source: trunk/kernel/kern/kernel_init.c @ 594

Last change on this file since 594 was 583, checked in by alain, 6 years ago

Improve signals.

File size: 60.2 KB
RevLine 
[1]1/*
2 * kernel_init.c - kernel parallel initialization
[127]3 *
[23]4 * Authors :  Mohamed Lamine Karaoui (2015)
5 *            Alain Greiner  (2016,2017)
[1]6 *
7 * Copyright (c) Sorbonne Universites
8 *
9 * This file is part of ALMOS-MKH.
10 *
11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
15 * ALMOS-MKH is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[1]26#include <errno.h>
[457]27#include <hal_kernel_types.h>
[1]28#include <hal_special.h>
29#include <hal_context.h>
[279]30#include <hal_irqmask.h>
[564]31#include <hal_macros.h>
[296]32#include <hal_ppm.h>
[14]33#include <barrier.h>
[564]34#include <xbarrier.h>
[407]35#include <remote_fifo.h>
[1]36#include <core.h>
37#include <list.h>
[68]38#include <xlist.h>
[204]39#include <xhtab.h>
[1]40#include <thread.h>
41#include <scheduler.h>
42#include <kmem.h>
43#include <cluster.h>
44#include <string.h>
45#include <memcpy.h>
46#include <ppm.h>
47#include <page.h>
[5]48#include <chdev.h>
[1]49#include <boot_info.h>
50#include <dqdt.h>
51#include <dev_mmc.h>
[5]52#include <dev_dma.h>
53#include <dev_iob.h>
[1]54#include <dev_ioc.h>
[5]55#include <dev_txt.h>
[1]56#include <dev_pic.h>
57#include <printk.h>
58#include <vfs.h>
[23]59#include <devfs.h>
[68]60#include <mapper.h>
[1]61
62///////////////////////////////////////////////////////////////////////////////////////////
[279]63// All the following global variables are replicated in all clusters.
[1]64// They are initialised by the kernel_init() function.
[14]65//
[127]66// WARNING : The section names have been defined to control the base addresses of the
[14]67// boot_info structure and the idle thread descriptors, through the kernel.ld script:
[127]68// - the boot_info structure is built by the bootloader, and used by kernel_init.
69//   it must be the first object in the kdata segment.
[14]70// - the array of idle threads descriptors must be placed on the first page boundary after
71//   the boot_info structure in the kdata segment.
[1]72///////////////////////////////////////////////////////////////////////////////////////////
73
[5]74// This variable defines the local boot_info structure
75__attribute__((section(".kinfo")))
[14]76boot_info_t          boot_info;
[5]77
[14]78// This variable defines the "idle" threads descriptors array
79__attribute__((section(".kidle")))
[381]80char                 idle_threads[CONFIG_THREAD_DESC_SIZE *
[14]81                                   CONFIG_MAX_LOCAL_CORES]   CONFIG_PPM_PAGE_ALIGNED;
82
[127]83// This variable defines the local cluster manager
[5]84__attribute__((section(".kdata")))
[19]85cluster_t            cluster_manager                         CONFIG_CACHE_LINE_ALIGNED;
[1]86
[564]87// This variable defines the TXT_TX[0] chdev
[188]88__attribute__((section(".kdata")))
[564]89chdev_t              txt0_tx_chdev                           CONFIG_CACHE_LINE_ALIGNED;
[188]90
[564]91// This variable defines the TXT_RX[0] chdev
[539]92__attribute__((section(".kdata")))
[564]93chdev_t              txt0_rx_chdev                           CONFIG_CACHE_LINE_ALIGNED;
[539]94
[14]95// This variables define the kernel process0 descriptor
[5]96__attribute__((section(".kdata")))
[19]97process_t            process_zero                            CONFIG_CACHE_LINE_ALIGNED;
[1]98
[14]99// This variable defines extended pointers on the distributed chdevs
[5]100__attribute__((section(".kdata")))
[14]101chdev_directory_t    chdev_dir                               CONFIG_CACHE_LINE_ALIGNED;
[1]102
[188]103// This variable contains the input IRQ indexes for the IOPIC controller
[5]104__attribute__((section(".kdata")))
[246]105iopic_input_t        iopic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]106
[188]107// This variable contains the input IRQ indexes for the LAPIC controller
[5]108__attribute__((section(".kdata")))
[188]109lapic_input_t        lapic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]110
[14]111// This variable defines the local cluster identifier
[5]112__attribute__((section(".kdata")))
[14]113cxy_t                local_cxy                               CONFIG_CACHE_LINE_ALIGNED;
[5]114
[127]115// This variable is used for CP0 cores synchronisation in kernel_init()
[5]116__attribute__((section(".kdata")))
[564]117xbarrier_t           global_barrier                          CONFIG_CACHE_LINE_ALIGNED;
[1]118
[127]119// This variable is used for local cores synchronisation in kernel_init()
[14]120__attribute__((section(".kdata")))
121barrier_t            local_barrier                           CONFIG_CACHE_LINE_ALIGNED;
122
[127]123// This variable defines the array of supported File System contexts
[50]124__attribute__((section(".kdata")))
125vfs_ctx_t            fs_context[FS_TYPES_NR]                 CONFIG_CACHE_LINE_ALIGNED;
126
[490]127// kernel_init is the entry point defined in hal/tsar_mips32/kernel.ld
[564]128// It is used by the bootloader.
[490]129extern void kernel_init( boot_info_t * info );
[50]130
[564]131// This array is used for debug, and describes the kernel locks usage,
132// It must be kept consistent with the defines in kernel_config.h file.
133char * lock_type_str[] =
134{
135    "unused_0",              //  0
[408]136
[564]137    "CLUSTER_KCM",           //  1
138    "PPM_FREE",              //  2
139    "SCHED_STATE",           //  3
140    "VMM_STACK",             //  4
141    "VMM_MMAP",              //  5
142    "VFS_CTX",               //  6
143    "KCM_STATE",             //  7
144    "KHM_STATE",             //  8
145    "HTAB_STATE",            //  9
146
147    "THREAD_JOIN",           // 10
148    "VFS_MAIN",              // 11
149    "CHDEV_QUEUE",           // 12
150    "CHDEV_TXT0",            // 13
151    "CHDEV_TXTLIST",         // 14
152    "PAGE_STATE",            // 15
153    "MUTEX_STATE",           // 16
154    "CONDVAR_STATE",         // 17
155    "SEM_STATE",             // 18
156    "XHTAB_STATE",           // 19
157
158    "unused_20",             // 20
159
160    "CLUSTER_PREFTBL",       // 21
161    "PPM_DIRTY",             // 22
162
163    "CLUSTER_LOCALS",        // 23
164    "CLUSTER_COPIES",        // 24
165    "PROCESS_CHILDREN",      // 25
166    "PROCESS_USERSYNC",      // 26
167    "PROCESS_FDARRAY",       // 27
168
169    "MAPPER_STATE",          // 28
170    "PROCESS_THTBL",         // 29
171
172    "PROCESS_CWD",           // 30
173    "VFS_INODE",             // 31
174    "VFS_FILE",              // 32
175    "VMM_VSL",               // 33
[583]176    "VMM_GPT",               // 34
[564]177};       
178
179// these debug variables are used to analyse the sys_read() and sys_write() syscalls timing
180
[438]181#if DEBUG_SYS_READ
[407]182uint32_t   enter_sys_read;
183uint32_t   exit_sys_read;
184
[435]185uint32_t   enter_devfs_read;
186uint32_t   exit_devfs_read;
[407]187
188uint32_t   enter_txt_read;
189uint32_t   exit_txt_read;
190
[435]191uint32_t   enter_chdev_cmd_read;
192uint32_t   exit_chdev_cmd_read;
[407]193
[435]194uint32_t   enter_chdev_server_read;
195uint32_t   exit_chdev_server_read;
[407]196
[435]197uint32_t   enter_tty_cmd_read;
198uint32_t   exit_tty_cmd_read;
[407]199
[435]200uint32_t   enter_tty_isr_read;
201uint32_t   exit_tty_isr_read;
[407]202#endif
203
[435]204// these debug variables are used to analyse the sys_write() syscall timing
205
[438]206#if DEBUG_SYS_WRITE   
[435]207uint32_t   enter_sys_write;
208uint32_t   exit_sys_write;
209
210uint32_t   enter_devfs_write;
211uint32_t   exit_devfs_write;
212
213uint32_t   enter_txt_write;
214uint32_t   exit_txt_write;
215
216uint32_t   enter_chdev_cmd_write;
217uint32_t   exit_chdev_cmd_write;
218
219uint32_t   enter_chdev_server_write;
220uint32_t   exit_chdev_server_write;
221
222uint32_t   enter_tty_cmd_write;
223uint32_t   exit_tty_cmd_write;
224
225uint32_t   enter_tty_isr_write;
226uint32_t   exit_tty_isr_write;
227#endif
228
[564]229// intrumentation variables : cumulated costs per syscall type in cluster
230uint32_t   syscalls_cumul_cost[SYSCALLS_NR];
231
232// intrumentation variables : number of syscalls per syscal type in cluster
233uint32_t   syscalls_occurences[SYSCALLS_NR];
234
[1]235///////////////////////////////////////////////////////////////////////////////////////////
[5]236// This function displays the ALMOS_MKH banner.
