1 | /* |
---|
2 | * hal_vmm.c - Virtual Memory Manager Initialisation for TSAR |
---|
3 | * |
---|
4 | * Authors Alain Greiner (2016,2017,2018,2019,2020) |
---|
5 | * |
---|
6 | * Copyright (c) UPMC Sorbonne Universites |
---|
7 | * |
---|
8 | * This file is part of ALMOS-MKH. |
---|
9 | * |
---|
10 | * ALMOS-MKH is free software; you can redistribute it and/or modify it |
---|
11 | * under the terms of the GNU General Public License as published by |
---|
12 | * the Free Software Foundation; version 2.0 of the License. |
---|
13 | * |
---|
14 | * ALMOS-MKH is distributed in the hope that it will be useful, but |
---|
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
17 | * General Public License for more details. |
---|
18 | * |
---|
19 | * You should have received a copy of the GNU General Public License |
---|
20 | * along with ALMOS-MKH; if not, write to the Free Software Foundation, |
---|
21 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
22 | */ |
---|
23 | |
---|
24 | #include <kernel_config.h> |
---|
25 | #include <hal_kernel_types.h> |
---|
26 | #include <hal_vmm.h> |
---|
27 | #include <hal_gpt.h> |
---|
28 | #include <process.h> |
---|
29 | #include <thread.h> |
---|
30 | #include <vseg.h> |
---|
31 | #include <xlist.h> |
---|
32 | #include <vmm.h> |
---|
33 | #include <remote_rwlock.h> |
---|
34 | |
---|
35 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
36 | // This file contains the TSAR specific code used to initialize the kernel process VMM, |
---|
37 | // or to update an user process VMM with informations related to the kernel vsegs. |
---|
38 | // As the TSAR architure does not use the DATA MMU, but use only the DATA extension |
---|
39 | // address register to access local and remote kernel data, the kernel VSL contains only |
---|
40 | // one "kcode" segment, and the kernel GPT contains only one big page in PT1[0] slot. |
---|
41 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
42 | |
---|
43 | // extern global variables |
---|
44 | extern process_t process_zero; |
---|
45 | extern chdev_directory_t chdev_dir; |
---|
46 | extern char * lock_type_str[]; |
---|
47 | |
---|
48 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
49 | // This function is called by the process_zero_init() function during kernel_init. |
---|
50 | // It initializes the VMM of the kernel proces_zero (containing all kernel threads) |
---|
51 | // in the local cluster. |
---|
52 | // For TSAR, it registers one "kcode" vseg in kernel VSL, and registers one big page |
---|
53 | // in slot[0] of kernel GPT. |
---|
54 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
55 | error_t hal_vmm_kernel_init( boot_info_t * info ) |
---|
56 | { |
---|
57 | error_t error; |
---|
58 | |
---|
59 | // get pointer on kernel GPT |
---|
60 | gpt_t * gpt = &process_zero.vmm.gpt; |
---|
61 | |
---|
62 | #if DEBUG_HAL_VMM |
---|
63 | thread_t * this = CURRENT_THREAD; |
---|
64 | printk("\n[%s] thread[%x,%x] enter in cluster %x\n", |
---|
65 | __FUNCTION__, this->process->pid, this->trdid, local_cxy ); |
---|
66 | #endif |
---|
67 | |
---|
68 | // allocate memory for kernel GPT |
---|
69 | error = hal_gpt_create( gpt ); |
---|
70 | |
---|
71 | if( error ) |
---|
72 | { |
---|
73 | printk("\n[PANIC] in %s : cannot allocate kernel GPT in cluster %x\n", |
---|
74 | __FUNCTION__ , local_cxy ); |
---|
75 | hal_core_sleep(); |
---|
76 | } |
---|
77 | |
---|
78 | #if DEBUG_HAL_VMM |
