1 | /* |
---|
2 | * hal_gpt.c - implementation of the Generic Page Table API for TSAR-MIPS32 |
---|
3 | * |
---|
4 | * Author Alain Greiner (2016,2017,2018) |
---|
5 | * |
---|
6 | * Copyright (c) UPMC Sorbonne Universites |
---|
7 | * |
---|
8 | * This file is part of ALMOS-MKH. |
---|
9 | * |
---|
10 | * ALMOS-MKH.is free software; you can redistribute it and/or modify it |
---|
11 | * under the terms of the GNU General Public License as published by |
---|
12 | * the Free Software Foundation; version 2.0 of the License. |
---|
13 | * |
---|
14 | * ALMOS-MKH.is distributed in the hope that it will be useful, but |
---|
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
17 | * General Public License for more details. |
---|
18 | * |
---|
19 | * You should have received a copy of the GNU General Public License |
---|
20 | * along with ALMOS-MKH.; if not, write to the Free Software Foundation, |
---|
21 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
22 | */ |
---|
23 | |
---|
24 | #include <hal_types.h> |
---|
25 | #include <hal_gpt.h> |
---|
26 | #include <hal_special.h> |
---|
27 | #include <printk.h> |
---|
28 | #include <bits.h> |
---|
29 | #include <process.h> |
---|
30 | #include <kmem.h> |
---|
31 | #include <thread.h> |
---|
32 | #include <cluster.h> |
---|
33 | #include <ppm.h> |
---|
34 | #include <page.h> |
---|
35 | |
---|
36 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
37 | // This define the masks for the TSAR MMU PTE attributes (from TSAR MMU specification) |
---|
38 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
39 | |
---|
40 | #define TSAR_MMU_MAPPED 0x80000000 |
---|
41 | #define TSAR_MMU_SMALL 0x40000000 |
---|
42 | #define TSAR_MMU_LOCAL 0x20000000 |
---|
43 | #define TSAR_MMU_REMOTE 0x10000000 |
---|
44 | #define TSAR_MMU_CACHABLE 0x08000000 |
---|
45 | #define TSAR_MMU_WRITABLE 0x04000000 |
---|
46 | #define TSAR_MMU_EXECUTABLE 0x02000000 |
---|
47 | #define TSAR_MMU_USER 0x01000000 |
---|
48 | #define TSAR_MMU_GLOBAL 0x00800000 |
---|
49 | #define TSAR_MMU_DIRTY 0x00400000 |
---|
50 | |
---|
51 | #define TSAR_MMU_COW 0x00000001 // only for small pages |
---|
52 | #define TSAR_MMU_SWAP 0x00000004 // only for small pages |
---|
53 | #define TSAR_MMU_LOCKED 0x00000008 // only for small pages |
---|
54 | |
---|
55 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
56 | // TSAR MMU related macros (from the TSAR MMU specification) |
---|
57 | // - IX1 on 11 bits |
---|
58 | // - IX2 on 9 bits |
---|
59 | // - PPN on 28 bits |
---|
60 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
61 | |
---|
62 | #define TSAR_MMU_IX1_WIDTH 11 |
---|
63 | #define TSAR_MMU_IX2_WIDTH 9 |
---|
64 | #define TSAR_MMU_PPN_WIDTH 28 |
---|
65 | |
---|
66 | #define TSAR_MMU_PTE1_ATTR_MASK 0xFFC00000 |
---|
67 | #define TSAR_MMU_PTE1_PPN_MASK 0x0007FFFF |
---|
68 | |
---|
69 | #define TSAR_MMU_IX1_FROM_VPN( vpn ) ((vpn >> 9) & 0x7FF) |
---|
70 | #define TSAR_MMU_IX2_FROM_VPN( vpn ) (vpn & 0x1FF) |
---|
71 | |
---|
72 | #define TSAR_MMU_PTBA_FROM_PTE1( pte1 ) (pte1 & 0x0FFFFFFF) |
---|
73 | #define TSAR_MMU_PPN_FROM_PTE1( pte1 ) ((pte1 & 0x0007FFFF)<<9) |
---|
74 | #define TSAR_MMU_ATTR_FROM_PTE1( pte1 ) (pte1 & 0xFFC00000) |
---|
75 | |
---|
76 | #define TSAR_MMU_PPN_FROM_PTE2( pte2 ) (pte2 & 0x0FFFFFFF) |
---|
77 | #define TSAR_MMU_ATTR_FROM_PTE2( pte2 ) (pte2 & 0xFFC000FF) |
---|
78 | |
---|
79 | |
---|
80 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
81 | // This static function translates the GPT attributes to the TSAR attributes |
---|
82 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
83 | static inline uint32_t gpt2tsar( uint32_t gpt_attr ) |
---|
84 | { |
---|
85 | uint32_t tsar_attr = 0; |
---|
86 | |
---|
87 | if( gpt_attr & GPT_MAPPED ) tsar_attr |= TSAR_MMU_MAPPED; |
---|
88 | if( gpt_attr & GPT_SMALL ) tsar_attr |= TSAR_MMU_SMALL; |
---|
89 | if( gpt_attr & GPT_WRITABLE ) tsar_attr |= TSAR_MMU_WRITABLE; |
---|
90 | if( gpt_attr & GPT_EXECUTABLE ) tsar_attr |= TSAR_MMU_EXECUTABLE; |
---|
91 | if( gpt_attr & GPT_CACHABLE ) tsar_attr |= TSAR_MMU_CACHABLE; |
---|
92 | if( gpt_attr & GPT_USER ) tsar_attr |= TSAR_MMU_USER; |
---|
93 | if( gpt_attr & GPT_DIRTY ) tsar_attr |= TSAR_MMU_DIRTY; |
---|
94 | if( gpt_attr & GPT_ACCESSED ) tsar_attr |= TSAR_MMU_LOCAL; |
---|
95 | if( gpt_attr & GPT_GLOBAL ) tsar_attr |= TSAR_MMU_GLOBAL; |
---|
96 | if( gpt_attr & GPT_COW ) tsar_attr |= TSAR_MMU_COW; |
---|
97 | if( gpt_attr & GPT_SWAP ) tsar_attr |= TSAR_MMU_SWAP; |
---|
98 | if( gpt_attr & GPT_LOCKED ) tsar_attr |= TSAR_MMU_LOCKED; |
---|
99 | |
---|
100 | return tsar_attr; |
---|
101 | } |
---|
102 | |
---|
103 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
104 | // This static function translates the TSAR attributes to the GPT attributes |
---|
105 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
106 | static inline uint32_t tsar2gpt( uint32_t tsar_attr ) |
---|
107 | { |
---|
108 | uint32_t gpt_attr = 0; |
---|
109 | |
---|
110 | if( tsar_attr & TSAR_MMU_MAPPED ) gpt_attr |= GPT_MAPPED; |
---|
111 | if( tsar_attr & TSAR_MMU_MAPPED ) gpt_attr |= GPT_READABLE; |
---|
