cxy = GET_CXY( txt0_xp ); |
---|
352 | chdev_t * txt0_ptr = GET_PTR( txt0_xp ); |
---|
353 | |
---|
354 | // get extended pointer on remote TXT0 chdev lock |
---|
355 | xptr_t lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock ); |
---|
356 | |
---|
357 | // get TXT0 lock in busy waiting mode |
---|
358 | remote_busylock_acquire( lock_xp ); |
---|
359 | |
---|
360 | nolock_printk("\n=== thread(%x,%x) / core[%d] / cycle %d ===\n", |
---|
361 | process->pid, this->trdid, core->lid, (uint32_t)hal_get_cycles() ); |
---|
362 | |
---|
363 | nolock_printk("busylocks = %d / blocked_vector = %X / flags = %X\n\n", |
---|
364 | this->busylocks, this->blocked, this->flags ); |
---|
365 | |
---|
366 | nolock_printk("c0_cr %X c0_epc %X c0_sr %X c0_th %X\n", |
---|
367 | uzone[UZ_CR], uzone[UZ_EPC], uzone[UZ_SR], uzone[UZ_TH] ); |
---|
368 | |
---|
369 | nolock_printk("c2_mode %X c2_ptpr %X\n", |
---|
370 | uzone[UZ_MODE], uzone[UZ_PTPR] ); |
---|
371 | |
---|
372 | nolock_printk("at_01 %X v0_2 %X v1_3 %X a0_4 %X a1_5 %X\n", |
---|
373 | uzone[UZ_AT], uzone[UZ_V0], uzone[UZ_V1], uzone[UZ_A0], uzone[UZ_A1] ); |
---|
374 | |
---|
375 | nolock_printk("a2_6 %X a3_7 %X t0_8 %X t1_9 %X t2_10 %X\n", |
---|
376 | uzone[UZ_A2], uzone[UZ_A3], uzone[UZ_T0], uzone[UZ_T1], uzone[UZ_T2] ); |
---|
377 | |
---|
378 | nolock_printk("t3_11 %X t4_12 %X t5_13 %X t6_14 %X t7_15 %X\n", |
---|
379 | uzone[UZ_T3], uzone[UZ_T4], uzone[UZ_T5], uzone[UZ_T6], uzone[UZ_T7] ); |
---|
380 | |
---|
381 | nolock_printk("s0_16 %X s1_17 %X s2_18 %X s3_19 %X s4_20 %X\n", |
---|
382 | uzone[UZ_S0], uzone[UZ_S1], uzone[UZ_S2], uzone[UZ_S3], uzone[UZ_S4] ); |
---|
383 | |
---|
384 | nolock_printk("s5_21 %X s6_22 %X s7_23 %X t8_24 %X t9_25 %X\n", |
---|
385 | uzone[UZ_S5], uzone[UZ_S6], uzone[UZ_S7], uzone[UZ_T8], uzone[UZ_T9] ); |
---|
386 | |
---|
387 | nolock_printk("gp_28 %X sp_29 %X S8_30 %X ra_31 %X\n", |
---|
388 | uzone[UZ_GP], uzone[UZ_SP], uzone[UZ_S8], uzone[UZ_RA] ); |
---|
389 | |
---|
390 | // release the lock |
---|
391 | remote_busylock_release( lock_xp ); |
---|
392 | |
---|
393 | } // end hal_exception_dump() |
---|
394 | |
---|
395 | ///////////////////////////// |
---|
396 | void hal_do_exception( void ) |
---|
397 | { |
---|
398 | uint32_t * uzone; |
---|
399 | thread_t * this; |
---|
400 | error_t error; |
---|
401 | uint32_t excCode; // 4 bits XCODE from CP0_CR |
---|
402 | uint32_t excPC; // fauty instruction address |
---|
403 | |
---|
404 | // get pointer on faulty thread uzone |
---|
405 | this = CURRENT_THREAD; |
---|
406 | uzone = (uint32_t *)CURRENT_THREAD->uzone_current; |
---|
407 | |
---|
408 | // get XCODE and EPC from UZONE |
---|
409 | excCode = (uzone[UZ_CR] >> 2) & 0xF; |
---|
410 | excPC = uzone[UZ_EPC]; |
---|
411 | |
---|
412 | #if DEBUG_HAL_EXCEPTIONS |
---|
413 | uint32_t cycle = (uint32_t)hal_get_cycles(); |
---|
414 | if( DEBUG_HAL_EXCEPTIONS < cycle ) |
---|
415 | printk("\n[%s] thread[%x,%x] enter / core[%x,%d] / epc %x / xcode %x / cycle %d\n", |
---|
416 | __FUNCTION__, this->process->pid, this->trdid, |
---|
417 | local_cxy, this->core->lid, excPC, excCode, cycle ); |
---|
418 | #endif |
---|
419 | |
---|
420 | switch(excCode) |
---|
421 | { |
---|
422 | case XCODE_DBE: // Data Bus Error : can be non fatal if page fault |
---|
423 | { |
---|
424 | error = hal_mmu_exception( this , excPC , false ); // data MMU exception |
---|
425 | break; |
---|
426 | } |
---|
427 | case XCODE_IBE: // Instruction Bus Error : can be non fatal if page fault |
