[1] | 1 | /* |
---|
| 2 | * hal_gpt.c - implementation of the Generic Page Table API for TSAR-MIPS32 |
---|
| 3 | * |
---|
| 4 | * Author Alain Greiner (2016) |
---|
| 5 | * |
---|
| 6 | * Copyright (c) UPMC Sorbonne Universites |
---|
| 7 | * |
---|
| 8 | * This file is part of ALMOS-MKH. |
---|
| 9 | * |
---|
| 10 | * ALMOS-MKH.is free software; you can redistribute it and/or modify it |
---|
| 11 | * under the terms of the GNU General Public License as published by |
---|
| 12 | * the Free Software Foundation; version 2.0 of the License. |
---|
| 13 | * |
---|
| 14 | * ALMOS-MKH.is distributed in the hope that it will be useful, but |
---|
| 15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
| 17 | * General Public License for more details. |
---|
| 18 | * |
---|
| 19 | * You should have received a copy of the GNU General Public License |
---|
| 20 | * along with ALMOS-MKH.; if not, write to the Free Software Foundation, |
---|
| 21 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
| 22 | */ |
---|
| 23 | |
---|
| 24 | #include <hal_types.h> |
---|
| 25 | #include <hal_gpt.h> |
---|
| 26 | #include <hal_special.h> |
---|
| 27 | #include <printk.h> |
---|
| 28 | #include <bits.h> |
---|
| 29 | #include <process.h> |
---|
| 30 | #include <kmem.h> |
---|
| 31 | #include <thread.h> |
---|
| 32 | #include <cluster.h> |
---|
| 33 | #include <ppm.h> |
---|
| 34 | #include <page.h> |
---|
| 35 | |
---|
| 36 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 37 | // This define the masks for the TSAR MMU PTE attributes. (from TSAR MMU specification) |
---|
| 38 | // the GPT masks are derived from the TSAR MMU PTE attributes |
---|
| 39 | // in the TSAR specific hal_gpt_create() function. |
---|
| 40 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 41 | |
---|
| 42 | #define TSAR_MMU_PRESENT 0x80000000 |
---|
| 43 | #define TSAR_MMU_PTD1 0x40000000 |
---|
| 44 | #define TSAR_MMU_LOCAL 0x20000000 |
---|
| 45 | #define TSAR_MMU_REMOTE 0x10000000 |
---|
| 46 | #define TSAR_MMU_CACHABLE 0x08000000 |
---|
| 47 | #define TSAR_MMU_WRITABLE 0x04000000 |
---|
| 48 | #define TSAR_MMU_EXECUTABLE 0x02000000 |
---|
| 49 | #define TSAR_MMU_USER 0x01000000 |
---|
| 50 | #define TSAR_MMU_GLOBAL 0x00800000 |
---|
| 51 | #define TSAR_MMU_DIRTY 0x00400000 |
---|
| 52 | |
---|
| 53 | #define TSAR_MMU_COW 0x00000001 |
---|
| 54 | #define TSAR_MMU_SWAP 0x00000004 |
---|
| 55 | #define TSAR_MMU_LOCKED 0x00000008 |
---|
| 56 | |
---|
| 57 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 58 | // TSAR MMU related macros (from the TSAR MMU specification) |
---|
| 59 | // - IX1 on 11 bits |
---|
| 60 | // - IX2 on 9 bits |
---|
| 61 | // - PPN on 28 bits |
---|
| 62 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 63 | |
---|
| 64 | #define TSAR_MMU_IX1_WIDTH 11 |
---|
| 65 | #define TSAR_MMU_IX2_WIDTH 9 |
---|
| 66 | #define TSAR_MMU_PPN_WIDTH 28 |
---|
| 67 | |
---|
| 68 | #define TSAR_MMU_IX1_FROM_VPN( vpn ) ((vpn >> 9) & 0x7FF) |
---|
| 69 | #define TSAR_MMU_IX2_FROM_VPN( vpn ) (vpn & 0x1FF) |
---|
| 70 | |
---|
| 71 | #define TSAR_MMU_PTBA_FROM_PTE1( pte1 ) (pte1 & 0xFFFFFFF) |
---|
| 72 | #define TSAR_MMU_PPN_FROM_PTE1( pte1 ) ((pte1 & 0x7FFFF)<<9) |
---|
| 73 | #define TSAR_MMU_ATTR_FROM_PTE1( pte1 ) (pte1 & 0xFFC00000) |
---|
| 74 | |
---|
| 75 | #define TSAR_MMU_PPN_FROM_PTE2( pte2 ) (pte2 & 0x0FFFFFFF) |
---|
| 76 | #define TSAR_MMU_ATTR_FROM_PTE2( pte2 ) (pte2 & 0xFFC000FF) |
---|
| 77 | |
---|
| 78 | /**************************************************************************************** |
---|
| 79 | * These global variables defines the masks for the Generic Page Table Entry attributes, |
---|
| 80 | * and must be defined in all GPT implementation. |