112 | if( tsar_attr & TSAR_MMU_SMALL ) gpt_attr |= GPT_SMALL; |
---|
113 | if( tsar_attr & TSAR_MMU_WRITABLE ) gpt_attr |= GPT_WRITABLE; |
---|
114 | if( tsar_attr & TSAR_MMU_EXECUTABLE ) gpt_attr |= GPT_EXECUTABLE; |
---|
115 | if( tsar_attr & TSAR_MMU_CACHABLE ) gpt_attr |= GPT_CACHABLE; |
---|
116 | if( tsar_attr & TSAR_MMU_USER ) gpt_attr |= GPT_USER; |
---|
117 | if( tsar_attr & TSAR_MMU_DIRTY ) gpt_attr |= GPT_DIRTY; |
---|
118 | if( tsar_attr & TSAR_MMU_LOCAL ) gpt_attr |= GPT_ACCESSED; |
---|
119 | if( tsar_attr & TSAR_MMU_REMOTE ) gpt_attr |= GPT_ACCESSED; |
---|
120 | if( tsar_attr & TSAR_MMU_GLOBAL ) gpt_attr |= GPT_GLOBAL; |
---|
121 | if( tsar_attr & TSAR_MMU_COW ) gpt_attr |= GPT_COW; |
---|
122 | if( tsar_attr & TSAR_MMU_SWAP ) gpt_attr |= GPT_SWAP; |
---|
123 | if( tsar_attr & TSAR_MMU_LOCKED ) gpt_attr |= GPT_LOCKED; |
---|
124 | |
---|
125 | return gpt_attr; |
---|
126 | } |
---|
127 | |
---|
128 | ///////////////////////////////////// |
---|
129 | error_t hal_gpt_create( gpt_t * gpt ) |
---|
130 | { |
---|
131 | page_t * page; |
---|
132 | xptr_t page_xp; |
---|
133 | |
---|
134 | #if DEBUG_HAL_GPT_CREATE |
---|
135 | uint32_t cycle = (uint32_t)hal_get_cycles; |
---|
136 | if( DEBUG_HAL_GPT_CREATE < cycle ) |
---|
137 | printk("\n[DBG] %s : thread %x enter / cycle %d\n", |
---|
138 | __FUNCTION__, CURRENT_THREAD, cycle ); |
---|
139 | #endif |
---|
140 | |
---|
141 | // check page size |
---|
142 | assert( (CONFIG_PPM_PAGE_SIZE == 4096) , __FUNCTION__ , |
---|
143 | "for TSAR, the page size must be 4 Kbytes\n" ); |
---|
144 | |
---|
145 | // allocates 2 physical pages for PT1 |
---|
146 | kmem_req_t req; |
---|
147 | req.type = KMEM_PAGE; |
---|
148 | req.size = 1; // 2 small pages |
---|
149 | req.flags = AF_KERNEL | AF_ZERO; |
---|
150 | page = (page_t *)kmem_alloc( &req ); |
---|
151 | |
---|
152 | if( page == NULL ) |
---|
153 | { |
---|
154 | printk("\n[ERROR] in %s : cannot allocate memory for PT1\n", __FUNCTION__ ); |
---|
155 | return ENOMEM; |
---|
156 | } |
---|
157 | |
---|
158 | // initialize generic page table descriptor |
---|
159 | page_xp = XPTR( local_cxy , page ); |
---|
160 | gpt->ptr = GET_PTR( ppm_page2base( page_xp ) ); |
---|
161 | gpt->ppn = ppm_page2ppn( page_xp ); |
---|
162 | |
---|
163 | #if DEBUG_HAL_GPT_CREATE |
---|
164 | cycle = (uint32_t)hal_get_cycles; |
---|
165 | if( DEBUG_HAL_GPT_CREATE < cycle ) |
---|
166 | printk("\n[DBG] %s : thread %x exit / cycle %d\n", |
---|
167 | __FUNCTION__, CURRENT_THREAD, cycle ); |
---|
168 | #endif |
---|
169 | |
---|
170 | return 0; |
---|
171 | |
---|
172 | } // end hal_gpt_create() |
---|
173 | |
---|
174 | |
---|
175 | /////////////////////////////////// |
---|
176 | void hal_gpt_destroy( gpt_t * gpt ) |
---|
177 | { |
---|
178 | uint32_t ix1; |
---|
179 | uint32_t ix2; |
---|
180 | uint32_t * pt1; |
---|
181 | uint32_t pte1; |
---|
182 | ppn_t pt2_ppn; |
---|
183 | uint32_t * pt2; |
---|
184 | uint32_t attr; |
---|
185 | vpn_t vpn; |
---|
186 | kmem_req_t req; |
---|
187 | bool_t is_ref; |
---|
188 | |
---|
189 | #if DEBUG_HAL_GPT_DESTROY |
---|
190 | uint32_t cycle = (uint32_t)hal_get_cycles; |
---|
191 | if( DEBUG_HAL_GPT_DESTROY < cycle ) |
---|
192 | printk("\n[DBG] %s : thread %x enter / cycle %d\n", |
---|
193 | __FUNCTION__, CURRENT_THREAD, cycle ); |
---|
194 | #endif |
---|
195 | |
---|
196 | // get pointer on calling process |
---|
197 | process_t * process = CURRENT_THREAD->process; |
---|
198 | |
---|
199 | // compute is_ref |
---|
200 | is_ref = ( GET_CXY( process->ref_xp ) == local_cxy ); |
---|
201 | |
---|
202 | // get pointer on PT1 |
---|
203 | pt1 = (uint32_t *)gpt->ptr; |
---|
204 | |
---|
205 | // scan the PT1 |
---|
206 | for( ix1 = 0 ; ix1 < 2048 ; ix1++ ) |
---|
207 | { |
---|
208 | pte1 = pt1[ix1]; |
---|
209 | if( (pte1 & TSAR_MMU_MAPPED) != 0 ) // PTE1 valid |
---|
210 | { |
---|
211 | if( (pte1 & TSAR_MMU_SMALL) == 0 ) // BIG page |
---|
212 | { |
---|
213 | if( (pte1 & TSAR_MMU_USER) != 0 ) |
---|
214 | { |
---|
215 | // warning message |
---|
216 | printk("\n[WARNING] in %s : found an USER BIG page / ix1 = %d\n", |
---|
217 | __FUNCTION__ , ix1 ); |
---|
218 | |
---|
219 | // release the big physical page if reference cluster |
---|
220 | if( is_ref ) |
---|
221 | { |
---|
222 | vpn = (vpn_t)(ix1 << TSAR_MMU_IX2_WIDTH); |
---|
223 | hal_gpt_reset_pte( gpt , vpn ); |
---|
224 | } |
---|
225 | } |
---|
226 | } |
---|
227 | else // SMALL page |
---|
228 | { |
---|
229 | // get local pointer on PT2 |
---|
230 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
231 | xptr_t base_xp = ppm_ppn2base( pt2_ppn ); |
---|
232 | pt2 = (uint32_t *)GET_PTR( base_xp ); |
---|
233 | |
---|
234 | // scan the PT2 to release all entries VALID and USER if reference cluster |
---|
235 | if( is_ref ) |
---|
236 | { |
---|
237 | for( ix2 = 0 ; ix2 < 512 ; ix2++ ) |
---|
238 | { |
---|
239 | attr = TSAR_MMU_ATTR_FROM_PTE2( pt2[2 * ix2] ); |
---|
240 | if( ((attr & TSAR_MMU_MAPPED) != 0 ) && ((attr & TSAR_MMU_USER) != 0) ) |
---|
241 | { |
---|
242 | // release the physical page |
---|
243 | vpn = (vpn_t)((ix1 << TSAR_MMU_IX2_WIDTH) | ix2); |
---|