[1]237///////////////////////////////////////////////////////////////////////////////////////////
[5]238static void print_banner( uint32_t nclusters , uint32_t ncores )
[127]239{
[5]240    printk("\n"
241           "                    _        __    __     _____     ______         __    __    _   __   _     _   \n"
242           "          /\\       | |      |  \\  /  |   / ___ \\   / _____|       |  \\  /  |  | | / /  | |   | |  \n"
243           "         /  \\      | |      |   \\/   |  | /   \\ | | /             |   \\/   |  | |/ /   | |   | |  \n"
244           "        / /\\ \\     | |      | |\\  /| |  | |   | | | |_____   ___  | |\\  /| |  |   /    | |___| |  \n"
245           "       / /__\\ \\    | |      | | \\/ | |  | |   | | \\_____  \\ |___| | | \\/ | |  |   \\    |  ___  |  \n"
246           "      / ______ \\   | |      | |    | |  | |   | |       | |       | |    | |  | |\\ \\   | |   | |  \n"
247           "     / /      \\ \\  | |____  | |    | |  | \\___/ |  _____/ |       | |    | |  | | \\ \\  | |   | |  \n"
248           "    /_/        \\_\\ |______| |_|    |_|   \\_____/  |______/        |_|    |_|  |_|  \\_\\ |_|   |_|  \n"
249           "\n\n\t\t Advanced Locality Management Operating System / Multi Kernel Hybrid\n"
[457]250           "\n\n\t\t %s / %d cluster(s) / %d core(s) per cluster\n\n",
251           CONFIG_ALMOS_VERSION , nclusters , ncores );
[5]252}
[1]253
254
[5]255///////////////////////////////////////////////////////////////////////////////////////////
[564]256// This function initializes the TXT_TX[0] and TXT_RX[0] chdev descriptors, implementing
257// the "kernel terminal", shared by all kernel instances for debug messages.
258// These chdev are implemented as global variables (replicated in all clusters),
259// because this terminal is used before the kmem allocator initialisation, but only
260// the chdevs in cluster 0 are registered in the "chdev_dir" directory.
[127]261// As this TXT0 chdev supports only the TXT_SYNC_WRITE command, we don't create
262// a server thread, we don't allocate a WTI, and we don't initialize the waiting queue.
[564]263// Note: The TXT_RX[0] chdev is created, but is not used by ALMOS-MKH (september 2018).
[5]264///////////////////////////////////////////////////////////////////////////////////////////
265// @ info    : pointer on the local boot-info structure.
266///////////////////////////////////////////////////////////////////////////////////////////
[564]267static void __attribute__ ((noinline)) txt0_device_init( boot_info_t * info )
[5]268{
269    boot_device_t * dev_tbl;         // pointer on array of devices in boot_info
[127]270    uint32_t        dev_nr;          // actual number of devices in this cluster
271    xptr_t          base;            // remote pointer on segment base
272    uint32_t        func;            // device functional index
[5]273    uint32_t        impl;            // device implementation index
[127]274    uint32_t        i;               // device index in dev_tbl
275    uint32_t        x;               // X cluster coordinate
276    uint32_t        y;               // Y cluster coordinate
[188]277    uint32_t        channels;        // number of channels
[1]278
[5]279    // get number of peripherals and base of devices array from boot_info
[127]280    dev_nr      = info->ext_dev_nr;
[5]281    dev_tbl     = info->ext_dev;
[1]282
[14]283    // loop on external peripherals to find TXT device
[127]284    for( i = 0 ; i < dev_nr ; i++ )
285    {
[5]286        base        = dev_tbl[i].base;
[188]287        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
288        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
289        channels    = dev_tbl[i].channels;
[5]290
[127]291        if (func == DEV_FUNC_TXT )
[5]292        {
[564]293            // initialize TXT_TX[0] chdev
294            txt0_tx_chdev.func    = func;
295            txt0_tx_chdev.impl    = impl;
296            txt0_tx_chdev.channel = 0;
297            txt0_tx_chdev.base    = base;
298            txt0_tx_chdev.is_rx   = false;
299            remote_busylock_init( XPTR( local_cxy , &txt0_tx_chdev.wait_lock ),
300                                  LOCK_CHDEV_TXT0 );
[188]301           
[564]302            // initialize TXT_RX[0] chdev
303            txt0_rx_chdev.func    = func;
304            txt0_rx_chdev.impl    = impl;
305            txt0_rx_chdev.channel = 0;
306            txt0_rx_chdev.base    = base;
307            txt0_rx_chdev.is_rx   = true;
308            remote_busylock_init( XPTR( local_cxy , &txt0_rx_chdev.wait_lock ),
309                                  LOCK_CHDEV_TXT0 );
310           
311            // make TXT specific initialisations
312            dev_txt_init( &txt0_tx_chdev );                 
313            dev_txt_init( &txt0_rx_chdev );
[14]314
[564]315            // register TXT_TX[0] & TXT_RX[0] in chdev_dir[x][y]
316            // for all valid clusters             
[5]317            for( x = 0 ; x < info->x_size ; x++ )
318            {
[564]319                for( y = 0 ; y < info->y_size ; y++ )
[5]320                {
[564]321                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
322
323                    if( cluster_is_active( cxy ) )
324                    {
325                        hal_remote_s64( XPTR( cxy , &chdev_dir.txt_tx[0] ) ,
326                                        XPTR( local_cxy , &txt0_tx_chdev ) );
327                        hal_remote_s64( XPTR( cxy , &chdev_dir.txt_rx[0] ) ,
328                                        XPTR( local_cxy , &txt0_rx_chdev ) );
[559]329                    }
[5]330                }
331            }
[564]332
333            hal_fence();
[5]334        }
[188]335        } // end loop on devices
336}  // end txt0_device_init()
[5]337
[1]338///////////////////////////////////////////////////////////////////////////////////////////
[188]339// This function allocates memory and initializes the chdev descriptors for the internal
340// peripherals contained in the local cluster, other than the LAPIC, as specified by
341// the boot_info, including the linking with the driver for the specified implementation.
342// The relevant entries in all copies of the devices directory are initialised.
[1]343///////////////////////////////////////////////////////////////////////////////////////////
344// @ info    : pointer on the local boot-info structure.
