[1] | 1 | /* |
---|
| 2 | * kern/dqdt.h - Distributed Quad Decision Tree |
---|
[19] | 3 | * |
---|
[437] | 4 | * Author : Alain Greiner (2016,2017,2018) |
---|
[1] | 5 | * |
---|
| 6 | * Copyright (c) UPMC Sorbonne Universites |
---|
| 7 | * |
---|
| 8 | * This file is part of ALMOS-MKH |
---|
| 9 | * |
---|
| 10 | * ALMOS-kernel is free software; you can redistribute it and/or modify it |
---|
| 11 | * under the terms of the GNU General Public License as published by |
---|
| 12 | * the Free Software Foundation; version 2.0 of the License. |
---|
| 13 | * |
---|
| 14 | * ALMOS-kernel is distributed in the hope that it will be useful, but |
---|
| 15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
| 17 | * General Public License for more details. |
---|
| 18 | * |
---|
| 19 | * You should have received a copy of the GNU General Public License |
---|
| 20 | * along with ALMOS-kernel; if not, write to the Free Software Foundation, |
---|
| 21 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
| 22 | */ |
---|
| 23 | |
---|
| 24 | #ifndef _DQDT_H_ |
---|
| 25 | #define _DQDT_H_ |
---|
| 26 | |
---|
[14] | 27 | #include <kernel_config.h> |
---|
[457] | 28 | #include <hal_kernel_types.h> |
---|
[1] | 29 | #include <hal_atomic.h> |
---|
| 30 | |
---|
| 31 | /**************************************************************************************** |
---|
| 32 | * This DQDT infrastructure maintains a topological description of ressources usage |
---|
[582] | 33 | * in each cluster: number of threads, and number of physical pages allocated. |
---|
[1] | 34 | * |
---|
| 35 | * - If X_SIZE or Y_SIZE are equal to 1, it makes the assumption that the cluster |
---|
| 36 | * topology is a one dimensionnal vector, an build the smallest one-dimensionnal |
---|
[19] | 37 | * quad-tree covering this one-dimensionnal vector. If the number of clusters |
---|
[1] | 38 | * is not a power of 4, the tree is truncated as required. |
---|
[564] | 39 | * |
---|
[1] | 40 | * TODO : the mapping for the one dimensionnal topology is not implemented yet [AG]. |
---|
[19] | 41 | * |
---|
| 42 | * - If both Y_SIZE and Y_SIZE are larger than 1, it makes the assumption that |
---|
[437] | 43 | * the clusters topology is a 2D mesh. The [X,Y] coordinates of a cluster are |
---|
[582] | 44 | * obtained from the CXY identifier using the Rrelevant macros. |
---|
[1] | 45 | * X = CXY >> Y_WIDTH / Y = CXY & ((1<<Y_WIDTH)-1) |
---|
[582] | 46 | * - If the mesh X_SIZE and Y_SIZE dimensions are not equal, or are not power of 2, |
---|
| 47 | * or the mesh contains "holes" reported in the cluster_info[x][y] array, |
---|
[1] | 48 | * we build the smallest two dimensionnal quad-tree covering all clusters, |
---|
| 49 | * and this tree is truncated as required. |
---|
[582] | 50 | * - The mesh size is supposed to contain at most 32 * 32 clusters. |
---|
| 51 | * Therefore, it can exist at most 6 DQDT nodes in a given cluster: |
---|
[1] | 52 | * . Level 0 nodes exist on all clusters and have no children. |
---|
[19] | 53 | * . Level 1 nodes exist when both X and Y coordinates are multiple of 2 |
---|
[1] | 54 | * . Level 2 nodes exist when both X and Y coordinates are multiple of 4 |
---|
| 55 | * . Level 3 nodes exist when both X and Y coordinates are multiple of 8 |
---|
| 56 | * . Level 4 nodes exist when both X and Y coordinates are multiple of 16 |
---|
| 57 | * . Level 5 nodes exist when both X and Y coordinates are multiple of 32 |
---|
[582] | 58 | * - For nodes other than level 0, the placement is defined as follow: |
---|
| 59 | * . The root node is placed in the cluster containing the core executing |
---|
| 60 | * the dqdt_init() function. |
---|
| 61 | * . An intermediate node (representing a given sub-tree) is placed in one |
---|
| 62 | * cluster covered by the subtree, pseudo-randomly selected. |
---|
[1] | 63 | ***************************************************************************************/ |
---|
| 64 | |
---|
| 65 | /**************************************************************************************** |
---|
| 66 | * This structure describes a node of the DQDT. |
---|
| 67 | * The max number of children is 4, but it can be smaller for some nodes. |
---|
| 68 | * Level 0 nodes are the clusters, and have no children. |
---|
[582] | 69 | * The root node has no parent. |
---|
[1] | 70 | ***************************************************************************************/ |
---|
[582] | 71 | |
---|
[1] | 72 | typedef struct dqdt_node_s |
---|
| 73 | { |
---|
[583] | 74 | uint32_t level; /*! node level */ |
---|
| 75 | uint32_t arity; /*! actual children number in this node */ |
---|
| 76 | uint32_t threads; /*! current number of threads in macro-cluster */ |
---|
| 77 | uint32_t pages; /*! current number of pages in macro-cluster */ |
---|