244 | hal_gpt_reset_pte( gpt , vpn ); |
---|
245 | } |
---|
246 | } |
---|
247 | } |
---|
248 | |
---|
249 | // release the PT2 |
---|
250 | req.type = KMEM_PAGE; |
---|
251 | req.ptr = GET_PTR( ppm_base2page( XPTR(local_cxy , pt2 ) ) ); |
---|
252 | kmem_free( &req ); |
---|
253 | } |
---|
254 | } |
---|
255 | } |
---|
256 | |
---|
257 | // release the PT1 |
---|
258 | req.type = KMEM_PAGE; |
---|
259 | req.ptr = GET_PTR( ppm_base2page( XPTR(local_cxy , pt1 ) ) ); |
---|
260 | kmem_free( &req ); |
---|
261 | |
---|
262 | #if DEBUG_HAL_GPT_DESTROY |
---|
263 | cycle = (uint32_t)hal_get_cycles; |
---|
264 | if( DEBUG_HAL_GPT_DESTROY < cycle ) |
---|
265 | printk("\n[DBG] %s : thread %x exit / cycle %d\n", |
---|
266 | __FUNCTION__, CURRENT_THREAD, cycle ); |
---|
267 | #endif |
---|
268 | |
---|
269 | } // end hal_gpt_destroy() |
---|
270 | |
---|
271 | /////////////////////////////////////////// |
---|
272 | void hal_gpt_display( process_t * process ) |
---|
273 | { |
---|
274 | gpt_t * gpt; |
---|
275 | uint32_t ix1; |
---|
276 | uint32_t ix2; |
---|
277 | uint32_t * pt1; |
---|
278 | uint32_t pte1; |
---|
279 | ppn_t pt2_ppn; |
---|
280 | uint32_t * pt2; |
---|
281 | uint32_t pte2_attr; |
---|
282 | ppn_t pte2_ppn; |
---|
283 | vpn_t vpn; |
---|
284 | |
---|
285 | assert( (process != NULL) , __FUNCTION__ , "NULL process pointer\n"); |
---|
286 | |
---|
287 | // get pointer on gpt |
---|
288 | gpt = &(process->vmm.gpt); |
---|
289 | |
---|
290 | // get pointer on PT1 |
---|
291 | pt1 = (uint32_t *)gpt->ptr; |
---|
292 | |
---|
293 | printk("\n***** Generic Page Table for process %x : &gpt = %x / &pt1 = %x\n\n", |
---|
294 | process->pid , gpt , pt1 ); |
---|
295 | |
---|
296 | // scan the PT1 |
---|
297 | for( ix1 = 0 ; ix1 < 2048 ; ix1++ ) |
---|
298 | { |
---|
299 | pte1 = pt1[ix1]; |
---|
300 | if( (pte1 & TSAR_MMU_MAPPED) != 0 ) |
---|
301 | { |
---|
302 | if( (pte1 & TSAR_MMU_SMALL) == 0 ) // BIG page |
---|
303 | { |
---|
304 | vpn = ix1 << 9; |
---|
305 | printk(" - BIG : vpn = %x / pt1[%d] = %X\n", vpn , ix1 , pte1 ); |
---|
306 | } |
---|
307 | else // SMALL pages |
---|
308 | { |
---|
309 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
310 | xptr_t base_xp = ppm_ppn2base ( pt2_ppn ); |
---|
311 | pt2 = (uint32_t *)GET_PTR( base_xp ); |
---|
312 | |
---|
313 | // scan the PT2 |
---|
314 | for( ix2 = 0 ; ix2 < 512 ; ix2++ ) |
---|
315 | { |
---|
316 | pte2_attr = TSAR_MMU_ATTR_FROM_PTE2( pt2[2 * ix2] ); |
---|
317 | pte2_ppn = TSAR_MMU_PPN_FROM_PTE2( pt2[2 * ix2 + 1] ); |
---|
318 | |
---|
319 | if( (pte2_attr & TSAR_MMU_MAPPED) != 0 ) |
---|
320 | { |
---|
321 | vpn = (ix1 << 9) | ix2; |
---|
322 | printk(" - SMALL : vpn %X / ppn %X / attr %X\n", |
---|
323 | vpn , pte2_ppn , tsar2gpt(pte2_attr) ); |
---|
324 | } |
---|
325 | } |
---|
326 | } |
---|
327 | } |
---|
328 | } |
---|
329 | } // end hal_gpt_display() |
---|
330 | |
---|
331 | |
---|
332 | /////////////////////////////////////// |
---|
333 | error_t hal_gpt_set_pte( gpt_t * gpt, |
---|
334 | vpn_t vpn, |
---|
335 | uint32_t attr, // generic GPT attributes |
---|
336 | ppn_t ppn ) |
---|
337 | { |
---|
338 | uint32_t * pt1; // PT1 base addres |
---|
339 | uint32_t * pte1_ptr; // pointer on PT1 entry |
---|
340 | uint32_t pte1; // PT1 entry value |
---|
341 | |
---|
342 | ppn_t pt2_ppn; // PPN of PT2 |
---|
343 | uint32_t * pt2; // PT2 base address |
---|
344 | |
---|
345 | uint32_t small; // requested PTE is for a small page |
---|
346 | bool_t success; // exit condition for while loop below |
---|
347 | |
---|
348 | page_t * page; // pointer on new physical page descriptor |
---|
349 | xptr_t page_xp; // extended pointer on new page descriptor |
---|
350 | |
---|
351 | uint32_t ix1; // index in PT1 |
---|
352 | uint32_t ix2; // index in PT2 |
---|
353 | |
---|
354 | uint32_t tsar_attr; // PTE attributes for TSAR MMU |
---|
355 | |
---|
356 | #if DEBUG_HAL_GPT_ACCESS |
---|
357 | uint32_t cycle = (uint32_t)hal_get_cycles; |
---|
358 | if( DEBUG_HAL_GPT_ACCESS < cycle ) |
---|
359 | printk("\n[DBG] %s : thread %x enter / vpn %x / attr %x / ppn %x / cycle %d\n", |
---|
360 | __FUNCTION__, CURRENT_THREAD, vpn, attr, ppn, cycle ); |
---|
361 | #endif |
---|
362 | |
---|
363 | // compute indexes in PT1 and PT2 |
---|
364 | ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); |
---|
365 | ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); |
---|
366 | |
---|
367 | pt1 = gpt->ptr; |
---|
368 | small = attr & GPT_SMALL; |
---|
369 | |
---|
370 | // compute tsar attributes from generic attributes |
---|
371 | tsar_attr = gpt2tsar( attr ); |
---|
372 | |
---|
373 | #if (DEBUG_HAL_GPT_ACCESS & 1) |
---|
374 | if( DEBUG_HAL_GPT_ACCESS < cycle ) |
---|
375 | printk("\n[DBG] %s : thread %x / vpn %x / &pt1 %x / tsar_attr %x\n", |
---|
376 | __FUNCTION__, CURRENT_THREAD, vpn, pt1, tsar_attr ); |
---|
377 | #endif |
---|
378 | |
---|
379 | // get pointer on PT1[ix1] |
---|
380 | pte1_ptr = &pt1[ix1]; |
---|
381 | |
---|
382 | // PTE1 (big page) are only set for the kernel vsegs, in the kernel init phase. |
---|
383 | // There is no risk of concurrent access. |
---|
384 | if( small == 0 ) |