345///////////////////////////////////////////////////////////////////////////////////////////
[564]346static void __attribute__ ((noinline)) internal_devices_init( boot_info_t * info )
[1]347{
[188]348    boot_device_t * dev_tbl;         // pointer on array of internaldevices in boot_info
349        uint32_t        dev_nr;          // actual number of devices in this cluster
350        xptr_t          base;            // remote pointer on segment base
351    uint32_t        func;            // device functionnal index
352    uint32_t        impl;            // device implementation index
353        uint32_t        i;               // device index in dev_tbl
354        uint32_t        x;               // X cluster coordinate
355        uint32_t        y;               // Y cluster coordinate
356        uint32_t        channels;        // number of channels
357        uint32_t        channel;         // channel index
358        chdev_t       * chdev_ptr;       // local pointer on created chdev
[1]359
[188]360    // get number of internal peripherals and base from boot_info
361        dev_nr  = info->int_dev_nr;
362    dev_tbl = info->int_dev;
[1]363
[188]364    // loop on internal peripherals
365        for( i = 0 ; i < dev_nr ; i++ )
366        {
367        base        = dev_tbl[i].base;
368        channels    = dev_tbl[i].channels;
369        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
370        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
[204]371 
[188]372        //////////////////////////
373        if( func == DEV_FUNC_MMC ) 
[5]374        {
[1]375
[564]376            // check channels
377            if( channels != 1 )
[580]378            {
379                printk("\n[PANIC] in %s : MMC device must be single channel\n",
380                __FUNCTION__ );
381                hal_core_sleep();
382            }
[564]383
[188]384            // create chdev in local cluster
385            chdev_ptr = chdev_create( func,
386                                      impl,
387                                      0,          // channel
388                                      false,      // direction
389                                      base );
[14]390
[564]391            // check memory
392            if( chdev_ptr == NULL )
[580]393            {
394                printk("\n[PANIC] in %s : cannot create MMC chdev\n",
395                __FUNCTION__ );
396                hal_core_sleep();
397            }
[188]398           
399            // make MMC specific initialisation
400            dev_mmc_init( chdev_ptr );
[1]401
[188]402            // set the MMC field in all chdev_dir[x][y] structures
403            for( x = 0 ; x < info->x_size ; x++ )
[1]404            {
[564]405                for( y = 0 ; y < info->y_size ; y++ )
[188]406                {
[564]407                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
408
409                    if( cluster_is_active( cxy ) )
410                    {
411                        hal_remote_s64( XPTR( cxy , &chdev_dir.mmc[local_cxy] ), 
[559]412                                        XPTR( local_cxy , chdev_ptr ) );
413                    }
[188]414                }
[1]415            }
[188]416
[438]417#if( DEBUG_KERNEL_INIT & 0x1 )
418if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[407]419printk("\n[DBG] %s : created MMC in cluster %x / chdev = %x\n",
420__FUNCTION__ , local_cxy , chdev_ptr );
[389]421#endif
[14]422        }
[188]423        ///////////////////////////////
424        else if( func == DEV_FUNC_DMA )
[127]425        {
[188]426            // create one chdev per channel in local cluster
427            for( channel = 0 ; channel < channels ; channel++ )
428            {   
429                // create chdev[channel] in local cluster
430                chdev_ptr = chdev_create( func,
431                                          impl,
432                                          channel,
433                                          false,     // direction
434                                          base );
[5]435
[564]436                // check memory
437                if( chdev_ptr == NULL )
[580]438                {
439                    printk("\n[PANIC] in %s : cannot create DMA chdev\n",
440                    __FUNCTION__ );
441                    hal_core_sleep();
442                }
[564]443           
[188]444                // make DMA specific initialisation
445                dev_dma_init( chdev_ptr );     
[127]446
[188]447                // initialize only the DMA[channel] field in the local chdev_dir[x][y]
448                // structure because the DMA device is not remotely accessible.
449                chdev_dir.dma[channel] = XPTR( local_cxy , chdev_ptr );
[5]450
[438]451#if( DEBUG_KERNEL_INIT & 0x1 )
452if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[407]453printk("\n[DBG] %s : created DMA[%d] in cluster %x / chdev = %x\n",
[389]454__FUNCTION__ , channel , local_cxy , chdev_ptr );
455#endif
[188]456            }
[14]457        }
[127]458    }
[5]459}  // end internal_devices_init()
460
461///////////////////////////////////////////////////////////////////////////////////////////
[188]462// This function allocates memory and initializes the chdev descriptors for the 
[408]463// external (shared) peripherals other than the IOPIC, as specified by the boot_info.
464// This includes the dynamic linking with the driver for the specified implementation.
[188]465// These chdev descriptors are distributed on all clusters, using a modulo on a global
[408]466// index, identically computed in all clusters.
467// This function is executed in all clusters by the CP0 core, that computes a global index
468// for all external chdevs. Each CP0 core creates only the chdevs that must be placed in
469// the local cluster, because the global index matches the local index.
[188]470// The relevant entries in all copies of the devices directory are initialised.
[5]471///////////////////////////////////////////////////////////////////////////////////////////
472// @ info    : pointer on the local boot-info structure.
473///////////////////////////////////////////////////////////////////////////////////////////
474static void external_devices_init( boot_info_t * info )
475{
[188]476    boot_device_t * dev_tbl;         // pointer on array of external devices in boot_info
477        uint32_t        dev_nr;          // actual number of external devices
478        xptr_t          base;            // remote pointer on segment base
[5]479    uint32_t        func;            // device functionnal index
480    uint32_t        impl;            // device implementation index
[188]481        uint32_t        i;               // device index in dev_tbl
482        uint32_t        x;               // X cluster coordinate
483        uint32_t        y;               // Y cluster coordinate
484        uint32_t        channels;        // number of channels
485        uint32_t        channel;         // channel index
486        uint32_t        directions;      // number of directions (1 or 2)
487        uint32_t        rx;              // direction index (0 or 1)
[127]488    chdev_t       * chdev;           // local pointer on one channel_device descriptor
[188]489    uint32_t        ext_chdev_gid;   // global index of external chdev
[5]490
491    // get number of peripherals and base of devices array from boot_info
[127]492    dev_nr      = info->ext_dev_nr;
[5]493    dev_tbl     = info->ext_dev;
494
[188]495    // initializes global index (PIC is already placed in cluster 0
496    ext_chdev_gid = 1;
497
[5]498    // loop on external peripherals
[127]499    for( i = 0 ; i < dev_nr ; i++ )
500    {
[188]501        base     = dev_tbl[i].base;
502        channels = dev_tbl[i].channels;
503        func     = FUNC_FROM_TYPE( dev_tbl[i].type );
504        impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
[5]505
[407]506        // There is one chdev per direction for NIC and for TXT
507        if((func == DEV_FUNC_NIC) || (func == DEV_FUNC_TXT)) directions = 2;
508        else                                                 directions = 1;
[5]509
[407]510        // do nothing for ROM, that does not require a device descriptor.