---|
| 81 | ***************************************************************************************/ |
---|
| 82 | |
---|
| 83 | uint32_t GPT_MAPPED; |
---|
| 84 | uint32_t GPT_SMALL; |
---|
| 85 | uint32_t GPT_READABLE; |
---|
| 86 | uint32_t GPT_WRITABLE; |
---|
| 87 | uint32_t GPT_EXECUTABLE; |
---|
| 88 | uint32_t GPT_CACHABLE; |
---|
| 89 | uint32_t GPT_USER; |
---|
| 90 | uint32_t GPT_DIRTY; |
---|
| 91 | uint32_t GPT_ACCESSED; |
---|
| 92 | uint32_t GPT_GLOBAL; |
---|
| 93 | uint32_t GPT_COW; |
---|
| 94 | uint32_t GPT_SWAP; |
---|
| 95 | uint32_t GPT_LOCKED; |
---|
| 96 | |
---|
| 97 | ///////////////////////////////////// |
---|
| 98 | error_t hal_gpt_create( gpt_t * gpt ) |
---|
| 99 | { |
---|
| 100 | page_t * page; |
---|
| 101 | |
---|
| 102 | // check page size |
---|
[50] | 103 | if( CONFIG_PPM_PAGE_SIZE != 4096 ) |
---|
[1] | 104 | { |
---|
| 105 | printk("\n[PANIC] in %s : For TSAR, the page must be 4 Kbytes\n", __FUNCTION__ ); |
---|
| 106 | hal_core_sleep(); |
---|
| 107 | } |
---|
| 108 | |
---|
| 109 | // allocates 2 physical pages for PT1 |
---|
| 110 | kmem_req_t req; |
---|
| 111 | req.type = KMEM_PAGE; |
---|
| 112 | req.size = 1; // 2 small pages |
---|
| 113 | req.flags = AF_KERNEL | AF_ZERO; |
---|
| 114 | page = (page_t *)kmem_alloc( &req ); |
---|
| 115 | |
---|
| 116 | if( page == NULL ) |
---|
| 117 | { |
---|
| 118 | printk("\n[ERROR] in %s : cannot allocate physical memory for PT1\n", __FUNCTION__ ); |
---|
| 119 | return ENOMEM; |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | // initialize generic page table descriptor |
---|
[53] | 123 | gpt->ptr = ppm_page2vaddr( page ); |
---|
[1] | 124 | gpt->ppn = ppm_page2ppn( page ); |
---|
| 125 | gpt->page = page; |
---|
| 126 | |
---|
| 127 | // initialize PTE entries attributes masks |
---|
| 128 | GPT_MAPPED = TSAR_MMU_PRESENT; |
---|
| 129 | GPT_SMALL = TSAR_MMU_PTD1; |
---|
| 130 | GPT_READABLE = TSAR_MMU_PRESENT; |
---|
| 131 | GPT_WRITABLE = TSAR_MMU_WRITABLE; |
---|
| 132 | GPT_EXECUTABLE = TSAR_MMU_EXECUTABLE; |
---|
| 133 | GPT_CACHABLE = TSAR_MMU_CACHABLE; |
---|
| 134 | GPT_USER = TSAR_MMU_USER; |
---|
| 135 | GPT_DIRTY = TSAR_MMU_DIRTY; |
---|
| 136 | GPT_ACCESSED = TSAR_MMU_LOCAL | TSAR_MMU_REMOTE; |
---|
| 137 | GPT_GLOBAL = TSAR_MMU_GLOBAL; |
---|
| 138 | GPT_COW = TSAR_MMU_COW; |
---|
| 139 | GPT_SWAP = TSAR_MMU_SWAP; |
---|
| 140 | GPT_LOCKED = TSAR_MMU_LOCKED; |
---|
| 141 | |
---|
| 142 | return 0; |
---|
| 143 | } // end hal_gpt_create() |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | /////////////////////////////////// |
---|
| 147 | void hal_gpt_destroy( gpt_t * gpt ) |
---|
| 148 | { |
---|
| 149 | uint32_t ix1; |
---|
| 150 | uint32_t ix2; |
---|
| 151 | uint32_t * pt1; |
---|
| 152 | uint32_t pte1; |
---|
| 153 | ppn_t pt2_ppn; |
---|
| 154 | uint32_t * pt2; |
---|
| 155 | uint32_t attr; |
---|
| 156 | vpn_t vpn; |
---|
| 157 | kmem_req_t req; |
---|
| 158 | bool_t is_ref; |
---|
| 159 | |
---|
| 160 | // get pointer on calling process |
---|
| 161 | process_t * process = CURRENT_THREAD->process; |
---|
| 162 | |
---|
| 163 | // compute is_ref |
---|
[23] | 164 | is_ref = ( GET_CXY( process->ref_xp ) == local_cxy ); |
---|
[1] | 165 | |
---|
| 166 | // get pointer on PT1 |
---|
| 167 | pt1 = (uint32_t *)gpt->ptr; |
---|
| 168 | |
---|
| 169 | // scan the PT1 |
---|
| 170 | for( ix1 = 0 ; ix1 < 2048 ; ix1++ ) |
---|
| 171 | { |
---|
| 172 | pte1 = pt1[ix1]; |
---|
| 173 | if( (pte1 & GPT_MAPPED) != 0 ) // PTE1 valid |
---|
| 174 | { |
---|
| 175 | if( (pte1 & GPT_SMALL) == 0 ) // BIG page |
---|
| 176 | { |
---|
| 177 | if( (pte1 & GPT_USER) != 0 ) |
---|
| 178 | { |
---|
| 179 | // warning message |