---|
385 | { |
---|
386 | // get current pte1 value |
---|
387 | pte1 = *pte1_ptr; |
---|
388 | |
---|
389 | assert( (pte1 == 0) , __FUNCTION__ , |
---|
390 | "try to set a big page in a mapped PT1 entry / PT1[%d] = %x\n", ix1 , pte1 ); |
---|
391 | |
---|
392 | // set the PTE1 |
---|
393 | *pte1_ptr = (tsar_attr & TSAR_MMU_PTE1_ATTR_MASK) | |
---|
394 | ((ppn >> 9) & TSAR_MMU_PTE1_PPN_MASK); |
---|
395 | hal_fence(); |
---|
396 | return 0; |
---|
397 | } |
---|
398 | |
---|
399 | // From this point, the requested PTE is a PTE2 (small page) |
---|
400 | |
---|
401 | // loop to access PTE1 and get pointer on PT2 |
---|
402 | success = false; |
---|
403 | do |
---|
404 | { |
---|
405 | // get current pte1 value |
---|
406 | pte1 = *pte1_ptr; |
---|
407 | |
---|
408 | #if (DEBUG_HAL_GPT_ACCESS & 1) |
---|
409 | if( DEBUG_HAL_GPT_ACCESS < cycle ) |
---|
410 | printk("\n[DBG] %s : thread %x / vpn %x / current_pte1 %x\n", |
---|
411 | __FUNCTION__, CURRENT_THREAD, vpn, pte1 ); |
---|
412 | #endif |
---|
413 | |
---|
414 | // allocate a PT2 if PT1 entry not valid |
---|
415 | if( (pte1 & TSAR_MMU_MAPPED) == 0 ) // PT1 entry not valid |
---|
416 | { |
---|
417 | // allocate one physical page for the PT2 |
---|
418 | kmem_req_t req; |
---|
419 | req.type = KMEM_PAGE; |
---|
420 | req.size = 0; // 1 small page |
---|
421 | req.flags = AF_KERNEL | AF_ZERO; |
---|
422 | page = (page_t *)kmem_alloc( &req ); |
---|
423 | if( page == NULL ) |
---|
424 | { |
---|
425 | printk("\n[ERROR] in %s : cannot allocate PT2\n", __FUNCTION__ ); |
---|
426 | return ENOMEM; |
---|
427 | } |
---|
428 | |
---|
429 | // get the PT2 PPN |
---|
430 | page_xp = XPTR( local_cxy , page ); |
---|
431 | pt2_ppn = ppm_page2ppn( page_xp ); |
---|
432 | |
---|
433 | // try to atomicaly set the PT1 entry |
---|
434 | pte1 = TSAR_MMU_MAPPED | TSAR_MMU_SMALL | pt2_ppn; |
---|
435 | success = hal_atomic_cas( pte1_ptr , 0 , pte1 ); |
---|
436 | |
---|
437 | // release allocated PT2 if PT1 entry modified by another thread |
---|
438 | if( success == false ) ppm_free_pages( page ); |
---|
439 | } |
---|
440 | else // PT1 entry is valid |
---|
441 | { |
---|
442 | // This valid entry must be a PTD1 |
---|
443 | assert( (pte1 & TSAR_MMU_SMALL) , __FUNCTION__ , |
---|
444 | "try to set a small page in a big PT1 entry / PT1[%d] = %x\n", ix1 , pte1 ); |
---|
445 | |
---|
446 | success = true; |
---|
447 | } |
---|
448 | |
---|
449 | // get PT2 base from pte1 |
---|
450 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
451 | pt2 = (uint32_t *)GET_PTR( ppm_ppn2base( pt2_ppn ) ); |
---|
452 | |
---|
453 | #if (DEBUG_HAL_GPT_ACCESS & 1) |
---|
454 | if( DEBUG_HAL_GPT_ACCESS < cycle ) |
---|
455 | printk("\n[DBG] %s : thread %x / vpn %x / pte1 %x / &pt2 %x\n", |
---|
456 | __FUNCTION__, CURRENT_THREAD, vpn, pte1, pt2 ); |
---|
457 | #endif |
---|
458 | |
---|
459 | } |
---|
460 | while (success == false); |
---|
461 | |
---|
462 | // set PTE2 in this order |
---|
463 | pt2[2 * ix2 + 1] = ppn; |
---|
464 | hal_fence(); |
---|
465 | pt2[2 * ix2] = tsar_attr; |
---|
466 | hal_fence(); |
---|
467 | |
---|
468 | #if DEBUG_HAL_GPT_ACCESS |
---|
469 | cycle = (uint32_t)hal_get_cycles; |
---|
470 | if( DEBUG_HAL_GPT_ACCESS < cycle ) |
---|
471 | printk("\n[DBG] %s : thread %x exit / vpn %x / pte2_attr %x / pte2_ppn %x / cycle %d\n", |
---|
472 | __FUNCTION__, CURRENT_THREAD, vpn, pt2[2 * ix2], pt2[2 * ix2 + 1], cycle ); |
---|
473 | #endif |
---|
474 | |
---|
475 | return 0; |
---|
476 | |
---|
477 | } // end of hal_gpt_set_pte() |
---|
478 | |
---|
479 | |
---|
480 | ///////////////////////////////////// |
---|
481 | void hal_gpt_get_pte( gpt_t * gpt, |
---|
482 | vpn_t vpn, |
---|
483 | uint32_t * attr, |
---|
484 | ppn_t * ppn ) |
---|
485 | { |
---|
486 | uint32_t * pt1; |
---|
487 | uint32_t pte1; |
---|
488 | |
---|
489 | uint32_t * pt2; |
---|
490 | ppn_t pt2_ppn; |
---|
491 | |
---|
492 | uint32_t ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); |
---|
493 | uint32_t ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); |
---|
494 | |
---|
495 | // get PTE1 value |
---|
496 | pt1 = gpt->ptr; |
---|
497 | pte1 = pt1[ix1]; |
---|
498 | |
---|
499 | if( (pte1 & TSAR_MMU_MAPPED) == 0 ) // PT1 entry not present |
---|
500 | { |
---|
501 | *attr = 0; |
---|
502 | *ppn = 0; |
---|
503 | } |
---|
504 | |
---|
505 | if( (pte1 & TSAR_MMU_SMALL) == 0 ) // it's a PTE1 |
---|
506 | { |
---|
507 | *attr = tsar2gpt( TSAR_MMU_ATTR_FROM_PTE1( pte1 ) ); |
---|
508 | *ppn = TSAR_MMU_PPN_FROM_PTE1( pte1 ) | (vpn & ((1<<TSAR_MMU_IX2_WIDTH)-1)); |
---|
509 | } |
---|
510 | else // it's a PTD1 |
---|
511 | { |
---|
512 | // compute PT2 base address |
---|
513 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
514 | pt2 = (uint32_t*)GET_PTR( ppm_ppn2base( pt2_ppn ) ); |
---|
515 | |
---|
516 | *ppn = pt2[2*ix2+1] & ((1<<TSAR_MMU_PPN_WIDTH)-1); |
---|
517 | *attr = tsar2gpt( pt2[2*ix2] ); |
---|
518 | } |
---|
519 | } // end hal_gpt_get_pte() |
---|
520 | |
---|
521 | //////////////////////////////////// |
---|
522 | void hal_gpt_reset_pte( gpt_t * gpt, |
---|
523 | vpn_t vpn ) |
---|
524 | { |
---|