[5]511        if( func == DEV_FUNC_ROM ) continue;
512
[188]513        // do nothing for PIC, that is already initialized
514        if( func == DEV_FUNC_PIC ) continue;
[5]515
[188]516        // check PIC device initialized
[564]517        if( chdev_dir.pic == XPTR_NULL )
[580]518        {
519            printk("\n[PANIC] in %s : PIC device must be initialized first\n",
520            __FUNCTION__ );
521            hal_core_sleep();
522        }
[188]523
524        // check external device functionnal type
[564]525        if( (func != DEV_FUNC_IOB) && (func != DEV_FUNC_IOC) && (func != DEV_FUNC_TXT) &&
526            (func != DEV_FUNC_NIC) && (func != DEV_FUNC_FBF) )
[580]527        {
528            printk("\n[PANIC] in %s : undefined peripheral type\n",
529            __FUNCTION__ );
530            hal_core_sleep();
531        }
[188]532
[127]533        // loops on channels
[428]534        for( channel = 0 ; channel < channels ; channel++ )
[127]535        {
[5]536            // loop on directions
[188]537            for( rx = 0 ; rx < directions ; rx++ )
[1]538            {
[564]539                // skip TXT0 that has already been initialized
540                if( (func == DEV_FUNC_TXT) && (channel == 0) ) continue;
[428]541
[564]542                // all kernel instances compute the target cluster for all chdevs,
543                // computing the global index ext_chdev_gid[func,channel,direction]
544                cxy_t target_cxy;
545                while( 1 )
[536]546                {
[564]547                    uint32_t offset     = ext_chdev_gid % ( info->x_size * info->y_size );
548                    uint32_t x          = offset / info->y_size;
549                    uint32_t y          = offset % info->y_size;
[536]550
[564]551                    target_cxy = HAL_CXY_FROM_XY( x , y );
552
553                    // exit loop if target cluster is active
554                    if( cluster_is_active( target_cxy ) ) break;
555               
556                    // increment global index otherwise
557                    ext_chdev_gid++;
[550]558                }
559
[5]560                // allocate and initialize a local chdev
[407]561                // when local cluster matches target cluster
[5]562                if( target_cxy == local_cxy )
[1]563                {
[5]564                    chdev = chdev_create( func,
565                                          impl,
566                                          channel,
[188]567                                          rx,          // direction
[5]568                                          base );
569
[564]570                    if( chdev == NULL )
[580]571                    {
572                        printk("\n[PANIC] in %s : cannot allocate chdev\n",
573                        __FUNCTION__ );
574                        hal_core_sleep();
575                    }
[5]576
577                    // make device type specific initialisation
578                    if     ( func == DEV_FUNC_IOB ) dev_iob_init( chdev );
579                    else if( func == DEV_FUNC_IOC ) dev_ioc_init( chdev );
580                    else if( func == DEV_FUNC_TXT ) dev_txt_init( chdev );
581                    else if( func == DEV_FUNC_NIC ) dev_nic_init( chdev );
[188]582                    else if( func == DEV_FUNC_FBF ) dev_fbf_init( chdev );
[5]583
[127]584                    // all external (shared) devices are remotely accessible
[5]585                    // initialize the replicated chdev_dir[x][y] structures
[127]586                    // defining the extended pointers on chdev descriptors
587                    xptr_t * entry;
588
[188]589                    if(func==DEV_FUNC_IOB             ) entry  = &chdev_dir.iob;
590                    if(func==DEV_FUNC_IOC             ) entry  = &chdev_dir.ioc[channel];
591                    if(func==DEV_FUNC_FBF             ) entry  = &chdev_dir.fbf[channel];
[407]592                    if((func==DEV_FUNC_TXT) && (rx==0)) entry  = &chdev_dir.txt_tx[channel];
593                    if((func==DEV_FUNC_TXT) && (rx==1)) entry  = &chdev_dir.txt_rx[channel];
[188]594                    if((func==DEV_FUNC_NIC) && (rx==0)) entry  = &chdev_dir.nic_tx[channel];
595                    if((func==DEV_FUNC_NIC) && (rx==1)) entry  = &chdev_dir.nic_rx[channel];
[127]596
[1]597                    for( x = 0 ; x < info->x_size ; x++ )
598                    {
[564]599                        for( y = 0 ; y < info->y_size ; y++ )
[1]600                        {
[564]601                            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
602
603                            if( cluster_is_active( cxy ) )
604                            {
605                                hal_remote_s64( XPTR( cxy , entry ),
[559]606                                                XPTR( local_cxy , chdev ) );
607                            }
[5]608                        }
[1]609                    }
610
[438]611#if( DEBUG_KERNEL_INIT & 0x1 )
612if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[407]613printk("\n[DBG] %s : create chdev %s / channel = %d / rx = %d / cluster %x / chdev = %x\n",
614__FUNCTION__ , chdev_func_str( func ), channel , rx , local_cxy , chdev );
[389]615#endif
[5]616                }  // end if match
617
[19]618                // increment chdev global index (matching or not)
[188]619                ext_chdev_gid++;
[5]620
621            } // end loop on directions
622        }  // end loop on channels
[188]623        } // end loop on devices
624}  // end external_devices_init()
[5]625
[188]626///////////////////////////////////////////////////////////////////////////////////////////
627// This function is called by CP0 in cluster 0 to allocate memory and initialize the PIC
[407]628// device, namely the informations attached to the external IOPIC controller, that
629// must be replicated in all clusters (struct iopic_input).
[188]630// This initialisation must be done before other devices initialisation because the IRQ
[407]631// routing infrastructure is required for both internal and external devices init.
[188]632///////////////////////////////////////////////////////////////////////////////////////////
633// @ info    : pointer on the local boot-info structure.
634///////////////////////////////////////////////////////////////////////////////////////////
[564]635static void __attribute__ ((noinline)) iopic_init( boot_info_t * info )
[188]636{
637    boot_device_t * dev_tbl;         // pointer on boot_info external devices array
638        uint32_t        dev_nr;          // actual number of external devices
639        xptr_t          base;            // remote pointer on segment base
640    uint32_t        func;            // device functionnal index
641    uint32_t        impl;            // device implementation index
642        uint32_t        i;               // device index in dev_tbl
643    uint32_t        x;               // cluster X coordinate
644    uint32_t        y;               // cluster Y coordinate
645    bool_t          found;           // IOPIC found
646        chdev_t       * chdev;           // pointer on PIC chdev descriptor
647
648    // get number of external peripherals and base of array from boot_info
649        dev_nr      = info->ext_dev_nr;
650    dev_tbl     = info->ext_dev;
651
[564]652    // avoid GCC warning
653    base        = XPTR_NULL;
654    impl        = 0;
655
[188]656    // loop on external peripherals to get the IOPIC 
657        for( i = 0 , found = false ; i < dev_nr ; i++ )
658        {
659        func = FUNC_FROM_TYPE( dev_tbl[i].type );
660
[127]661        if( func == DEV_FUNC_PIC )
[1]662        {
[188]663            base     = dev_tbl[i].base;
664            impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
665            found    = true;
666            break;
667        }
668    }
[5]669
[564]670    // check PIC existence
671    if( found == false )
[580]672    {
673        printk("\n[PANIC] in %s : PIC device not found\n",
674        __FUNCTION__ );
675        hal_core_sleep();
676    }
[1]677
[407]678    // allocate and initialize the PIC chdev in cluster 0
679    chdev = chdev_create( DEV_FUNC_PIC,
[188]680                          impl,
681                          0,      // channel
682                          0,      // direction,
683                          base );
[5]684
[564]685    // check memory
686    if( chdev == NULL )
[580]687    {
688        printk("\n[PANIC] in %s : no memory for PIC chdev\n",
689        __FUNCTION__ );
690        hal_core_sleep();
691    }
[5]692
[188]693    // make PIC device type specific initialisation
694    dev_pic_init( chdev );
[1]695
[407]696    // register, in all clusters, the extended pointer
697    // on PIC chdev in "chdev_dir" array
[188]698    xptr_t * entry = &chdev_dir.pic;   
699               
700    for( x = 0 ; x < info->x_size ; x++ )
701    {
[564]702        for( y = 0 ; y < info->y_size ; y++ )
[188]703        {
[564]704            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
705
706            if( cluster_is_active( cxy ) )
707            {
708                hal_remote_s64( XPTR( cxy , entry ) , 
[559]709                                XPTR( local_cxy , chdev ) );
710            }
[188]711        }
712    }
[1]713
[407]714    // initialize, in all clusters, the "iopic_input" structure
[188]715    // defining how external IRQs are connected to IOPIC
716
[407]717    // register default value for unused inputs
718    for( x = 0 ; x < info->x_size ; x++ )
719    {
[564]720        for( y = 0 ; y < info->y_size ; y++ )
[407]721        {
[564]722            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
723
724            if( cluster_is_active( cxy ) )
725            {
726                hal_remote_memset( XPTR( cxy , &iopic_input ), 
727                                   0xFF , sizeof(iopic_input_t) );
[559]728            }
[407]729        }
730    }
731
732    // register input IRQ index for valid inputs
[577]733    uint32_t   id;             // input IRQ index
734    uint8_t    valid;          // input IRQ is connected
735    uint32_t   type;           // source device type
736    uint8_t    channel;        // source device channel
737    uint8_t    is_rx;          // source device direction
738    uint32_t * ptr = NULL;     // local pointer on one field in iopic_input stucture
[407]739
[188]740    for( id = 0 ; id < CONFIG_MAX_EXTERNAL_IRQS ; id++ )
741    {
742        valid   = dev_tbl[i].irq[id].valid;
743        type    = dev_tbl[i].irq[id].dev_type;
744        channel = dev_tbl[i].irq[id].channel;
745        is_rx   = dev_tbl[i].irq[id].is_rx;
[407]746        func    = FUNC_FROM_TYPE( type );
[188]747
[407]748        // get pointer on relevant field in iopic_input
749        if( valid )
[188]750        {
[407]751            if     ( func == DEV_FUNC_IOC )                 ptr = &iopic_input.ioc[channel]; 
752            else if((func == DEV_FUNC_TXT) && (is_rx == 0)) ptr = &iopic_input.txt_tx[channel];
753            else if((func == DEV_FUNC_TXT) && (is_rx != 0)) ptr = &iopic_input.txt_rx[channel];
[492]754            else if((func == DEV_FUNC_NIC) && (is_rx == 0)) ptr = &iopic_input.nic_tx[channel];
755            else if((func == DEV_FUNC_NIC) && (is_rx != 0)) ptr = &iopic_input.nic_rx[channel];
756            else if( func == DEV_FUNC_IOB )                 ptr = &iopic_input.iob;
[580]757            else
758            {
759                printk("\n[PANIC] in %s : illegal source device for IOPIC input\n",
760                __FUNCTION__ );
761                hal_core_sleep();
762            }
[188]763
[407]764            // set one entry in all "iopic_input" structures
765            for( x = 0 ; x < info->x_size ; x++ )
766            {
[564]767                for( y = 0 ; y < info->y_size ; y++ )
[407]768                {
[564]769                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
770
771                    if( cluster_is_active( cxy ) )
772                    {
773                        hal_remote_s64( XPTR( cxy , ptr ) , id ); 
[559]774                    }
[407]775                }
776            }
[188]777        }
778    } 
779
[438]780#if( DEBUG_KERNEL_INIT & 0x1 )
[564]781if( hal_tim_stamp() > DEBUG_KERNEL_INIT )
[407]782{
783    printk("\n[DBG] %s created PIC chdev in cluster %x at cycle %d\n",
784    __FUNCTION__ , local_cxy , (uint32_t)hal_time_stamp() );
785    dev_pic_inputs_display();
786}
[389]787#endif
[188]788   
789}  // end iopic_init()
790
[1]791///////////////////////////////////////////////////////////////////////////////////////////
[188]792// This function is called by all CP0s in all cluster to complete the PIC device
793// initialisation, namely the informations attached to the LAPIC controller.