---|
| 180 | printk("\n[WARNING] in %s : found an USER BIG page / ix1 = %d\n", |
---|
| 181 | __FUNCTION__ , ix1 ); |
---|
| 182 | |
---|
| 183 | // release the big physical page if reference cluster |
---|
| 184 | if( is_ref ) |
---|
| 185 | { |
---|
| 186 | vpn = (vpn_t)(ix1 << TSAR_MMU_IX2_WIDTH); |
---|
| 187 | hal_gpt_reset_pte( gpt , vpn ); |
---|
| 188 | } |
---|
| 189 | } |
---|
| 190 | } |
---|
| 191 | else // SMALL page |
---|
| 192 | { |
---|
| 193 | // get pointer on PT2 |
---|
| 194 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
[53] | 195 | pt2 = ppm_ppn2vaddr( pt2_ppn ); |
---|
[1] | 196 | |
---|
| 197 | // scan the PT2 to release all entries VALID and USER if reference cluster |
---|
| 198 | if( is_ref ) |
---|
| 199 | { |
---|
| 200 | for( ix2 = 0 ; ix2 < 512 ; ix2++ ) |
---|
| 201 | { |
---|
| 202 | attr = TSAR_MMU_ATTR_FROM_PTE2( pt2[2 * ix2] ); |
---|
| 203 | if( ((attr & GPT_MAPPED) != 0 ) && ((attr & GPT_USER) != 0) ) |
---|
| 204 | { |
---|
| 205 | // release the physical page |
---|
| 206 | vpn = (vpn_t)((ix1 << TSAR_MMU_IX2_WIDTH) | ix2); |
---|
| 207 | hal_gpt_reset_pte( gpt , vpn ); |
---|
| 208 | } |
---|
| 209 | } |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | // release the PT2 |
---|
| 213 | req.type = KMEM_PAGE; |
---|
[53] | 214 | req.ptr = ppm_vaddr2page( pt2 ); |
---|
[1] | 215 | kmem_free( &req ); |
---|
| 216 | } |
---|
| 217 | } |
---|
| 218 | } |
---|
| 219 | |
---|
| 220 | // release the PT1 |
---|
| 221 | req.type = KMEM_PAGE; |
---|
[53] | 222 | req.ptr = ppm_vaddr2page( pt1 ); |
---|
[1] | 223 | kmem_free( &req ); |
---|
| 224 | |
---|
| 225 | } // end hal_gpt_destroy() |
---|
| 226 | |
---|
| 227 | ///////////////////////////////// |
---|
| 228 | void hal_gpt_print( gpt_t * gpt ) |
---|
| 229 | { |
---|
| 230 | uint32_t ix1; |
---|
| 231 | uint32_t ix2; |
---|
| 232 | uint32_t * pt1; |
---|
| 233 | uint32_t pte1; |
---|
| 234 | ppn_t pt2_ppn; |
---|
| 235 | uint32_t * pt2; |
---|
| 236 | uint32_t pte2_attr; |
---|
| 237 | ppn_t pte2_ppn; |
---|
| 238 | |
---|
| 239 | printk("*** Page Table for process %x in cluster %x ***\n", |
---|
[23] | 240 | CURRENT_THREAD->process->pid , local_cxy ); |
---|
[1] | 241 | |
---|
| 242 | pt1 = (uint32_t *)gpt->ptr; |
---|
| 243 | |
---|
| 244 | // scan the PT1 |
---|
| 245 | for( ix1 = 0 ; ix1 < 2048 ; ix1++ ) |
---|
| 246 | { |
---|
| 247 | pte1 = pt1[ix1]; |
---|
| 248 | if( (pte1 & GPT_MAPPED) != 0 ) |
---|
| 249 | { |
---|
| 250 | if( (pte1 & GPT_SMALL) == 0 ) // BIG page |
---|
| 251 | { |
---|
| 252 | printk(" - BIG : pt1[%d] = %x\n", ix1 , pte1 ); |
---|
| 253 | } |
---|
| 254 | else // SMALL pages |
---|
| 255 | { |
---|
| 256 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
[53] | 257 | pt2 = ppm_ppn2vaddr( pt2_ppn ); |
---|
[1] | 258 | |
---|
| 259 | // scan the PT2 |
---|
| 260 | for( ix2 = 0 ; ix2 < 512 ; ix2++ ) |
---|
| 261 | { |
---|
| 262 | pte2_attr = TSAR_MMU_ATTR_FROM_PTE2( pt2[2 * ix2] ); |
---|
| 263 | pte2_ppn = TSAR_MMU_PPN_FROM_PTE2( pt2[2 * ix2 + 1] ); |
---|
| 264 | if( (pte2_attr & GPT_MAPPED) != 0 ) |
---|
| 265 | { |
---|
| 266 | printk(" - SMALL : pt1[%d] = %x / pt2[%d] / pt2[%d]\n", |
---|
| 267 | ix1 , pt1[ix1] , 2*ix2 , pte2_attr , 2*ix2+1 , pte2_ppn ); |
---|
| 268 | } |
---|
| 269 | } |
---|
| 270 | } |
---|
| 271 | } |
---|
| 272 | } |
---|
| 273 | } // end hal_gpt_print() |
---|
| 274 | |
---|
| 275 | |
---|
| 276 | /////////////////////////////////////// |
---|
| 277 | error_t hal_gpt_set_pte( gpt_t * gpt, |
---|
| 278 | vpn_t vpn, |
---|
| 279 | ppn_t ppn, |
---|
| 280 | uint32_t attr ) |
---|
| 281 | { |
---|
| 282 | uint32_t * pt1; // virtual base addres of PT1 |
---|