---|
428 | { |
---|
429 | error = hal_mmu_exception( this , excPC , true ); // ins MMU exception |
---|
430 | break; |
---|
431 | } |
---|
432 | case XCODE_CPU: // Coprocessor unavailable : can be non fatal if FPU |
---|
433 | { |
---|
434 | if( ((uzone[UZ_CR] >> 28) & 0x3) == 1 ) // FPU |
---|
435 | { |
---|
436 | error = hal_fpu_exception( this ); |
---|
437 | } |
---|
438 | else // undefined coprocessor |
---|
439 | { |
---|
440 | printk("\n[USER_ERROR] in %s for thread[%x,%x] / cycle %d\n" |
---|
441 | " undefined coprocessor / epc %x\n", |
---|
442 | __FUNCTION__, this->process->pid, this->trdid, |
---|
443 | (uint32_t)hal_get_cycles() , excPC ); |
---|
444 | |
---|
445 | error = EXCP_USER_ERROR; |
---|
446 | } |
---|
447 | break; |
---|
448 | } |
---|
449 | case XCODE_OVR: // Arithmetic Overflow : user fatal error |
---|
450 | { |
---|
451 | printk("\n[USER_ERROR] in %s for thread[%x,%x] / cycle %d\n" |
---|
452 | " arithmetic overflow / epc %x\n", |
---|
453 | __FUNCTION__, this->process->pid, this->trdid, |
---|
454 | (uint32_t)hal_get_cycles() , excPC ); |
---|
455 | |
---|
456 | error = EXCP_USER_ERROR; |
---|
457 | break; |
---|
458 | } |
---|
459 | case XCODE_RI: // Reserved Instruction : user fatal error |
---|
460 | { |
---|
461 | printk("\n[USER_ERROR] in %s for thread[%x,%x] / cycle %d\n" |
---|
462 | " reserved instruction / epc %x\n", |
---|
463 | __FUNCTION__, this->process->pid, this->trdid, |
---|
464 | (uint32_t)hal_get_cycles() , excPC ); |
---|
465 | |
---|
466 | error = EXCP_USER_ERROR; |
---|
467 | break; |
---|
468 | } |
---|
469 | case XCODE_ADEL: // user fatal error |
---|
470 | { |
---|
471 | printk("\n[USER_ERROR] in %s for thread[%x,%x] / cycle %d\n" |
---|
472 | " illegal data load address / epc %x / bad_address %x\n", |
---|
473 | __FUNCTION__, this->process->pid, this->trdid, |
---|
474 | (uint32_t)hal_get_cycles(), excPC, hal_get_bad_vaddr() ); |
---|
475 | |
---|
476 | error = EXCP_USER_ERROR; |
---|
477 | break; |
---|
478 | } |
---|
479 | case XCODE_ADES: // user fatal error |
---|
480 | { |
---|
481 | printk("\n[USER_ERROR] in %s for thread[%x,%x] / cycle %d\n" |
---|
482 | " illegal data store address / epc %x / bad_address %x\n", |
---|
483 | __FUNCTION__, this->process->pid, this->trdid, |
---|
484 | (uint32_t)hal_get_cycles(), excPC, hal_get_bad_vaddr() ); |
---|
485 | |
---|
486 | error = EXCP_USER_ERROR; |
---|
487 | break; |
---|
488 | } |
---|
489 | default: |
---|
490 | { |
---|
491 | error = EXCP_KERNEL_PANIC; |
---|
492 | } |
---|
493 | } |
---|
494 | |
---|
495 | // analyse error code |
---|
496 | if( error == EXCP_USER_ERROR ) // user error => kill user process |
---|
497 | { |
---|
498 | hal_exception_dump( this ); |
---|
499 | |
---|
500 | sys_exit( EXIT_FAILURE ); |
---|
501 | } |
---|
502 | else if( error == EXCP_KERNEL_PANIC ) // kernel error => kernel panic |
---|
503 | { |
---|
504 | hal_exception_dump( this ); |
---|
505 | |
---|
506 | hal_core_sleep(); |
---|
507 | } |
---|
508 | |
---|
509 | #if DEBUG_HAL_EXCEPTIONS |
---|
510 | cycle = (uint32_t)hal_get_cycles(); |
---|
511 | if( DEBUG_HAL_EXCEPTIONS < cycle ) |
---|
512 | printk("\n[%s] thread[%x,%x] exit / core[%x,%d] / epc %x / xcode %x / cycle %d\n", |
---|
513 | __FUNCTION__, this->process->pid, this->trdid, |
---|
514 | local_cxy, this->core->lid, excPC, excCode, cycle ); |
---|
515 | #endif |
---|
516 | |
---|
517 | } // end hal_do_exception() |
---|
518 | |
---|
519 | |
---|