794// This initialisation must be done after the IOPIC initialisation, but before other
795// devices initialisation because the IRQ routing infrastructure is required for both
796// internal and external devices initialisation.
797///////////////////////////////////////////////////////////////////////////////////////////
798// @ info    : pointer on the local boot-info structure.
799///////////////////////////////////////////////////////////////////////////////////////////
[564]800static void __attribute__ ((noinline)) lapic_init( boot_info_t * info )
[188]801{
802    boot_device_t * dev_tbl;      // pointer on boot_info internal devices array
803    uint32_t        dev_nr;       // number of internal devices
804    uint32_t        i;            // device index in dev_tbl
805        xptr_t          base;         // remote pointer on segment base
806    uint32_t        func;         // device functionnal type in boot_info
807    bool_t          found;        // LAPIC found
808
809    // get number of internal peripherals and base
810        dev_nr      = info->int_dev_nr;
811    dev_tbl     = info->int_dev;
812
813    // loop on internal peripherals to get the lapic device
814        for( i = 0 , found = false ; i < dev_nr ; i++ )
815        {
816        func = FUNC_FROM_TYPE( dev_tbl[i].type );
817
818        if( func == DEV_FUNC_ICU )
819        {
820            base     = dev_tbl[i].base;
821            found    = true;
822            break;
823        }
824    }
825
826    // if the LAPIC controller is not defined in the boot_info,
827    // we simply don't initialize the PIC extensions in the kernel,
828    // making the assumption that the LAPIC related informations
829    // are hidden in the hardware specific PIC driver.
830    if( found )
831    {
832        // initialise the PIC extensions for
833        // the core descriptor and core manager extensions
834        dev_pic_extend_init( (uint32_t *)GET_PTR( base ) );
835
836        // initialize the "lapic_input" structure
837        // defining how internal IRQs are connected to LAPIC
838        uint32_t        id;
839        uint8_t         valid;
840        uint8_t         channel;
841        uint32_t        func;
842
843        for( id = 0 ; id < CONFIG_MAX_INTERNAL_IRQS ; id++ )
844        {
845            valid    = dev_tbl[i].irq[id].valid;
846            func     = FUNC_FROM_TYPE( dev_tbl[i].irq[id].dev_type );
847            channel  = dev_tbl[i].irq[id].channel;
848
849            if( valid ) // only valid local IRQs are registered
850            {
851                if     ( func == DEV_FUNC_MMC ) lapic_input.mmc = id;
852                else if( func == DEV_FUNC_DMA ) lapic_input.dma[channel] = id;
[580]853                else
854                {
855                    printk("\n[PANIC] in %s : illegal source device for LAPIC input\n",
856                    __FUNCTION__ );
857                    hal_core_sleep();
858                }
[188]859            }
860        }
861    }
862}  // end lapic_init()
863
864///////////////////////////////////////////////////////////////////////////////////////////
[14]865// This static function returns the identifiers of the calling core.
866///////////////////////////////////////////////////////////////////////////////////////////
867// @ info    : pointer on boot_info structure.
868// @ lid     : [out] core local index in cluster.
869// @ cxy     : [out] cluster identifier.
870// @ lid     : [out] core global identifier (hardware).
871// @ return 0 if success / return EINVAL if not found.
872///////////////////////////////////////////////////////////////////////////////////////////
[564]873static error_t __attribute__ ((noinline)) get_core_identifiers( boot_info_t * info,
874                                                                lid_t       * lid,
875                                                                cxy_t       * cxy,
876                                                                gid_t       * gid )
[14]877{
[127]878    uint32_t   i;
[14]879    gid_t      global_id;
[19]880
[14]881    // get global identifier from hardware register
[127]882    global_id = hal_get_gid();
[14]883
884    // makes an associative search in boot_info to get (cxy,lid) from global_id
885    for( i = 0 ; i < info->cores_nr ; i++ )
886    {
887        if( global_id == info->core[i].gid )
888        {
889            *lid = info->core[i].lid;
890            *cxy = info->core[i].cxy;
891            *gid = global_id;
892            return 0;
893        }
894    }
895    return EINVAL;
[19]896}
[14]897
898///////////////////////////////////////////////////////////////////////////////////////////
[1]899// This function is the entry point for the kernel initialisation.
[19]900// It is executed by all cores in all clusters, but only core[0], called CP0,
[14]901// initializes the shared resources such as the cluster manager, or the local peripherals.
[19]902// To comply with the multi-kernels paradigm, it accesses only local cluster memory, using
903// only information contained in the local boot_info_t structure, set by the bootloader.
[103]904// Only CP0 in cluster 0 print the log messages.
[1]905///////////////////////////////////////////////////////////////////////////////////////////
906// @ info    : pointer on the local boot-info structure.
907///////////////////////////////////////////////////////////////////////////////////////////
908void kernel_init( boot_info_t * info )
909{
[204]910    lid_t        core_lid = -1;             // running core local index
911    cxy_t        core_cxy = -1;             // running core cluster identifier
912    gid_t        core_gid;                  // running core hardware identifier
913    cluster_t  * cluster;                   // pointer on local cluster manager
914    core_t     * core;                      // pointer on running core descriptor
915    thread_t   * thread;                    // pointer on idle thread descriptor
916
917    xptr_t       vfs_root_inode_xp;         // extended pointer on VFS root inode
918    xptr_t       devfs_dev_inode_xp;        // extended pointer on DEVFS dev inode   
919    xptr_t       devfs_external_inode_xp;   // extended pointer on DEVFS external inode       
920    xptr_t       devfs_internal_inode_xp;   // extended pointer on DEVFS internal inode       
921
[1]922    error_t      error;
[285]923    reg_t        status;                    // running core status register
[1]924
[188]925    /////////////////////////////////////////////////////////////////////////////////
926    // STEP 0 : Each core get its core identifier from boot_info, and makes
927    //          a partial initialisation of its private idle thread descriptor.
928    //          CP0 initializes the "local_cxy" global variable.
929    //          CP0 in cluster IO initializes the TXT0 chdev to print log messages.