525 | uint32_t * pt1; // PT1 base address |
---|
526 | uint32_t pte1; // PT1 entry value |
---|
527 | |
---|
528 | ppn_t pt2_ppn; // PPN of PT2 |
---|
529 | uint32_t * pt2; // PT2 base address |
---|
530 | |
---|
531 | ppn_t ppn; // PPN of page to be released |
---|
532 | |
---|
533 | // get ix1 & ix2 indexes |
---|
534 | uint32_t ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); |
---|
535 | uint32_t ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); |
---|
536 | |
---|
537 | // get PTE1 value |
---|
538 | pt1 = gpt->ptr; |
---|
539 | pte1 = pt1[ix1]; |
---|
540 | |
---|
541 | if( (pte1 & TSAR_MMU_MAPPED) == 0 ) // PT1 entry not present |
---|
542 | { |
---|
543 | return; |
---|
544 | } |
---|
545 | |
---|
546 | if( (pte1 & TSAR_MMU_SMALL) == 0 ) // it's a PTE1 |
---|
547 | { |
---|
548 | // get PPN |
---|
549 | ppn = TSAR_MMU_PPN_FROM_PTE1( pte1 ); |
---|
550 | |
---|
551 | // unmap the big page |
---|
552 | pt1[ix1] = 0; |
---|
553 | hal_fence(); |
---|
554 | |
---|
555 | return; |
---|
556 | } |
---|
557 | else // it's a PTD1 |
---|
558 | { |
---|
559 | // compute PT2 base address |
---|
560 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
561 | pt2 = (uint32_t*)GET_PTR( ppm_ppn2base( pt2_ppn ) ); |
---|
562 | |
---|
563 | // get PPN |
---|
564 | ppn = TSAR_MMU_PPN_FROM_PTE2( pt2[2*ix2+1] ); |
---|
565 | |
---|
566 | // unmap the small page |
---|
567 | pt2[2*ix2] = 0; // only attr is reset |
---|
568 | hal_fence(); |
---|
569 | |
---|
570 | return; |
---|
571 | } |
---|
572 | } // end hal_gpt_reset_pte() |
---|
573 | |
---|
574 | ////////////////////////////////////// |
---|
575 | error_t hal_gpt_lock_pte( gpt_t * gpt, |
---|
576 | vpn_t vpn ) |
---|
577 | { |
---|
578 | uint32_t * pt1; // PT1 base address |
---|
579 | volatile uint32_t * pte1_ptr; // address of PT1 entry |
---|
580 | uint32_t pte1; // value of PT1 entry |
---|
581 | |
---|
582 | uint32_t * pt2; // PT2 base address |
---|
583 | ppn_t pt2_ppn; // PPN of PT2 page if missing PT2 |
---|
584 | volatile uint32_t * pte2_ptr; // address of PT2 entry |
---|
585 | |
---|
586 | uint32_t attr; |
---|
587 | bool_t atomic; |
---|
588 | page_t * page; |
---|
589 | xptr_t page_xp; |
---|
590 | |
---|
591 | uint32_t ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); // index in PT1 |
---|
592 | uint32_t ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); // index in PT2 |
---|
593 | |
---|
594 | // get the PTE1 value |
---|
595 | pt1 = gpt->ptr; |
---|
596 | pte1_ptr = &pt1[ix1]; |
---|
597 | pte1 = *pte1_ptr; |
---|
598 | |
---|
599 | // If present, the page must be small |
---|
600 | if( ((pte1 & TSAR_MMU_MAPPED) != 0) && ((pte1 & TSAR_MMU_SMALL) == 0) ) |
---|
601 | { |
---|
602 | printk("\n[ERROR] in %s : try to lock a big page / PT1[%d] = %x\n", |
---|
603 | __FUNCTION__ , ix1 , pte1 ); |
---|
604 | return EINVAL; |
---|
605 | } |
---|
606 | |
---|
607 | if( (pte1 & TSAR_MMU_MAPPED) == 0 ) // missing PT1 entry |
---|
608 | { |
---|
609 | // allocate one physical page for PT2 |
---|
610 | kmem_req_t req; |
---|
611 | req.type = KMEM_PAGE; |
---|
612 | req.size = 0; // 1 small page |
---|
613 | req.flags = AF_KERNEL | AF_ZERO; |
---|
614 | page = (page_t *)kmem_alloc( &req ); |
---|
615 | |
---|
616 | if( page == NULL ) |
---|
617 | { |
---|
618 | printk("\n[ERROR] in %s : try to set a small page but cannot allocate PT2\n", |
---|
619 | __FUNCTION__ ); |
---|
620 | return ENOMEM; |
---|
621 | } |
---|
622 | |
---|
623 | page_xp = XPTR( local_cxy , page ); |
---|
624 | pt2_ppn = ppm_page2ppn( page_xp ); |
---|
625 | pt2 = (uint32_t *)GET_PTR( ppm_page2base( page_xp ) ); |
---|
626 | |
---|
627 | // try to set the PT1 entry |
---|
628 | do |
---|
629 | { |
---|
630 | atomic = hal_atomic_cas( (void*)pte1_ptr , 0 , |
---|
631 | TSAR_MMU_MAPPED | TSAR_MMU_SMALL | pt2_ppn ); |
---|
632 | } |
---|
633 | while( (atomic == false) && (*pte1_ptr == 0) ); |
---|
634 | |
---|
635 | if( atomic == false ) // missing PT2 has been allocate by another core |
---|
636 | { |
---|
637 | // release the allocated page |
---|
638 | ppm_free_pages( page ); |
---|
639 | |
---|
640 | // read again the PTE1 |
---|
641 | pte1 = *pte1_ptr; |
---|
642 | |
---|
643 | // get the PT2 base address |
---|
644 | pt2_ppn = TSAR_MMU_PPN_FROM_PTE1( pte1 ); |
---|
645 | pt2 = (uint32_t*)GET_PTR( ppm_ppn2base( pt2_ppn ) ); |
---|
646 | } |
---|
647 | } |
---|
648 | else |
---|
649 | { |
---|
650 | // This valid entry must be a PTD1 |
---|
651 | if( (pte1 & TSAR_MMU_SMALL) == 0 ) |
---|
652 | { |
---|
653 | printk("\n[ERROR] in %s : set a small page in a big PT1 entry / PT1[%d] = %x\n", |
---|
654 | __FUNCTION__ , ix1 , pte1 ); |
---|
655 | return EINVAL; |
---|
656 | } |
---|
657 | |
---|
658 | // compute PPN of PT2 base |
---|
659 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
660 | |
---|
661 | // compute pointer on PT2 base |
---|
662 | pt2 = (uint32_t *)GET_PTR( ppm_ppn2base( pt2_ppn ) ); |
---|
663 | } |
---|
664 | |
---|
665 | // from here we have the PT2 pointer |
---|
666 | |
---|
667 | // compute pointer on PTE2 |
---|
668 | pte2_ptr = &pt2[2 * ix2]; |
---|
669 | |
---|