| 283 | volatile uint32_t * pte1_ptr; // pointer on PT1 entry |
---|
| 284 | uint32_t pte1; // PT1 entry value |
---|
| 285 | |
---|
| 286 | ppn_t pt2_ppn; // PPN of PT2 |
---|
| 287 | uint32_t * pt2; // virtual base address of PT2 |
---|
| 288 | |
---|
| 289 | uint32_t small; // requested PTE is for a small page |
---|
| 290 | bool_t atomic; // |
---|
| 291 | page_t * page; // pointer on new physical page descriptor |
---|
| 292 | |
---|
| 293 | uint32_t ix1; // index in PT1 |
---|
| 294 | uint32_t ix2; // index in PT2 |
---|
| 295 | |
---|
| 296 | // compute indexes in PT1 and PT2 |
---|
| 297 | ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); |
---|
| 298 | ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); |
---|
| 299 | |
---|
| 300 | pt1 = gpt->ptr; |
---|
| 301 | small = (attr & GPT_SMALL); |
---|
| 302 | |
---|
| 303 | // get PT1 entry value |
---|
| 304 | pte1_ptr = &pt1[ix1]; |
---|
| 305 | pte1 = *pte1_ptr; |
---|
| 306 | |
---|
| 307 | // Big pages (PTE1) are only set for the kernel vsegs, in the kernel init phase. |
---|
| 308 | // There is no risk of concurrent access. |
---|
| 309 | if( small == 0 ) |
---|
| 310 | { |
---|
| 311 | if( (pte1 != 0) || (attr & GPT_COW) ) |
---|
| 312 | { |
---|
| 313 | printk("\n[ERROR] in %s : set a big page in a mapped PT1 entry / PT1[%d] = %x\n", |
---|
| 314 | __FUNCTION__ , ix1 , pte1 ); |
---|
| 315 | return EINVAL; |
---|
| 316 | } |
---|
| 317 | |
---|
| 318 | // set the PTE1 |
---|
| 319 | *pte1_ptr = attr | (ppn >> 9); |
---|
| 320 | hal_wbflush(); |
---|
| 321 | return 0; |
---|
| 322 | } |
---|
| 323 | |
---|
| 324 | // From this point, the requested PTE is a PTE2 (small page) |
---|
| 325 | |
---|
| 326 | if( (pte1 & GPT_MAPPED) == 0 ) // the PT1 entry is not valid |
---|
| 327 | { |
---|
| 328 | // allocate one physical page for the PT2 |
---|
| 329 | kmem_req_t req; |
---|
| 330 | req.type = KMEM_PAGE; |
---|
| 331 | req.size = 0; // 1 small page |
---|
| 332 | req.flags = AF_KERNEL | AF_ZERO; |
---|
| 333 | page = (page_t *)kmem_alloc( &req ); |
---|
| 334 | if( page == NULL ) |
---|
| 335 | { |
---|
| 336 | printk("\n[ERROR] in %s : try to set a small page but cannot allocate PT2\n", |
---|
| 337 | __FUNCTION__ ); |
---|
| 338 | return ENOMEM; |
---|
| 339 | } |
---|
| 340 | pt2_ppn = ppm_page2ppn( page ); |
---|
[53] | 341 | pt2 = ppm_page2vaddr( page ); |
---|
[1] | 342 | |
---|
| 343 | // try to atomicaly set a PTD1 in the PT1 entry |
---|
| 344 | do |
---|
| 345 | { |
---|
| 346 | atomic = hal_atomic_cas( (void*)pte1, 0 , |
---|
| 347 | TSAR_MMU_PRESENT | TSAR_MMU_PTD1 | pt2_ppn ); |
---|
| 348 | } |
---|
| 349 | while( (atomic == false) && (*pte1_ptr == 0) ); |
---|
| 350 | |
---|
| 351 | if( atomic == false ) // the mapping has been done by another thread !!! |
---|
| 352 | { |
---|
| 353 | // release the allocated page |
---|
| 354 | ppm_free_pages( page ); |
---|
| 355 | |
---|
| 356 | // read PT1 entry again |
---|
| 357 | pte1 = *pte1_ptr; |
---|
| 358 | |
---|
| 359 | // compute PPN of PT2 base |
---|
| 360 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
| 361 | |
---|
| 362 | // compute pointer on PT2 base |
---|
[53] | 363 | pt2 = (uint32_t*)ppm_ppn2vaddr( pt2_ppn ); |
---|
[1] | 364 | } |
---|
| 365 | } |
---|
| 366 | else // The PT1 entry is valid |
---|
| 367 | { |
---|
| 368 | // This valid entry must be a PTD1 |
---|
| 369 | if( (pte1 & GPT_SMALL) == 0 ) |
---|
| 370 | { |
---|
| 371 | printk("\n[ERROR] in %s : set a small page in a big PT1 entry / PT1[%d] = %x\n", |
---|
| 372 | __FUNCTION__ , ix1 , pte1 ); |
---|
| 373 | return EINVAL; |
---|
| 374 | } |
---|
| 375 | |
---|
| 376 | // compute PPN of PT2 base |
---|