930    /////////////////////////////////////////////////////////////////////////////////
931
[23]932    error = get_core_identifiers( info,
[14]933                                  &core_lid,
934                                  &core_cxy,
935                                  &core_gid );
[1]936
[582]937    // all CP0s initialize cluster identifier
[14]938    if( core_lid == 0 ) local_cxy = info->cxy;
[1]939
[127]940    // each core gets a pointer on its private idle thread descriptor
941    thread = (thread_t *)( idle_threads + (core_lid * CONFIG_THREAD_DESC_SIZE) );
[68]942
[127]943    // each core registers this thread pointer in hardware register
[68]944    hal_set_current_thread( thread );
[71]945
[407]946    // each core register core descriptor pointer in idle thread descriptor
947    thread->core = &LOCAL_CLUSTER->core_tbl[core_lid];
948
[564]949    // each core initializes the idle thread locks counters
950    thread->busylocks = 0;
[124]951
[564]952#if DEBUG_BUSYLOCK
953    // each core initialise the idle thread list of busylocks
954    xlist_root_init( XPTR( local_cxy , &thread->busylocks_root ) );
955#endif
[14]956
[582]957    // all CP0s initialize cluster info
[564]958    if( core_lid == 0 ) cluster_info_init( info );
959
960    // CP0 in cluster 0 initialises TXT0 chdev descriptor
961    if( (core_lid == 0) && (core_cxy == 0) ) txt0_device_init( info );
962
[14]963    /////////////////////////////////////////////////////////////////////////////////
[564]964    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
965                                        (info->x_size * info->y_size) );
[14]966    barrier_wait( &local_barrier , info->cores_nr );
[437]967    /////////////////////////////////////////////////////////////////////////////////
[14]968
[438]969#if DEBUG_KERNEL_INIT
[583]970if( (core_lid ==  0) & (local_cxy == 0) ) 
[564]971printk("\n[DBG] %s : exit barrier 0 : TXT0 initialized / sr %x / cycle %d\n",
972__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]973#endif
[14]974
[188]975    /////////////////////////////////////////////////////////////////////////////
[407]976    // STEP 1 : all cores check core identifier.
[188]977    //          CP0 initializes the local cluster manager.
978    //          This includes the memory allocators.
979    /////////////////////////////////////////////////////////////////////////////
980
981    // all cores check identifiers
[14]982    if( error )
[580]983    {
984        printk("\n[PANIC] in %s : illegal core : gid %x / cxy %x / lid %d",
985        __FUNCTION__, core_lid, core_cxy, core_lid );
986        hal_core_sleep();
987    }
[1]988
[582]989    // all CP0s initialise DQDT (only CPO in cluster 0 build the quad-tree)
990    if( core_lid == 0 ) dqdt_init();
991   
992    // all CP0s initialize other cluster manager complex structures
[14]993    if( core_lid == 0 )
[1]994    {
[564]995        error = cluster_manager_init( info );
[1]996
[14]997        if( error )
[580]998        {
999             printk("\n[PANIC] in %s : cannot initialize cluster manager in cluster %x\n",
1000             __FUNCTION__, local_cxy );
1001             hal_core_sleep();
1002        }
[14]1003    }
[5]1004
[14]1005    /////////////////////////////////////////////////////////////////////////////////
[564]1006    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1007                                        (info->x_size * info->y_size) );
[14]1008    barrier_wait( &local_barrier , info->cores_nr );
1009    /////////////////////////////////////////////////////////////////////////////////
[1]1010
[438]1011#if DEBUG_KERNEL_INIT
1012if( (core_lid ==  0) & (local_cxy == 0) ) 
[564]1013printk("\n[DBG] %s : exit barrier 1 : clusters initialised / sr %x / cycle %d\n",
1014__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1015#endif
[1]1016
[188]1017    /////////////////////////////////////////////////////////////////////////////////
[407]1018    // STEP 2 : CP0 initializes the process_zero descriptor.
[296]1019    //          CP0 in cluster 0 initializes the IOPIC device.
[188]1020    /////////////////////////////////////////////////////////////////////////////////
1021
1022    // all cores get pointer on local cluster manager & core descriptor
[14]1023    cluster = &cluster_manager;
[127]1024    core    = &cluster->core_tbl[core_lid];
[1]1025
[188]1026    // all CP0s initialize the process_zero descriptor
[428]1027    if( core_lid == 0 ) process_zero_create( &process_zero );
[5]1028
[188]1029    // CP0 in cluster 0 initializes the PIC chdev,
1030    if( (core_lid == 0) && (local_cxy == 0) ) iopic_init( info );
1031   
1032    ////////////////////////////////////////////////////////////////////////////////
[564]1033    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1034                                        (info->x_size * info->y_size) );
[188]1035    barrier_wait( &local_barrier , info->cores_nr );
1036    ////////////////////////////////////////////////////////////////////////////////
[127]1037
[438]1038#if DEBUG_KERNEL_INIT
1039if( (core_lid ==  0) & (local_cxy == 0) ) 
[564]1040printk("\n[DBG] %s : exit barrier 2 : PIC initialised / sr %x / cycle %d\n",
1041__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1042#endif
[1]1043
[188]1044    ////////////////////////////////////////////////////////////////////////////////
[407]1045    // STEP 3 : CP0 initializes the distibuted LAPIC descriptor.
1046    //          CP0 initializes the internal chdev descriptors
1047    //          CP0 initialize the local external chdev descriptors
[188]1048    ////////////////////////////////////////////////////////////////////////////////
[5]1049
[279]1050    // all CP0s initialize their local LAPIC extension,
1051    if( core_lid == 0 ) lapic_init( info );
1052
[188]1053    // CP0 scan the internal (private) peripherals,
1054    // and allocates memory for the corresponding chdev descriptors.
1055    if( core_lid == 0 ) internal_devices_init( info );
1056       
[1]1057
[50]1058    // All CP0s contribute to initialise external peripheral chdev descriptors.
[14]1059    // Each CP0[cxy] scan the set of external (shared) peripherals (but the TXT0),
1060    // and allocates memory for the chdev descriptors that must be placed
[127]1061    // on the (cxy) cluster according to the global index value.
[188]1062
[14]1063    if( core_lid == 0 ) external_devices_init( info );
[1]1064
[14]1065    /////////////////////////////////////////////////////////////////////////////////
[564]1066    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1067                                        (info->x_size * info->y_size) );
[14]1068    barrier_wait( &local_barrier , info->cores_nr );
1069    /////////////////////////////////////////////////////////////////////////////////
[5]1070
[438]1071#if DEBUG_KERNEL_INIT
1072if( (core_lid ==  0) & (local_cxy == 0) ) 
[564]1073printk("\n[DBG] %s : exit barrier 3 : all chdev initialised / sr %x / cycle %d\n",
1074__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1075#endif
[1]1076
[438]1077#if( DEBUG_KERNEL_INIT & 1 )
[443]1078if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1079chdev_dir_display();
1080#endif
1081   
[188]1082    /////////////////////////////////////////////////////////////////////////////////
[279]1083    // STEP 4 : All cores enable IPI (Inter Procesor Interrupt),
1084    //          Alh cores initialize IDLE thread.
[188]1085    //          Only CP0 in cluster 0 creates the VFS root inode.
1086    //          It access the boot device to initialize the file system context.