670 | // try to atomically lock the PTE2 until success |
---|
671 | do |
---|
672 | { |
---|
673 | // busy waiting until TSAR_MMU_LOCK == 0 |
---|
674 | do |
---|
675 | { |
---|
676 | attr = *pte2_ptr; |
---|
677 | hal_rdbar(); |
---|
678 | } |
---|
679 | while( (attr & TSAR_MMU_LOCKED) != 0 ); |
---|
680 | |
---|
681 | atomic = hal_atomic_cas( (void*)pte2_ptr, attr , (attr | TSAR_MMU_LOCKED) ); |
---|
682 | } |
---|
683 | while( atomic == 0 ); |
---|
684 | |
---|
685 | return 0; |
---|
686 | |
---|
687 | } // end hal_gpt_lock_pte() |
---|
688 | |
---|
689 | //////////////////////////////////////// |
---|
690 | error_t hal_gpt_unlock_pte( gpt_t * gpt, |
---|
691 | vpn_t vpn ) |
---|
692 | { |
---|
693 | uint32_t * pt1; // PT1 base address |
---|
694 | uint32_t pte1; // value of PT1 entry |
---|
695 | |
---|
696 | uint32_t * pt2; // PT2 base address |
---|
697 | ppn_t pt2_ppn; // PPN of PT2 page if missing PT2 |
---|
698 | uint32_t * pte2_ptr; // address of PT2 entry |
---|
699 | |
---|
700 | uint32_t attr; // PTE2 attribute |
---|
701 | |
---|
702 | // compute indexes in P1 and PT2 |
---|
703 | uint32_t ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); // index in PT1 |
---|
704 | uint32_t ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); // index in PT2 |
---|
705 | |
---|
706 | // get pointer on PT1 base |
---|
707 | pt1 = (uint32_t*)gpt->ptr; |
---|
708 | |
---|
709 | // get PTE1 |
---|
710 | pte1 = pt1[ix1]; |
---|
711 | |
---|
712 | // check PTE1 present and small page |
---|
713 | if( ((pte1 & TSAR_MMU_MAPPED) == 0) || ((pte1 & TSAR_MMU_SMALL) == 0) ) |
---|
714 | { |
---|
715 | printk("\n[ERROR] in %s : try to unlock a big or undefined page / PT1[%d] = %x\n", |
---|
716 | __FUNCTION__ , ix1 , pte1 ); |
---|
717 | return EINVAL; |
---|
718 | } |
---|
719 | |
---|
720 | // get pointer on PT2 base |
---|
721 | pt2_ppn = TSAR_MMU_PPN_FROM_PTE1( pte1 ); |
---|
722 | pt2 = (uint32_t *)GET_PTR( ppm_ppn2base( pt2_ppn ) ); |
---|
723 | |
---|
724 | // get pointer on PTE2 |
---|
725 | pte2_ptr = &pt2[2 * ix2]; |
---|
726 | |
---|
727 | // get PTE2_ATTR |
---|
728 | attr = *pte2_ptr; |
---|
729 | |
---|
730 | // check PTE2 present and locked |
---|
731 | if( ((attr & TSAR_MMU_MAPPED) == 0) || ((attr & TSAR_MMU_LOCKED) == 0) ) |
---|
732 | { |
---|
733 | printk("\n[ERROR] in %s : unlock an unlocked/unmapped page / PT1[%d] = %x\n", |
---|
734 | __FUNCTION__ , ix1 , pte1 ); |
---|
735 | return EINVAL; |
---|
736 | } |
---|
737 | |
---|
738 | // reset GPT_LOCK |
---|
739 | *pte2_ptr = attr & ~TSAR_MMU_LOCKED; |
---|
740 | |
---|
741 | return 0; |
---|
742 | |
---|
743 | } // end hal_gpt_unlock_pte() |
---|
744 | |
---|
745 | /////////////////////////////////////////// |
---|
746 | error_t hal_gpt_pte_copy( gpt_t * dst_gpt, |
---|
747 | xptr_t src_gpt_xp, |
---|
748 | vpn_t vpn, |
---|
749 | bool_t cow, |
---|
750 | ppn_t * ppn, |
---|
751 | bool_t * mapped ) |
---|
752 | { |
---|
753 | uint32_t ix1; // index in PT1 |
---|
754 | uint32_t ix2; // index in PT2 |
---|
755 | |
---|
756 | cxy_t src_cxy; // SRC GPT cluster |
---|
757 | gpt_t * src_gpt; // SRC GPT local pointer |
---|
758 | |
---|
759 | uint32_t * src_pt1; // local pointer on SRC PT1 |
---|
760 | uint32_t * dst_pt1; // local pointer on DST PT1 |
---|
761 | uint32_t * src_pt2; // local pointer on SRC PT2 |
---|
762 | uint32_t * dst_pt2; // local pointer on DST PT2 |
---|
763 | |
---|
764 | kmem_req_t req; // for dynamic PT2 allocation |
---|
765 | |
---|
766 | uint32_t src_pte1; |
---|
767 | uint32_t dst_pte1; |
---|
768 | |
---|
769 | uint32_t src_pte2_attr; |
---|
770 | uint32_t src_pte2_ppn; |
---|
771 | |
---|
772 | page_t * page; |
---|
773 | xptr_t page_xp; |
---|
774 | |
---|
775 | ppn_t src_pt2_ppn; |
---|
776 | ppn_t dst_pt2_ppn; |
---|
777 | |
---|
778 | #if DEBUG_HAL_GPT_ACCESS |
---|
779 | uint32_t cycle = (uint32_t)hal_get_cycles; |
---|
780 | if( DEBUG_HAL_GPT_ACCESS < cycle ) |
---|
781 | printk("\n[DBG] %s : thread %x enter / vpn %x / cycle %d\n", |
---|
782 | __FUNCTION__, CURRENT_THREAD, vpn, cycle ); |
---|
783 | #endif |
---|
784 | |
---|
785 | // get remote src_gpt cluster and local pointer |
---|
786 | src_cxy = GET_CXY( src_gpt_xp ); |
---|
787 | src_gpt = (gpt_t *)GET_PTR( src_gpt_xp ); |
---|
788 | |
---|
789 | // get remote src_pt1 and local dst_pt1 |
---|
790 | src_pt1 = (uint32_t *)hal_remote_lpt( XPTR( src_cxy , &src_gpt->ptr ) ); |
---|
791 | dst_pt1 = (uint32_t *)dst_gpt->ptr; |
---|
792 | |
---|
793 | // check src_pt1 and dst_pt1 existence |
---|
794 | assert( (src_pt1 != NULL) , __FUNCTION__ , "src_pt1 does not exist\n"); |
---|
795 | assert( (dst_pt1 != NULL) , __FUNCTION__ , "dst_pt1 does not exist\n"); |
---|
796 | |
---|
797 | ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); |
---|
798 | ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); |
---|
799 | |
---|
800 | // get src_pte1 |
---|
801 | src_pte1 = hal_remote_lw( XPTR( src_cxy , &src_pt1[ix1] ) ); |
---|
802 | |
---|
803 | // do nothing if src_pte1 not MAPPED or not SMALL |
---|
804 | if( (src_pte1 & TSAR_MMU_MAPPED) && (src_pte1 & TSAR_MMU_SMALL) ) |
---|
805 | { |
---|
806 | // get dst_pt1 entry |