| 377 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
| 378 | |
---|
| 379 | // compute pointer on PT2 base |
---|
[53] | 380 | pt2 = (uint32_t*)ppm_ppn2vaddr( pt2_ppn ); |
---|
[1] | 381 | } |
---|
| 382 | |
---|
| 383 | // set PTE2 in this order |
---|
| 384 | pt2[2 * ix2 + 1] = ppn; |
---|
| 385 | hal_wbflush(); |
---|
| 386 | pt2[2 * ix2] = attr; |
---|
| 387 | hal_wbflush(); |
---|
| 388 | |
---|
| 389 | return 0; |
---|
| 390 | } // end of hal_gpt_set_pte() |
---|
| 391 | |
---|
| 392 | ///////////////////////////////////// |
---|
| 393 | void hal_gpt_get_pte( gpt_t * gpt, |
---|
| 394 | vpn_t vpn, |
---|
| 395 | uint32_t * attr, |
---|
| 396 | ppn_t * ppn ) |
---|
| 397 | { |
---|
| 398 | uint32_t * pt1; |
---|
| 399 | uint32_t pte1; |
---|
| 400 | |
---|
| 401 | uint32_t * pt2; |
---|
| 402 | ppn_t pt2_ppn; |
---|
| 403 | |
---|
| 404 | uint32_t ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); |
---|
| 405 | uint32_t ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); |
---|
| 406 | |
---|
| 407 | // get PTE1 value |
---|
| 408 | pt1 = gpt->ptr; |
---|
| 409 | pte1 = pt1[ix1]; |
---|
| 410 | |
---|
| 411 | if( (pte1 & GPT_MAPPED) == 0 ) // PT1 entry not present |
---|
| 412 | { |
---|
| 413 | *attr = 0; |
---|
| 414 | *ppn = 0; |
---|
| 415 | } |
---|
| 416 | |
---|
| 417 | if( (pte1 & GPT_SMALL) == 0 ) // it's a PTE1 |
---|
| 418 | { |
---|
| 419 | *attr = TSAR_MMU_ATTR_FROM_PTE1( pte1 ); |
---|
| 420 | *ppn = TSAR_MMU_PPN_FROM_PTE1( pte1 ) | (vpn & ((1<<TSAR_MMU_IX2_WIDTH)-1)); |
---|
| 421 | } |
---|
| 422 | else // it's a PTD1 |
---|
| 423 | { |
---|
| 424 | // compute PT2 base address |
---|
| 425 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
[53] | 426 | pt2 = (uint32_t*)ppm_ppn2vaddr( pt2_ppn ); |
---|
[1] | 427 | |
---|
| 428 | *ppn = pt2[2*ix2+1] & ((1<<TSAR_MMU_PPN_WIDTH)-1); |
---|
| 429 | *attr = pt2[2*ix2]; |
---|
| 430 | } |
---|
| 431 | } // end hal_gpt_get_pte() |
---|
| 432 | |
---|
| 433 | //////////////////////////////////// |
---|
| 434 | void hal_gpt_reset_pte( gpt_t * gpt, |
---|
| 435 | vpn_t vpn ) |
---|
| 436 | { |
---|
| 437 | uint32_t * pt1; // PT1 base address |
---|
| 438 | uint32_t pte1; // PT1 entry value |
---|
| 439 | |
---|
| 440 | ppn_t pt2_ppn; // PPN of PT2 |
---|
| 441 | uint32_t * pt2; // PT2 base address |
---|
| 442 | |
---|
| 443 | ppn_t ppn; // PPN of page to be released |
---|
| 444 | |
---|
| 445 | kmem_req_t req; |
---|
| 446 | |
---|
| 447 | uint32_t ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); |
---|
| 448 | uint32_t ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); |
---|
| 449 | |
---|
| 450 | // get PTE1 value |
---|
| 451 | pt1 = gpt->ptr; |
---|
| 452 | pte1 = pt1[ix1]; |
---|
| 453 | |
---|
| 454 | if( (pte1 & GPT_MAPPED) == 0 ) // PT1 entry not present |
---|
| 455 | { |
---|
| 456 | return; |
---|
| 457 | } |
---|
| 458 | |
---|
| 459 | if( (pte1 & GPT_SMALL) == 0 ) // it's a PTE1 |
---|
| 460 | { |
---|
| 461 | // get PPN |
---|
| 462 | ppn = TSAR_MMU_PPN_FROM_PTE1( pte1 ); |
---|
| 463 | |
---|
| 464 | // unmap the big page |
---|
| 465 | pt1[ix1] = 0; |
---|
| 466 | hal_wbflush(); |
---|
| 467 | |
---|
| 468 | // releases the big page |
---|
| 469 | req.type = KMEM_PAGE; |
---|
| 470 | req.size = 9; |
---|
| 471 | req.ptr = (void*)(ppn << CONFIG_PPM_PAGE_SHIFT); |
---|
| 472 | kmem_free( &req ); |
---|
| 473 | |
---|
| 474 | return; |
---|
| 475 | } |
---|
| 476 | else // it's a PTD1 |
---|
| 477 | { |
---|
| 478 | // compute PT2 base address |
---|
| 479 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
[53] | 480 | pt2 = (uint32_t*)ppm_ppn2vaddr( pt2_ppn ); |
---|
[1] | 481 | |
---|
| 482 | // get PPN |
---|
| 483 | ppn = TSAR_MMU_PPN_FROM_PTE2( pt2[2*ix2+1] ); |