---|
79 | printk("\n[%s] thread[%x,%x] created GPT PT1 in cluster %x / gpt %x\n", |
---|
80 | __FUNCTION__, this->process->pid, this->trdid, local_cxy, gpt ); |
---|
81 | #endif |
---|
82 | |
---|
83 | // compute attr and ppn for one PTE1 |
---|
84 | uint32_t attr = GPT_MAPPED | GPT_READABLE | GPT_CACHABLE | GPT_EXECUTABLE | GPT_GLOBAL; |
---|
85 | uint32_t ppn = local_cxy << 20; |
---|
86 | |
---|
87 | // set PT1[0] |
---|
88 | hal_gpt_set_pte( XPTR( local_cxy , gpt ) , 0 , attr , ppn ); |
---|
89 | |
---|
90 | #if DEBUG_HAL_VMM |
---|
91 | printk("\n[%s] thread[%x,%x] mapped PT1[0] in cluster %d : ppn %x / attr %x\n", |
---|
92 | __FUNCTION__, this->process->pid, this->trdid, local_cxy, ppn, attr ); |
---|
93 | #endif |
---|
94 | |
---|
95 | // create kcode vseg and register it in kernel VSL |
---|
96 | vseg_t * vseg = vmm_create_vseg( &process_zero, |
---|
97 | VSEG_TYPE_KCODE, |
---|
98 | info->kcode_base, |
---|
99 | info->kcode_size, |
---|
100 | 0, 0, // file ofset and file size (unused) |
---|
101 | XPTR_NULL, // no mapper |
---|
102 | local_cxy ); |
---|
103 | if( vseg == NULL ) |
---|
104 | { |
---|
105 | printk("\n[PANIC] in %s : cannot register vseg to VSL in cluster %x\n", |
---|
106 | __FUNCTION__ , local_cxy ); |
---|
107 | hal_core_sleep(); |
---|
108 | } |
---|
109 | |
---|
110 | #if DEBUG_HAL_VMM |
---|
111 | printk("\n[%s] thread[%x,%x] registered kcode vseg[%x,%x] in cluster %x\n", |
---|
112 | __FUNCTION__, this->process->pid, this->trdid, info->kcode_base, info->kcode_size, local_cxy ); |
---|
113 | hal_vmm_display( XPTR( local_cxy, &process_zero ) , true ); |
---|
114 | #endif |
---|
115 | |
---|
116 | return 0; |
---|
117 | |
---|
118 | } // end hal_vmm_kernel_init() |
---|
119 | |
---|
120 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
121 | // This function registers in the VMM of an user process identified by the <process> |
---|
122 | // argument all required kernel vsegs. |
---|
123 | // For TSAR, it registers in the user VSL the "kcode" vseg, from the local kernel VSL, |
---|
124 | // and register in the user GPT the big page[0] from the local kernel GPT. |
---|
125 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
126 | error_t hal_vmm_kernel_update( process_t * process ) |
---|
127 | { |
---|
128 | uint32_t attr; |
---|
129 | uint32_t ppn; |
---|
130 | |
---|
131 | // get cluster identifier |
---|
132 | cxy_t cxy = local_cxy; |
---|
133 | |
---|
134 | #if DEBUG_HAL_VMM |
---|
135 | thread_t * this = CURRENT_THREAD; |
---|
136 | printk("\n[%s] thread[%x,%x] enter in cluster %x \n", |
---|
137 | __FUNCTION__, this->process->pid, this->trdid, cxy ); |
---|
138 | hal_vmm_display( XPTR( local_cxy , process ) , true ); |
---|
139 | #endif |
---|
140 | |
---|
141 | // get extended pointer on local kernel GPT |
---|
142 | xptr_t k_gpt_xp = XPTR( cxy , &process_zero.vmm.gpt ); |
---|
143 | |
---|
144 | // get ppn and attributes from slot[0] of kernel GPT |
---|
145 | hal_gpt_get_pte( k_gpt_xp , 0 , &attr , &ppn ); |
---|
146 | |
---|
147 | #if DEBUG_HAL_VMM |
---|
148 | printk("\n[%s] thread[%x,%x] get PT1[0] ( ppn %x / attr %x ) from kernel GPT\n", |
---|
149 | __FUNCTION__, this->process->pid, this->trdid, ppn, attr ); |
---|
150 | #endif |
---|
151 | |
---|
152 | // get extended pointer on user GPT |
---|
153 | xptr_t u_gpt_xp = XPTR( cxy , &process->vmm.gpt ); |
---|
154 | |
---|
155 | // update user GPT : set PTE1 in slot[0] |