| 78 | uint32_t cores; /*! number of active cores in macro cluster */ |
---|
| 79 | uint32_t clusters; /*! number of active cluster in macro cluster */ |
---|
| 80 | xptr_t parent; /*! extended pointer on parent node */ |
---|
| 81 | xptr_t children[2][2]; /*! extended pointers on children nodes */ |
---|
[1] | 82 | } |
---|
| 83 | dqdt_node_t; |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | /**************************************************************************************** |
---|
[582] | 87 | * This function recursively initializes the DQDT structure from informations |
---|
| 88 | * stored in cluster manager (x_size, y_size and cluster_info[x][y]. |
---|
| 89 | * It is executed in all clusters by the local CP0, to compute level_max and register |
---|
| 90 | * the DQDT root node in each cluster manager, but only CPO in cluster 0 build actually |
---|
| 91 | * the quad-tree covering all active clusters. |
---|
| 92 | * This initialisation can use remote_accesses, because the DQDT nodes are |
---|
| 93 | * allocated as global variables in the cluster_manager, and the local addresses |
---|
[1] | 94 | * are identical in all clusters. |
---|
| 95 | ***************************************************************************************/ |
---|
[582] | 96 | void dqdt_init( void ); |
---|
[1] | 97 | |
---|
| 98 | /**************************************************************************************** |
---|
[583] | 99 | * These local function update the total number of threads in level 0 DQDT node, |
---|
| 100 | * and immediately propagates the variation to the DQDT upper levels. |
---|
| 101 | * They are called on each thread creation or destruction. |
---|
[1] | 102 | ***************************************************************************************/ |
---|
[583] | 103 | void dqdt_increment_threads( void ); |
---|
| 104 | void dqdt_decrement_threads( void ); |
---|
[1] | 105 | |
---|
| 106 | /**************************************************************************************** |
---|
[438] | 107 | * This local function updates the total number of pages in level 0 DQDT node, |
---|
[583] | 108 | * and immediately propagates the variation to the DQDT upper levels. |
---|
| 109 | * They are called by PPM on each physical memory page allocation or release. |
---|
[1] | 110 | **************************************************************************************** |
---|
[583] | 111 | * @ order : ln2( number of small pages ) |
---|
[1] | 112 | ***************************************************************************************/ |
---|
[583] | 113 | void dqdt_increment_pages( uint32_t order ); |
---|
| 114 | void dqdt_decrement_pages( uint32_t order ); |
---|
[1] | 115 | |
---|
| 116 | /**************************************************************************************** |
---|
| 117 | * This function can be called in any cluster. It traverses the DQDT tree |
---|
| 118 | * from the root to the bottom, to analyse the computing load and select the cluster |
---|
| 119 | * with the lowest number ot threads to place a new process. |
---|
| 120 | **************************************************************************************** |
---|
| 121 | * @ returns the cluster identifier with the lowest computing load. |
---|
| 122 | ***************************************************************************************/ |
---|
[485] | 123 | cxy_t dqdt_get_cluster_for_process( void ); |
---|
[1] | 124 | |
---|
| 125 | /**************************************************************************************** |
---|
| 126 | * This function can be called in any cluster. It traverses the DQDT tree |
---|
[19] | 127 | * from the root to the bottom, to analyse the memory load and select the cluster |
---|
[1] | 128 | * with the lowest memory load for dynamic memory allocation with no locality constraint. |
---|
| 129 | **************************************************************************************** |
---|
| 130 | * @ returns the cluster identifier with the lowest memory load. |
---|
| 131 | ***************************************************************************************/ |
---|
[485] | 132 | cxy_t dqdt_get_cluster_for_memory( void ); |
---|
[1] | 133 | |
---|
[437] | 134 | /**************************************************************************************** |
---|
[438] | 135 | * This function displays on kernel TXT0 the DQDT state for all nodes in the quad-tree. |
---|
| 136 | * It traverses the quadtree from root to bottom, and can be called by a thread |
---|
| 137 | * running in any cluster |
---|
[437] | 138 | ***************************************************************************************/ |
---|
[485] | 139 | void dqdt_display( void ); |
---|
[1] | 140 | |
---|
[437] | 141 | |
---|
[1] | 142 | #endif /* _DQDT_H_ */ |
---|