---|
807 | dst_pte1 = dst_pt1[ix1]; |
---|
808 | |
---|
809 | // map dst_pte1 if required |
---|
810 | if( (dst_pte1 & TSAR_MMU_MAPPED) == 0 ) |
---|
811 | { |
---|
812 | // allocate one physical page for a new PT2 |
---|
813 | req.type = KMEM_PAGE; |
---|
814 | req.size = 0; // 1 small page |
---|
815 | req.flags = AF_KERNEL | AF_ZERO; |
---|
816 | page = (page_t *)kmem_alloc( &req ); |
---|
817 | |
---|
818 | if( page == NULL ) |
---|
819 | { |
---|
820 | printk("\n[ERROR] in %s : cannot allocate PT2\n", __FUNCTION__ ); |
---|
821 | return -1; |
---|
822 | } |
---|
823 | |
---|
824 | // build extended pointer on page descriptor |
---|
825 | page_xp = XPTR( local_cxy , page ); |
---|
826 | |
---|
827 | // get PPN for this new PT2 |
---|
828 | dst_pt2_ppn = (ppn_t)ppm_page2ppn( page_xp ); |
---|
829 | |
---|
830 | // build the new dst_pte1 |
---|
831 | dst_pte1 = TSAR_MMU_MAPPED | TSAR_MMU_SMALL | dst_pt2_ppn; |
---|
832 | |
---|
833 | // register it in DST_GPT |
---|
834 | dst_pt1[ix1] = dst_pte1; |
---|
835 | } |
---|
836 | |
---|
837 | // get pointer on src_pt2 |
---|
838 | src_pt2_ppn = (ppn_t)TSAR_MMU_PTBA_FROM_PTE1( src_pte1 ); |
---|
839 | src_pt2 = (uint32_t *)GET_PTR( ppm_ppn2base( src_pt2_ppn ) ); |
---|
840 | |
---|
841 | // get pointer on dst_pt2 |
---|
842 | dst_pt2_ppn = (ppn_t)TSAR_MMU_PTBA_FROM_PTE1( dst_pte1 ); |
---|
843 | dst_pt2 = (uint32_t *)GET_PTR( ppm_ppn2base( dst_pt2_ppn ) ); |
---|
844 | |
---|
845 | // get attr and ppn from SRC_PT2 |
---|
846 | src_pte2_attr = hal_remote_lw( XPTR( src_cxy , &src_pt2[2 * ix2] ) ); |
---|
847 | src_pte2_ppn = hal_remote_lw( XPTR( src_cxy , &src_pt2[2 * ix2 + 1] ) ); |
---|
848 | |
---|
849 | // do nothing if src_pte2 not MAPPED |
---|
850 | if( (src_pte2_attr & TSAR_MMU_MAPPED) != 0 ) |
---|
851 | { |
---|
852 | // set PPN in DST PTE2 |
---|
853 | dst_pt2[2*ix2+1] = src_pte2_ppn; |
---|
854 | |
---|
855 | // set attributes in DST PTE2 |
---|
856 | if( cow && (src_pte2_attr & TSAR_MMU_WRITABLE) ) |
---|
857 | { |
---|
858 | dst_pt2[2*ix2] = (src_pte2_attr | TSAR_MMU_COW) & (~TSAR_MMU_WRITABLE); |
---|
859 | } |
---|
860 | else |
---|
861 | { |
---|
862 | dst_pt2[2*ix2] = src_pte2_attr; |
---|
863 | } |
---|
864 | |
---|
865 | // return "successfully copied" |
---|
866 | *mapped = true; |
---|
867 | *ppn = src_pte2_ppn; |
---|
868 | |
---|
869 | #if DEBUG_HAL_GPT_ACCESS |
---|
870 | cycle = (uint32_t)hal_get_cycles; |
---|
871 | if( DEBUG_HAL_GPT_ACCESS < cycle ) |
---|
872 | printk("\n[DBG] %s : thread %x exit / copy done for vpn %x / cycle %d\n", |
---|
873 | __FUNCTION__, CURRENT_THREAD, vpn, cycle ); |
---|
874 | #endif |
---|
875 | |
---|
876 | hal_fence(); |
---|
877 | |
---|
878 | return 0; |
---|
879 | } // end if PTE2 mapped |
---|
880 | } // end if PTE1 mapped |
---|
881 | |
---|
882 | // return "nothing done" |
---|
883 | *mapped = false; |
---|
884 | *ppn = 0; |
---|
885 | |
---|
886 | #if DEBUG_HAL_GPT_ACCESS |
---|
887 | cycle = (uint32_t)hal_get_cycles; |
---|
888 | if( DEBUG_HAL_GPT_ACCESS < cycle ) |
---|
889 | printk("\n[DBG] %s : thread %x exit / nothing done for vpn %x / cycle %d\n", |
---|
890 | __FUNCTION__, CURRENT_THREAD, vpn, cycle ); |
---|
891 | #endif |
---|
892 | |
---|
893 | hal_fence(); |
---|
894 | |
---|
895 | return 0; |
---|
896 | |
---|
897 | } // end hal_gpt_pte_copy() |
---|
898 | |
---|
899 | ////////////////////////////////////////// |
---|
900 | bool_t hal_gpt_pte_is_mapped( gpt_t * gpt, |
---|
901 | vpn_t vpn ) |
---|
902 | { |
---|
903 | uint32_t * pt1; |
---|
904 | uint32_t pte1; |
---|
905 | uint32_t pte2_attr; |
---|
906 | |
---|
907 | uint32_t * pt2; |
---|
908 | ppn_t pt2_ppn; |
---|
909 | |
---|
910 | uint32_t ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); |
---|
911 | uint32_t ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); |
---|
912 | |
---|
913 | // get PTE1 value |
---|
914 | pt1 = gpt->ptr; |
---|
915 | pte1 = pt1[ix1]; |
---|
916 | |
---|
917 | if( (pte1 & TSAR_MMU_MAPPED) == 0 ) return false; |
---|
918 | |
---|
919 | if( (pte1 & TSAR_MMU_SMALL) == 0 ) return false; |
---|
920 | |
---|
921 | // compute PT2 base address |
---|
922 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
923 | pt2 = (uint32_t*)GET_PTR( ppm_ppn2base( pt2_ppn ) ); |
---|
924 | |
---|
925 | // get pte2_attr |
---|
926 | pte2_attr = pt2[2*ix2]; |
---|
927 | |
---|
928 | if( (pte2_attr & TSAR_MMU_MAPPED) == 0 ) return false; |
---|
929 | else return true; |
---|
930 | |
---|
931 | } // end hal_gpt_pte_is_mapped() |
---|
932 | |
---|
933 | /////////////////////////////////////// |
---|
934 | bool_t hal_gpt_pte_is_cow( gpt_t * gpt, |
---|
935 | vpn_t vpn ) |
---|
936 | { |
---|
937 | uint32_t * pt1; |
---|
938 | uint32_t pte1; |
---|
939 | uint32_t pte2_attr; |
---|
940 | |
---|
941 | uint32_t * pt2; |
---|
942 | ppn_t pt2_ppn; |
---|
943 | |
---|
944 | uint32_t ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); |
---|
945 | uint32_t ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); |
---|
946 | |
---|
947 | // get PTE1 value |
---|
948 | pt1 = gpt->ptr; |
---|
949 | pte1 = pt1[ix1]; |
---|
950 | |
---|