---|
| 484 | |
---|
| 485 | // unmap the small page |
---|
| 486 | pt2[2*ix2] = 0; |
---|
| 487 | hal_wbflush(); |
---|
| 488 | pt2[2*ix2+1] = 0; |
---|
| 489 | hal_wbflush(); |
---|
| 490 | |
---|
| 491 | // releases the small page |
---|
| 492 | req.type = KMEM_PAGE; |
---|
| 493 | req.size = 0; |
---|
| 494 | req.ptr = (void*)(ppn << CONFIG_PPM_PAGE_SHIFT); |
---|
| 495 | kmem_free( &req ); |
---|
| 496 | |
---|
| 497 | return; |
---|
| 498 | } |
---|
| 499 | } // end hal_gpt_reset_pte() |
---|
| 500 | |
---|
| 501 | ////////////////////////////////////// |
---|
| 502 | error_t hal_gpt_lock_pte( gpt_t * gpt, |
---|
| 503 | vpn_t vpn ) |
---|
| 504 | { |
---|
| 505 | uint32_t * pt1; // PT1 base address |
---|
| 506 | volatile uint32_t * pte1_ptr; // address of PT1 entry |
---|
| 507 | uint32_t pte1; // value of PT1 entry |
---|
| 508 | |
---|
| 509 | uint32_t * pt2; // PT2 base address |
---|
| 510 | ppn_t pt2_ppn; // PPN of PT2 page if missing PT2 |
---|
| 511 | volatile uint32_t * pte2_ptr; // address of PT2 entry |
---|
| 512 | |
---|
| 513 | uint32_t attr; |
---|
| 514 | bool_t atomic; |
---|
| 515 | page_t * page; |
---|
| 516 | |
---|
| 517 | uint32_t ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); // index in PT1 |
---|
| 518 | uint32_t ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); // index in PT2 |
---|
| 519 | |
---|
| 520 | // get the PTE1 value |
---|
| 521 | pt1 = gpt->ptr; |
---|
| 522 | pte1_ptr = &pt1[ix1]; |
---|
| 523 | pte1 = *pte1_ptr; |
---|
| 524 | |
---|
| 525 | // If present, the page must be small |
---|
| 526 | if( ((pte1 & GPT_MAPPED) != 0) && ((pte1 & GPT_SMALL) == 0) ) |
---|
| 527 | { |
---|
| 528 | printk("\n[ERROR] in %s : try to lock a big page / PT1[%d] = %x\n", |
---|
| 529 | __FUNCTION__ , ix1 , pte1 ); |
---|
| 530 | return EINVAL; |
---|
| 531 | } |
---|
| 532 | |
---|
| 533 | if( (pte1 & GPT_MAPPED) == 0 ) // missing PT1 entry |
---|
| 534 | { |
---|
| 535 | // allocate one physical page for PT2 |
---|
| 536 | kmem_req_t req; |
---|
| 537 | req.type = KMEM_PAGE; |
---|
| 538 | req.size = 0; // 1 small page |
---|
| 539 | req.flags = AF_KERNEL | AF_ZERO; |
---|
| 540 | page = (page_t *)kmem_alloc( &req ); |
---|
[23] | 541 | |
---|
[1] | 542 | if( page == NULL ) |
---|
| 543 | { |
---|
| 544 | printk("\n[ERROR] in %s : try to set a small page but cannot allocate PT2\n", |
---|
| 545 | __FUNCTION__ ); |
---|
| 546 | return ENOMEM; |
---|
| 547 | } |
---|
[23] | 548 | |
---|
[1] | 549 | pt2_ppn = ppm_page2ppn( page ); |
---|
[53] | 550 | pt2 = ppm_page2vaddr( page ); |
---|
[1] | 551 | |
---|
| 552 | // try to set the PT1 entry |
---|
| 553 | do |
---|
| 554 | { |
---|
| 555 | atomic = hal_atomic_cas( (void*)pte1_ptr , 0 , |
---|
| 556 | TSAR_MMU_PRESENT | TSAR_MMU_PTD1 | pt2_ppn ); |
---|
| 557 | } |
---|
| 558 | while( (atomic == false) && (*pte1_ptr == 0) ); |
---|
| 559 | |
---|
| 560 | if( atomic == false ) // missing PT2 has been allocate by another core |
---|
| 561 | { |
---|
| 562 | // release the allocated page |
---|
| 563 | ppm_free_pages( page ); |
---|
| 564 | |
---|
| 565 | // read again the PTE1 |
---|
| 566 | pte1 = *pte1_ptr; |
---|
| 567 | |
---|
| 568 | // get the PT2 base address |
---|
| 569 | pt2_ppn = TSAR_MMU_PPN_FROM_PTE1( pte1 ); |
---|
[53] | 570 | pt2 = (uint32_t*)ppm_ppn2vaddr( pt2_ppn ); |
---|
[1] | 571 | } |
---|
| 572 | } |
---|
| 573 | else |
---|
| 574 | { |
---|
| 575 | // This valid entry must be a PTD1 |
---|
| 576 | if( (pte1 & GPT_SMALL) == 0 ) |
---|
| 577 | { |
---|
| 578 | printk("\n[ERROR] in %s : set a small page in a big PT1 entry / PT1[%d] = %x\n", |
---|
| 579 | __FUNCTION__ , ix1 , pte1 ); |
---|