1087    /////////////////////////////////////////////////////////////////////////////////
1088
[564]1089    // All cores enable IPI
[279]1090    dev_pic_enable_ipi();
1091    hal_enable_irq( &status );
1092
[296]1093    // all cores initialize the idle thread descriptor
[457]1094    thread_idle_init( thread,
1095                      THREAD_IDLE,
1096                      &thread_idle_func,
1097                      NULL,
1098                      core_lid );
[1]1099
[296]1100    // all cores unblock idle thread, and register it in scheduler
1101    thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_GLOBAL );
[103]1102    core->scheduler.idle = thread;
[1]1103
[438]1104#if( DEBUG_KERNEL_INIT & 1 )
[407]1105sched_display( core_lid );
[389]1106#endif
[14]1107
[188]1108    // CPO in cluster 0 creates the VFS root
1109    if( (core_lid ==  0) && (local_cxy == 0 ) ) 
[14]1110    {
[188]1111        vfs_root_inode_xp = XPTR_NULL;
[23]1112
[188]1113        // File System must be FATFS in this implementation,
1114        // but other File System can be introduced here
[23]1115        if( CONFIG_VFS_ROOT_IS_FATFS )
1116        {
[389]1117            // 1. allocate memory for FATFS context in cluster 0
[188]1118            fatfs_ctx_t * fatfs_ctx = fatfs_ctx_alloc();
1119
[564]1120            if( fatfs_ctx == NULL )
[580]1121            {
1122                printk("\n[PANIC] in %s : cannot create FATFS context in cluster 0\n",
1123                __FUNCTION__ );
1124                hal_core_sleep();
1125            }
[188]1126
1127            // 2. access boot device to initialize FATFS context
1128            fatfs_ctx_init( fatfs_ctx );
1129 
1130            // 3. get various informations from FATFS context
1131            uint32_t root_dir_cluster = fatfs_ctx->root_dir_cluster;
1132            uint32_t cluster_size     = fatfs_ctx->bytes_per_sector * 
1133                                        fatfs_ctx->sectors_per_cluster;
1134            uint32_t total_clusters   = fatfs_ctx->fat_sectors_count << 7;
1135 
[564]1136            // 4. initialize the FATFS entry in the vfs_context[] array
1137            vfs_ctx_init( FS_TYPE_FATFS,                               // fs type
1138                          0,                                           // attributes: unused
1139                              total_clusters,               
1140                              cluster_size,
1141                              vfs_root_inode_xp,                           // VFS root
1142                          fatfs_ctx );                                 // extend
1143
1144            // 5. create VFS root inode in cluster 0
[188]1145            error = vfs_inode_create( XPTR_NULL,                           // dentry_xp
1146                                      FS_TYPE_FATFS,                       // fs_type
1147                                      INODE_TYPE_DIR,                      // inode_type
1148                                      (void *)(intptr_t)root_dir_cluster,  // extend
1149                                      0,                                   // attr
1150                                      0,                                   // rights
1151                                      0,                                   // uid
1152                                      0,                                   // gid
1153                                      &vfs_root_inode_xp );                // return
[564]1154            if( error )
[580]1155            {
1156                printk("\n[PANIC] in %s : cannot create VFS root inode in cluster 0\n",
1157                __FUNCTION__ );
1158                hal_core_sleep();
1159            }
[188]1160
[564]1161            // 6. update the FATFS entry in vfs_context[] array
1162            fs_context[FS_TYPE_FATFS].vfs_root_xp = vfs_root_inode_xp;
[188]1163
[564]1164            // 7. check FATFS initialization
1165            vfs_ctx_t   * vfs_ctx = &fs_context[FS_TYPE_FATFS];
[389]1166
[564]1167            if( ((fatfs_ctx_t *)vfs_ctx->extend)->sectors_per_cluster != 8 )
[580]1168            {
1169                printk("\n[PANIC] in %s : illegal FATFS context in cluster 0\n",
1170                __FUNCTION__ );
1171                hal_core_sleep();
1172            }
1173               
[23]1174        }
1175        else
1176        {
[564]1177            printk("\n[PANIC] in %s : unsupported VFS type in cluster 0\n",
1178            __FUNCTION__ );
[580]1179            hal_core_sleep();
[23]1180        }
1181
[389]1182        // register VFS root inode in process_zero descriptor of cluster 0
[188]1183        process_zero.vfs_root_xp = vfs_root_inode_xp;
1184        process_zero.vfs_cwd_xp  = vfs_root_inode_xp;
1185    }
1186
1187    /////////////////////////////////////////////////////////////////////////////////
[564]1188    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1189                                        (info->x_size * info->y_size) );
[188]1190    barrier_wait( &local_barrier , info->cores_nr );
1191    /////////////////////////////////////////////////////////////////////////////////
1192
[438]1193#if DEBUG_KERNEL_INIT
1194if( (core_lid ==  0) & (local_cxy == 0) ) 
[564]1195printk("\n[DBG] %s : exit barrier 4 : VFS root initialized in cluster 0 / sr %x / cycle %d\n",
1196__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1197#endif
[188]1198
1199    /////////////////////////////////////////////////////////////////////////////////
1200    // STEP 5 : Other CP0s allocate memory for the selected FS context,
1201    //          and initialise both the local FS context and the local VFS context
1202    //          from values stored in cluster 0.
1203    //          They get the VFS root inode extended pointer from cluster 0.
1204    /////////////////////////////////////////////////////////////////////////////////
1205
1206    if( (core_lid ==  0) && (local_cxy != 0) ) 
1207    {
1208        // File System must be FATFS in this implementation,
1209        // but other File System can be introduced here
1210        if( CONFIG_VFS_ROOT_IS_FATFS )
[23]1211        {
[389]1212            // 1. allocate memory for local FATFS context
1213            fatfs_ctx_t * local_fatfs_ctx = fatfs_ctx_alloc();
[188]1214
[564]1215            // check memory
1216            if( local_fatfs_ctx == NULL )
[580]1217            {
1218                printk("\n[PANIC] in %s : cannot create FATFS context in cluster %x\n",
1219                __FUNCTION__ , local_cxy );
1220                hal_core_sleep();
1221            }
[188]1222
[389]1223            // 2. get local pointer on VFS context for FATFS
[188]1224            vfs_ctx_t   * vfs_ctx = &fs_context[FS_TYPE_FATFS];
1225
[389]1226            // 3. get local pointer on FATFS context in cluster 0
1227            fatfs_ctx_t * remote_fatfs_ctx = hal_remote_lpt( XPTR( 0 , &vfs_ctx->extend ) );
1228
1229            // 4. copy FATFS context from cluster 0 to local cluster
1230            hal_remote_memcpy( XPTR( local_cxy , local_fatfs_ctx ), 
1231                               XPTR( 0 ,         remote_fatfs_ctx ), sizeof(fatfs_ctx_t) );
1232
1233            // 5. copy VFS context from cluster 0 to local cluster
[188]1234            hal_remote_memcpy( XPTR( local_cxy , vfs_ctx ), 
[389]1235                               XPTR( 0 ,         vfs_ctx ), sizeof(vfs_ctx_t) );
[188]1236
[389]1237            // 6. update extend field in local copy of VFS context
1238            vfs_ctx->extend = local_fatfs_ctx;
[188]1239
[564]1240            if( ((fatfs_ctx_t *)vfs_ctx->extend)->sectors_per_cluster != 8 )
[580]1241            {
1242                printk("\n[PANIC] in %s : illegal FATFS context in cluster %x\n",
1243                __FUNCTION__ , local_cxy );
1244                hal_core_sleep();
1245            }
[23]1246        }
1247
[188]1248        // get extended pointer on VFS root inode from cluster 0
[564]1249        vfs_root_inode_xp = hal_remote_l64( XPTR( 0 , &process_zero.vfs_root_xp ) );
[101]1250
[188]1251        // update local process_zero descriptor
1252        process_zero.vfs_root_xp = vfs_root_inode_xp;
1253        process_zero.vfs_cwd_xp  = vfs_root_inode_xp;
[14]1254    }
1255
[188]1256    /////////////////////////////////////////////////////////////////////////////////
[564]1257    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1258                                        (info->x_size * info->y_size) );
[188]1259    barrier_wait( &local_barrier , info->cores_nr );
[204]1260    /////////////////////////////////////////////////////////////////////////////////
[101]1261
[438]1262#if DEBUG_KERNEL_INIT
[564]1263if( (core_lid ==  0) & (local_cxy == 1) ) 
1264printk("\n[DBG] %s : exit barrier 5 : VFS root initialized in cluster 1 / sr %x / cycle %d\n",
1265__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1266#endif
[188]1267
1268    /////////////////////////////////////////////////////////////////////////////////
[564]1269    // STEP 6 : CP0 in cluster 0 makes the global DEVFS tree initialisation:
1270    //          It initializes the DEVFS context, and creates the DEVFS
1271    //          "dev" and "external" inodes in cluster 0.