951 | if( (pte1 & TSAR_MMU_MAPPED) == 0 ) return false; |
---|
952 | |
---|
953 | if( (pte1 & TSAR_MMU_SMALL) == 0 ) return false; |
---|
954 | |
---|
955 | // compute PT2 base address |
---|
956 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
957 | pt2 = (uint32_t*)GET_PTR( ppm_ppn2base( pt2_ppn ) ); |
---|
958 | |
---|
959 | // get pte2_attr |
---|
960 | pte2_attr = pt2[2*ix2]; |
---|
961 | |
---|
962 | if( (pte2_attr & TSAR_MMU_MAPPED) == 0 ) return false; |
---|
963 | |
---|
964 | if( (pte2_attr & TSAR_MMU_COW) == 0 ) return false; |
---|
965 | else return true; |
---|
966 | |
---|
967 | } // end hal_gpt_pte_is_cow() |
---|
968 | |
---|
969 | ///////////////////////////////////////// |
---|
970 | void hal_gpt_set_cow( xptr_t gpt_xp, |
---|
971 | vpn_t vpn_base, |
---|
972 | vpn_t vpn_size ) |
---|
973 | { |
---|
974 | cxy_t gpt_cxy; |
---|
975 | gpt_t * gpt_ptr; |
---|
976 | |
---|
977 | vpn_t vpn; |
---|
978 | |
---|
979 | uint32_t ix1; |
---|
980 | uint32_t ix2; |
---|
981 | |
---|
982 | uint32_t * pt1; |
---|
983 | uint32_t pte1; |
---|
984 | |
---|
985 | uint32_t * pt2; |
---|
986 | ppn_t pt2_ppn; |
---|
987 | uint32_t attr; |
---|
988 | |
---|
989 | // get GPT cluster and local pointer |
---|
990 | gpt_cxy = GET_CXY( gpt_xp ); |
---|
991 | gpt_ptr = (gpt_t *)GET_PTR( gpt_xp ); |
---|
992 | |
---|
993 | // get local PT1 pointer |
---|
994 | pt1 = (uint32_t *)hal_remote_lpt( XPTR( gpt_cxy , &gpt_ptr->ptr ) ); |
---|
995 | |
---|
996 | // loop on pages |
---|
997 | for( vpn = vpn_base ; vpn < (vpn_base + vpn_size) ; vpn++ ) |
---|
998 | { |
---|
999 | ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); |
---|
1000 | ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); |
---|
1001 | |
---|
1002 | // get PTE1 value |
---|
1003 | pte1 = hal_remote_lw( XPTR( gpt_cxy , &pt1[ix1] ) ); |
---|
1004 | |
---|
1005 | // only MAPPED & SMALL PTEs are modified |
---|
1006 | if( (pte1 & TSAR_MMU_MAPPED) && (pte1 & TSAR_MMU_SMALL) ) |
---|
1007 | { |
---|
1008 | // compute PT2 base address |
---|
1009 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
1010 | pt2 = (uint32_t*)GET_PTR( ppm_ppn2base( pt2_ppn ) ); |
---|
1011 | |
---|
1012 | assert( (GET_CXY( ppm_ppn2base( pt2_ppn ) ) == gpt_cxy ), __FUNCTION__, |
---|
1013 | "PT2 and PT1 must be in the same cluster\n"); |
---|
1014 | |
---|
1015 | // get current PTE2 attributes |
---|
1016 | attr = hal_remote_lw( XPTR( gpt_cxy , &pt2[2*ix2] ) ); |
---|
1017 | |
---|
1018 | // only MAPPED PTEs are modified |
---|
1019 | if( attr & TSAR_MMU_MAPPED ) |
---|
1020 | { |
---|
1021 | attr = (attr | TSAR_MMU_COW) & (~TSAR_MMU_WRITABLE); |
---|
1022 | hal_remote_sw( XPTR( gpt_cxy , &pt2[2*ix2] ) , attr ); |
---|
1023 | } |
---|
1024 | } |
---|
1025 | } // end loop on pages |
---|
1026 | |
---|
1027 | } // end hal_gpt_set_cow() |
---|
1028 | |
---|
1029 | ////////////////////////////////////////// |
---|
1030 | void hal_gpt_update_pte( xptr_t gpt_xp, |
---|
1031 | vpn_t vpn, |
---|
1032 | uint32_t attr, // generic GPT attributes |
---|
1033 | ppn_t ppn ) |
---|
1034 | { |
---|
1035 | uint32_t * pt1; // PT1 base addres |
---|
1036 | uint32_t pte1; // PT1 entry value |
---|
1037 | |
---|
1038 | ppn_t pt2_ppn; // PPN of PT2 |
---|
1039 | uint32_t * pt2; // PT2 base address |
---|
1040 | |
---|
1041 | uint32_t ix1; // index in PT1 |
---|
1042 | uint32_t ix2; // index in PT2 |
---|
1043 | |
---|
1044 | uint32_t tsar_attr; // PTE attributes for TSAR MMU |
---|
1045 | |
---|
1046 | // check attr argument MAPPED and SMALL |
---|
1047 | if( (attr & GPT_MAPPED) == 0 ) return; |
---|
1048 | if( (attr & GPT_SMALL ) == 0 ) return; |
---|
1049 | |
---|
1050 | // get cluster and local pointer on remote GPT |
---|
1051 | cxy_t gpt_cxy = GET_CXY( gpt_xp ); |
---|
1052 | gpt_t * gpt_ptr = (gpt_t *)GET_PTR( gpt_xp ); |
---|
1053 | |
---|
1054 | // compute indexes in PT1 and PT2 |
---|
1055 | ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); |
---|
1056 | ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); |
---|
1057 | |
---|
1058 | // get PT1 base |
---|
1059 | pt1 = (uint32_t *)hal_remote_lpt( XPTR( gpt_cxy , &gpt_ptr->ptr ) ); |
---|
1060 | |
---|
1061 | // compute tsar_attr from generic attributes |
---|
1062 | tsar_attr = gpt2tsar( attr ); |
---|
1063 | |
---|
1064 | // get PTE1 value |
---|
1065 | pte1 = hal_remote_lw( XPTR( gpt_cxy , &pt1[ix1] ) ); |
---|
1066 | |
---|
1067 | if( (pte1 & TSAR_MMU_MAPPED) == 0 ) return; |
---|
1068 | if( (pte1 & TSAR_MMU_SMALL ) == 0 ) return; |
---|
1069 | |
---|
1070 | // get PT2 base from PTE1 |
---|
1071 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
1072 | pt2 = (uint32_t *)GET_PTR( ppm_ppn2base( pt2_ppn ) ); |
---|
1073 | |
---|
1074 | // reset PTE2 |
---|
1075 | hal_remote_sw( XPTR( gpt_cxy, &pt2[2 * ix2] ) , 0 ); |
---|
1076 | hal_fence(); |
---|
1077 | |
---|
1078 | // set PTE2 in this order |
---|
1079 | hal_remote_sw( XPTR( gpt_cxy, &pt2[2 * ix2 + 1] ) , ppn ); |
---|
1080 | hal_fence(); |
---|
1081 | hal_remote_sw( XPTR( gpt_cxy, &pt2[2 * ix2] ) , tsar_attr ); |
---|
1082 | hal_fence(); |
---|
1083 | |
---|
1084 | } // end hal_gpt_update_pte() |
---|
1085 | |
---|