| 580 | return EINVAL; |
---|
| 581 | } |
---|
| 582 | |
---|
| 583 | // compute PPN of PT2 base |
---|
| 584 | pt2_ppn = TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
| 585 | |
---|
| 586 | // compute pointer on PT2 base |
---|
[53] | 587 | pt2 = (uint32_t*)ppm_ppn2vaddr( pt2_ppn ); |
---|
[1] | 588 | } |
---|
| 589 | |
---|
| 590 | // from here we have the PT2 pointer |
---|
| 591 | |
---|
| 592 | // compute pointer on PTE2 |
---|
| 593 | pte2_ptr = &pt2[2 * ix2]; |
---|
| 594 | |
---|
| 595 | // try to atomically lock the PTE2 until success |
---|
| 596 | do |
---|
| 597 | { |
---|
| 598 | // busy waiting until GPT_LOCK == 0 |
---|
| 599 | do |
---|
| 600 | { |
---|
| 601 | attr = *pte2_ptr; |
---|
| 602 | hal_rdbar(); |
---|
| 603 | } |
---|
| 604 | while( (attr & GPT_LOCKED) != 0 ); |
---|
| 605 | |
---|
| 606 | // try to set the GPT_LOCK wit a CAS |
---|
| 607 | atomic = hal_atomic_cas( (void*)pte2_ptr, attr , (attr | GPT_LOCKED) ); |
---|
| 608 | } |
---|
| 609 | while( atomic == 0 ); |
---|
| 610 | |
---|
| 611 | return 0; |
---|
| 612 | } // end hal_gpt_lock_pte() |
---|
| 613 | |
---|
| 614 | //////////////////////////////////////// |
---|
| 615 | error_t hal_gpt_unlock_pte( gpt_t * gpt, |
---|
| 616 | vpn_t vpn ) |
---|
| 617 | { |
---|
| 618 | uint32_t * pt1; // PT1 base address |
---|
| 619 | uint32_t pte1; // value of PT1 entry |
---|
| 620 | |
---|
| 621 | uint32_t * pt2; // PT2 base address |
---|
| 622 | ppn_t pt2_ppn; // PPN of PT2 page if missing PT2 |
---|
| 623 | uint32_t * pte2_ptr; // address of PT2 entry |
---|
| 624 | |
---|
| 625 | uint32_t attr; // PTE2 attribute |
---|
| 626 | |
---|
| 627 | // compute indexes in P1 and PT2 |
---|
| 628 | uint32_t ix1 = TSAR_MMU_IX1_FROM_VPN( vpn ); // index in PT1 |
---|
| 629 | uint32_t ix2 = TSAR_MMU_IX2_FROM_VPN( vpn ); // index in PT2 |
---|
| 630 | |
---|
| 631 | // get pointer on PT1 base |
---|
| 632 | pt1 = (uint32_t*)gpt->ptr; |
---|
| 633 | |
---|
| 634 | // get PTE1 |
---|
| 635 | pte1 = pt1[ix1]; |
---|
| 636 | |
---|
| 637 | // check PTE1 present and small page |
---|
| 638 | if( ((pte1 & GPT_MAPPED) == 0) || ((pte1 & GPT_SMALL) == 0) ) |
---|
| 639 | { |
---|
| 640 | printk("\n[ERROR] in %s : try to unlock a big or undefined page / PT1[%d] = %x\n", |
---|
| 641 | __FUNCTION__ , ix1 , pte1 ); |
---|
| 642 | return EINVAL; |
---|
| 643 | } |
---|
| 644 | |
---|
| 645 | // get pointer on PT2 base |
---|
| 646 | pt2_ppn = TSAR_MMU_PPN_FROM_PTE1( pte1 ); |
---|
[53] | 647 | pt2 = ppm_ppn2vaddr( pt2_ppn ); |
---|
[1] | 648 | |
---|
| 649 | // get pointer on PTE2 |
---|
| 650 | pte2_ptr = &pt2[2 * ix2]; |
---|
| 651 | |
---|
| 652 | // get PTE2_ATTR |
---|
| 653 | attr = *pte2_ptr; |
---|
| 654 | |
---|
| 655 | // check PTE2 present and locked |
---|
| 656 | if( ((attr & GPT_MAPPED) == 0) || ((attr & GPT_LOCKED) == 0) ); |
---|
| 657 | { |
---|
| 658 | printk("\n[ERROR] in %s : try to unlock an undefined page / PT1[%d] = %x\n", |
---|
| 659 | __FUNCTION__ , ix1 , pte1 ); |
---|
| 660 | return EINVAL; |
---|
| 661 | } |
---|
| 662 | |
---|
| 663 | // reset GPT_LOCK |
---|
| 664 | *pte2_ptr = attr & !GPT_LOCKED; |
---|
| 665 | |
---|
| 666 | return 0; |
---|
| 667 | } // end hal_gpt_unlock_pte() |
---|
| 668 | |
---|
[23] | 669 | /////////////////////////////////////// |
---|
| 670 | error_t hal_gpt_copy( gpt_t * dst_gpt, |
---|
| 671 | gpt_t * src_gpt, |
---|
| 672 | bool_t cow ) |
---|
| 673 | { |
---|
| 674 | uint32_t ix1; // index in PT1 |
---|
| 675 | uint32_t ix2; // index in PT2 |
---|
[1] | 676 | |
---|
[23] | 677 | uint32_t * src_pt1; // local pointer on PT1 for SRC_GPT |
---|
| 678 | uint32_t * dst_pt1; // local pointer on PT1 for DST_GPT |
---|