---|
156 | hal_gpt_set_pte( u_gpt_xp , 0 , attr , ppn ); |
---|
157 | |
---|
158 | #if DEBUG_HAL_VMM |
---|
159 | printk("\n[%s] thread[%x,%x] registered PT1[0] ( ppn %x / attr %x ) to user GPT\n", |
---|
160 | __FUNCTION__, this->process->pid, this->trdid, ppn, attr ); |
---|
161 | #endif |
---|
162 | |
---|
163 | // get pointer on the unique vseg registered in kernel VSL |
---|
164 | xptr_t root_xp = XPTR( cxy , &process_zero.vmm.vsegs_root ); |
---|
165 | xptr_t vseg_xp = XLIST_FIRST( root_xp , vseg_t , xlist ); |
---|
166 | vseg_t * vseg = GET_PTR( vseg_xp ); |
---|
167 | |
---|
168 | // check vsegs_nr |
---|
169 | assert( __FUNCTION__, (process_zero.vmm.vsegs_nr == 1 ) , |
---|
170 | "bad vsegs number in kernel VSL = %d\n", process_zero.vmm.vsegs_nr ); |
---|
171 | |
---|
172 | // update user VSL : register one new vseg for kcode |
---|
173 | vseg_t * new = vmm_create_vseg( process, |
---|
174 | vseg->type, |
---|
175 | vseg->min, |
---|
176 | vseg->max - vseg->min, |
---|
177 | 0, 0, // file ofset and file size (unused) |
---|
178 | XPTR_NULL, // no mapper |
---|
179 | local_cxy ); |
---|
180 | if( new == NULL ) |
---|
181 | { |
---|
182 | printk("\n[ERROR] in %s : cannot update user VSL in cluster %x\n", |
---|
183 | __FUNCTION__ , cxy ); |
---|
184 | return -1; |
---|
185 | } |
---|
186 | |
---|
187 | #if DEBUG_HAL_VMM |
---|
188 | printk("\n[%s] thread[%x,%x] created vseg %s ( base %x / size %x ) to user VSL\n", |
---|
189 | __FUNCTION__, this->process->pid, this->trdid, |
---|
190 | vseg_type_str(vseg->type) , vseg->min, (vseg->max - vseg->min) ); |
---|
191 | hal_vmm_display( XPTR( local_cxy , process ) , true ); |
---|
192 | #endif |
---|
193 | |
---|
194 | return 0; |
---|
195 | |
---|
196 | } // end hal_vmm_kernel_update() |
---|
197 | |
---|
198 | ////////////////////////////////////////// |
---|
199 | void hal_vmm_display( xptr_t process_xp, |
---|
200 | bool_t mapping ) |
---|
201 | { |
---|
202 | // get target process cluster and local pointer |
---|
203 | process_t * process_ptr = GET_PTR( process_xp ); |
---|
204 | cxy_t process_cxy = GET_CXY( process_xp ); |
---|
205 | |
---|
206 | // get local pointer on target process VMM |
---|
207 | vmm_t * vmm = &process_ptr->vmm; |
---|
208 | |
---|
209 | // get pointers on TXT0 chdev |
---|
210 | xptr_t txt0_xp = chdev_dir.txt_tx[0]; |
---|
211 | cxy_t txt0_cxy = GET_CXY( txt0_xp ); |
---|
212 | chdev_t * txt0_ptr = GET_PTR( txt0_xp ); |
---|
213 | |
---|
214 | // build extended pointer on TXT0 lock |
---|
215 | xptr_t txt_lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock ); |
---|
216 | |
---|
217 | // build extended pointers on VSL lock and VSL root |
---|
218 | xptr_t vsl_root_xp = XPTR( process_cxy , &vmm->vsegs_root ); |
---|
219 | xptr_t vsl_lock_xp = XPTR( process_cxy , &vmm->vsl_lock ); |
---|
220 | |
---|
221 | // get the locks protecting TXT0 and VSL |
---|
222 | remote_queuelock_acquire( vsl_lock_xp ); |
---|
223 | remote_busylock_acquire( txt_lock_xp ); |
---|
224 | |
---|
225 | // get PID and PT1 values |
---|
226 | pid_t pid = hal_remote_l32( XPTR( process_cxy , &process_ptr->pid ) ); |
---|
227 | uint32_t * pt1 = hal_remote_lpt( XPTR( process_cxy , &vmm->gpt.ptr ) ); |
---|
228 | |
---|
229 | nolock_printk("\n***** VSL and GPT / pid %x / cxy %x / PT1 %x / entry %x / cycle %d\n", |
---|
230 | pid , process_cxy , pt1 , vmm->entry_point , (uint32_t)hal_get_cycles() ); |
---|