| 679 | uint32_t * dst_pt2; // local pointer on PT2 for DST_GPT |
---|
| 680 | uint32_t * src_pt2; // local pointer on PT2 for SRC_GPT |
---|
[1] | 681 | |
---|
[23] | 682 | uint32_t pte1; |
---|
| 683 | uint32_t pte2_attr; |
---|
| 684 | uint32_t pte2_ppn; |
---|
| 685 | uint32_t pte2_writable; |
---|
[1] | 686 | |
---|
[23] | 687 | page_t * page; |
---|
[1] | 688 | |
---|
[23] | 689 | ppn_t src_pt2_ppn; |
---|
| 690 | ppn_t dst_pt2_ppn; |
---|
[1] | 691 | |
---|
[23] | 692 | // get pointers on PT1 for src_gpt & dst_gpt |
---|
| 693 | src_pt1 = (uint32_t *)src_gpt->ptr; |
---|
| 694 | dst_pt1 = (uint32_t *)dst_gpt->ptr; |
---|
[1] | 695 | |
---|
[23] | 696 | // scan the SRC_PT1 |
---|
| 697 | for( ix1 = 0 ; ix1 < 2048 ; ix1++ ) |
---|
| 698 | { |
---|
| 699 | pte1 = src_pt1[ix1]; |
---|
| 700 | if( (pte1 & GPT_MAPPED) != 0 ) |
---|
| 701 | { |
---|
| 702 | if( (pte1 & GPT_SMALL) == 0 ) // PTE1 => big kernel page |
---|
| 703 | { |
---|
| 704 | // big kernel pages are shared by all processes => copy it |
---|
| 705 | dst_pt1[ix1] = pte1; |
---|
| 706 | } |
---|
| 707 | else // PTD1 => smal pages |
---|
| 708 | { |
---|
| 709 | // allocate one physical page for a PT2 in DST_GPT |
---|
| 710 | kmem_req_t req; |
---|
| 711 | req.type = KMEM_PAGE; |
---|
| 712 | req.size = 0; // 1 small page |
---|
| 713 | req.flags = AF_KERNEL | AF_ZERO; |
---|
| 714 | page = (page_t *)kmem_alloc( &req ); |
---|
[1] | 715 | |
---|
[23] | 716 | if( page == NULL ) |
---|
| 717 | { |
---|
| 718 | // TODO release all memory allocated to DST_GPT |
---|
| 719 | printk("\n[ERROR] in %s : cannot allocate PT2\n", __FUNCTION__ ); |
---|
| 720 | return ENOMEM; |
---|
| 721 | } |
---|
| 722 | |
---|
| 723 | // get pointer on new PT2 in DST_GPT |
---|
[53] | 724 | dst_pt2 = (uint32_t *)ppm_page2vaddr( page ); |
---|
[23] | 725 | |
---|
| 726 | // set a new PTD1 in DST_GPT |
---|
| 727 | dst_pt2_ppn = (ppn_t)ppm_page2ppn( page ); |
---|
| 728 | dst_pt1[ix1] = TSAR_MMU_PRESENT | TSAR_MMU_PTD1 | dst_pt2_ppn; |
---|
| 729 | |
---|
| 730 | // get pointer on PT2 in SRC_GPT |
---|
| 731 | src_pt2_ppn = (ppn_t)TSAR_MMU_PTBA_FROM_PTE1( pte1 ); |
---|
[53] | 732 | src_pt2 = (uint32_t *)ppm_ppn2vaddr( src_pt2_ppn ); |
---|
[23] | 733 | |
---|
| 734 | // scan the SRC_PT2 |
---|
| 735 | for( ix2 = 0 ; ix2 < 512 ; ix2++ ) |
---|
| 736 | { |
---|
| 737 | // get attr & ppn from PTE2 |
---|
| 738 | pte2_attr = TSAR_MMU_ATTR_FROM_PTE2( src_pt2[2 * ix2] ); |
---|
| 739 | |
---|
| 740 | if( (pte2_attr & GPT_MAPPED) != 0 ) // valid PTE2 in SRC_GPT |
---|
| 741 | { |
---|
| 742 | // get GPT_WRITABLE & PPN |
---|
| 743 | pte2_writable = pte2_attr & GPT_WRITABLE; |
---|
| 744 | pte2_ppn = TSAR_MMU_PPN_FROM_PTE2( src_pt2[2 * ix2 + 1] ); |
---|
| 745 | |
---|
| 746 | // set a new PTE2 in DST_GPT |
---|
| 747 | dst_pt2[2*ix2] = pte2_attr; |
---|
| 748 | dst_pt2[2*ix2 + 1] = pte2_ppn; |
---|
| 749 | |
---|
| 750 | // handle Copy-On-Write |
---|
| 751 | if( cow && pte2_writable ) |
---|
| 752 | { |
---|
| 753 | // reset GPT_WRITABLE in both SRC_GPT and DST_GPT |
---|
| 754 | hal_atomic_and( &dst_pt2[2*ix2] , ~GPT_WRITABLE ); |
---|
| 755 | hal_atomic_and( &src_pt2[2*ix2] , ~GPT_WRITABLE ); |
---|
| 756 | |
---|
| 757 | // register PG_COW in page descriptor |
---|
| 758 | page = ppm_ppn2page( pte2_ppn ); |
---|
| 759 | hal_atomic_or( &page->flags , PG_COW ); |
---|
| 760 | hal_atomic_add( &page->fork_nr , 1 ); |
---|
| 761 | } |
---|
| 762 | } |
---|
| 763 | } // end loop on ix2 |
---|
| 764 | } |
---|
| 765 | } |
---|
| 766 | } // end loop ix1 |
---|
| 767 | |
---|
| 768 | hal_wbflush(); |
---|
| 769 | |
---|
| 770 | return 0; |
---|
| 771 | |
---|
| 772 | } // end hal_gpt_copy() |
---|
| 773 | |
---|