231 | |
---|
232 | if( xlist_is_empty( vsl_root_xp ) ) |
---|
233 | { |
---|
234 | nolock_printk(" ... no vsegs registered\n"); |
---|
235 | } |
---|
236 | else // scan the list of vsegs |
---|
237 | { |
---|
238 | xptr_t iter_xp; |
---|
239 | xptr_t vseg_xp; |
---|
240 | vseg_t * vseg_ptr; |
---|
241 | cxy_t vseg_cxy; |
---|
242 | intptr_t min; |
---|
243 | intptr_t max; |
---|
244 | uint32_t type; |
---|
245 | intptr_t vpn_base; |
---|
246 | intptr_t vpn_size; |
---|
247 | |
---|
248 | XLIST_FOREACH( vsl_root_xp , iter_xp ) |
---|
249 | { |
---|
250 | vseg_xp = XLIST_ELEMENT( iter_xp , vseg_t , xlist ); |
---|
251 | vseg_ptr = GET_PTR( vseg_xp ); |
---|
252 | vseg_cxy = GET_CXY( vseg_xp ); |
---|
253 | |
---|
254 | type = hal_remote_l32( XPTR( vseg_cxy , &vseg_ptr->type ) ); |
---|
255 | min = (intptr_t)hal_remote_lpt( XPTR( vseg_cxy , &vseg_ptr->min ) ); |
---|
256 | max = (intptr_t)hal_remote_lpt( XPTR( vseg_cxy , &vseg_ptr->max ) ); |
---|
257 | vpn_size = (intptr_t)hal_remote_lpt( XPTR( vseg_cxy , &vseg_ptr->vpn_size ) ); |
---|
258 | vpn_base = (intptr_t)hal_remote_lpt( XPTR( vseg_cxy , &vseg_ptr->vpn_base ) ); |
---|
259 | |
---|
260 | nolock_printk(" - %s : base = %X / size = %X / npages = %d\n", |
---|
261 | vseg_type_str(type), min, max - min, vpn_size ); |
---|
262 | |
---|
263 | if( mapping ) |
---|
264 | { |
---|
265 | vpn_t vpn = vpn_base; |
---|
266 | vpn_t vpn_max = vpn_base + vpn_size; |
---|
267 | ppn_t ppn; |
---|
268 | uint32_t attr; |
---|
269 | |
---|
270 | while( vpn < vpn_max ) // scan the PTEs |
---|
271 | { |
---|
272 | hal_gpt_get_pte( XPTR( process_cxy , &vmm->gpt ) , vpn , &attr , &ppn ); |
---|
273 | |
---|
274 | if( attr & GPT_MAPPED ) |
---|
275 | { |
---|
276 | if( attr & GPT_SMALL ) |
---|
277 | { |
---|
278 | nolock_printk(" . SMALL : vpn = %X / attr = %X / ppn = %X\n", |
---|
279 | vpn , attr , ppn ); |
---|
280 | vpn++; |
---|
281 | } |
---|
282 | else |
---|
283 | { |
---|
284 | nolock_printk(" . BIG : vpn = %X / attr = %X / ppn = %X\n", |
---|
285 | vpn , attr , ppn ); |
---|
286 | vpn += 512; |
---|
287 | } |
---|
288 | } |
---|
289 | else |
---|
290 | { |
---|
291 | vpn++; |
---|
292 | } |
---|
293 | } |
---|
294 | } |
---|
295 | } |
---|
296 | } |
---|
297 | |
---|
298 | #if CONFIG_INSTRUMENTATION_GPT |
---|
299 | uint32_t pte1_events = hal_remote_l32( XPTR( process_cxy , &vmm->gpt.pte1_wait_events ) ); |
---|
300 | uint32_t pte1_iters = hal_remote_l32( XPTR( process_cxy , &vmm->gpt.pte1_wait_iters ) ); |
---|
301 | uint32_t pte1_ratio = (pte1_events == 0 ) ? 0 : (pte1_iters / pte1_events); |
---|
302 | nolock_printk("\nGPT_WAIT_PTE1 : %d events / %d iterations => %d iter/event\n", |
---|
303 | pte1_events, pte1_iters, pte1_ratio ); |
---|
304 | |
---|
305 | uint32_t pte2_events = hal_remote_l32( XPTR( process_cxy , &vmm->gpt.pte1_wait_events ) ); |
---|
306 | uint32_t pte2_iters = hal_remote_l32( XPTR( process_cxy , &vmm->gpt.pte1_wait_iters ) ); |
---|
307 | uint32_t pte2_ratio = (pte2_events == 0 ) ? 0 : (pte2_iters / pte2_events); |
---|
308 | nolock_printk("GPT_WAIT_PTE2 : %d events / %d iterations => %d iter/event\n", |
---|
309 | pte2_events, pte2_iters, pte2_ratio ); |
---|
310 | #endif |
---|
311 | |
---|
312 | // release locks |
---|
313 | remote_busylock_release( txt_lock_xp ); |
---|
314 | remote_queuelock_release( vsl_lock_xp ); |
---|
315 | |
---|
316 | } // hal_vmm_display() |
---|
317 | |
---|
318 | |
---|