[188]1272    /////////////////////////////////////////////////////////////////////////////////
1273
[564]1274    if( (core_lid ==  0) && (local_cxy == 0) ) 
[1]1275    {
[564]1276        // 1. allocate memory for DEVFS context extension in cluster 0
1277        devfs_ctx_t * devfs_ctx = devfs_ctx_alloc();
1278
1279        if( devfs_ctx == NULL )
[580]1280        {
1281            printk("\n[PANIC] in %s : cannot create DEVFS context in cluster 0\n",
1282            __FUNCTION__ , local_cxy );
1283            hal_core_sleep();
1284        }
[564]1285
1286        // 2. initialize the DEVFS entry in the vfs_context[] array
1287        vfs_ctx_init( FS_TYPE_DEVFS,                                // fs type
1288                      0,                                            // attributes: unused
1289                          0,                                            // total_clusters: unused
1290                          0,                                            // cluster_size: unused
1291                          vfs_root_inode_xp,                            // VFS root
1292                      devfs_ctx );                                  // extend
1293
1294        // 3. create "dev" and "external" inodes (directories)
[188]1295        devfs_global_init( process_zero.vfs_root_xp,
[204]1296                           &devfs_dev_inode_xp,
[188]1297                           &devfs_external_inode_xp );
1298
[564]1299        // 4. initializes DEVFS context extension
1300        devfs_ctx_init( devfs_ctx,
1301                        devfs_dev_inode_xp,
1302                        devfs_external_inode_xp );
[188]1303    }   
1304
1305    /////////////////////////////////////////////////////////////////////////////////
[564]1306    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1307                                        (info->x_size * info->y_size) );
[188]1308    barrier_wait( &local_barrier , info->cores_nr );
[204]1309    /////////////////////////////////////////////////////////////////////////////////
[188]1310
[438]1311#if DEBUG_KERNEL_INIT
1312if( (core_lid ==  0) & (local_cxy == 0) ) 
[564]1313printk("\n[DBG] %s : exit barrier 6 : DEVFS root initialized in cluster 0 / sr %x / cycle %d\n",
1314__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1315#endif
[188]1316
1317    /////////////////////////////////////////////////////////////////////////////////
1318    // STEP 7 : All CP0s complete in parallel the DEVFS tree initialization.
1319    //          Each CP0 get the "dev" and "external" extended pointers from
[564]1320    //          values stored in cluster 0.
1321    //          Then each CP0 in cluster(i) creates the DEVFS "internal" directory,
[204]1322    //          and creates the pseudo-files for all chdevs in cluster (i).
[188]1323    /////////////////////////////////////////////////////////////////////////////////
1324
1325    if( core_lid == 0 )
1326    {
[564]1327        // get extended pointer on "extend" field of VFS context for DEVFS in cluster 0
1328        xptr_t  extend_xp = XPTR( 0 , &fs_context[FS_TYPE_DEVFS].extend );
[188]1329
[457]1330        // get pointer on DEVFS context in cluster 0
[188]1331        devfs_ctx_t * devfs_ctx = hal_remote_lpt( extend_xp );
1332       
[564]1333        devfs_dev_inode_xp      = hal_remote_l64( XPTR( 0 , &devfs_ctx->dev_inode_xp ) );
1334        devfs_external_inode_xp = hal_remote_l64( XPTR( 0 , &devfs_ctx->external_inode_xp ) );
[188]1335
[204]1336        // populate DEVFS in all clusters
1337        devfs_local_init( devfs_dev_inode_xp,
1338                          devfs_external_inode_xp,
1339                          &devfs_internal_inode_xp );
[188]1340    }
1341
1342    /////////////////////////////////////////////////////////////////////////////////
[564]1343    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1344                                        (info->x_size * info->y_size) );
[188]1345    barrier_wait( &local_barrier , info->cores_nr );
[204]1346    /////////////////////////////////////////////////////////////////////////////////
[188]1347
[438]1348#if DEBUG_KERNEL_INIT
1349if( (core_lid ==  0) & (local_cxy == 0) ) 
[564]1350printk("\n[DBG] %s : exit barrier 7 : DEV initialized in cluster 0 / sr %x / cycle %d\n",
1351__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1352#endif
[188]1353
1354    /////////////////////////////////////////////////////////////////////////////////
[428]1355    // STEP 8 : CP0 in cluster 0 creates the first user process (process_init)
[188]1356    /////////////////////////////////////////////////////////////////////////////////
1357
[457]1358    if( (core_lid == 0) && (local_cxy == 0) ) 
[188]1359    {
[428]1360
[438]1361#if( DEBUG_KERNEL_INIT & 1 )
[428]1362vfs_display( vfs_root_inode_xp );
1363#endif
1364
1365       process_init_create();
[188]1366    }
[101]1367
[188]1368    /////////////////////////////////////////////////////////////////////////////////
[564]1369    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ),
1370                                        (info->x_size * info->y_size) );
[188]1371    barrier_wait( &local_barrier , info->cores_nr );
[204]1372    /////////////////////////////////////////////////////////////////////////////////
[188]1373
[438]1374#if DEBUG_KERNEL_INIT
1375if( (core_lid ==  0) & (local_cxy == 0) ) 
[564]1376printk("\n[DBG] %s : exit barrier 8 : process init created / sr %x / cycle %d\n", 
1377__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1378#endif
[188]1379
[443]1380#if (DEBUG_KERNEL_INIT & 1)
[564]1381if( (core_lid ==  0) & (local_cxy == 0) ) 
[443]1382sched_display( 0 );
1383#endif
1384
[188]1385    /////////////////////////////////////////////////////////////////////////////////
1386    // STEP 9 : CP0 in cluster 0 print banner
1387    /////////////////////////////////////////////////////////////////////////////////
1388   
[564]1389    if( (core_lid == 0) && (local_cxy == 0) ) 
[188]1390    {
[5]1391        print_banner( (info->x_size * info->y_size) , info->cores_nr );
[68]1392
[438]1393#if( DEBUG_KERNEL_INIT & 1 )
[437]1394printk("\n\n***** memory fooprint for main kernel objects\n\n"
[68]1395                   " - thread descriptor  : %d bytes\n"
1396                   " - process descriptor : %d bytes\n"
1397                   " - cluster manager    : %d bytes\n"
1398                   " - chdev descriptor   : %d bytes\n"
1399                   " - core descriptor    : %d bytes\n"
1400                   " - scheduler          : %d bytes\n"
1401                   " - rpc fifo           : %d bytes\n"
1402                   " - page descriptor    : %d bytes\n"
1403                   " - mapper root        : %d bytes\n"
1404                   " - ppm manager        : %d bytes\n"
1405                   " - kcm manager        : %d bytes\n"
1406                   " - khm manager        : %d bytes\n"
1407                   " - vmm manager        : %d bytes\n"
1408                   " - gpt root           : %d bytes\n"
1409                   " - list item          : %d bytes\n"
1410                   " - xlist item         : %d bytes\n"
[564]1411                   " - busylock           : %d bytes\n"
1412                   " - remote busylock    : %d bytes\n"
1413                   " - queuelock          : %d bytes\n"
1414                   " - remote queuelock   : %d bytes\n"
[68]1415                   " - rwlock             : %d bytes\n"
1416                   " - remote rwlock      : %d bytes\n",
[564]1417                   sizeof( thread_t           ),
1418                   sizeof( process_t          ),
1419                   sizeof( cluster_t          ),
1420                   sizeof( chdev_t            ),
1421                   sizeof( core_t             ),
1422                   sizeof( scheduler_t        ),
1423                   sizeof( remote_fifo_t      ),
1424                   sizeof( page_t             ),
1425                   sizeof( mapper_t           ),
1426                   sizeof( ppm_t              ),
1427                   sizeof( kcm_t              ),
1428                   sizeof( khm_t              ),
1429                   sizeof( vmm_t              ),
1430                   sizeof( gpt_t              ),
1431                   sizeof( list_entry_t       ),
1432                   sizeof( xlist_entry_t      ),
1433                   sizeof( busylock_t         ),
1434                   sizeof( remote_busylock_t  ),
1435                   sizeof( queuelock_t        ),
1436                   sizeof( remote_queuelock_t ),
1437                   sizeof( rwlock_t           ),
1438                   sizeof( remote_rwlock_t    ));
[406]1439#endif
1440
[1]1441    }
1442
[398]1443    // each core activates its private TICK IRQ
1444    dev_pic_enable_timer( CONFIG_SCHED_TICK_MS_PERIOD );
[14]1445
[440]1446#if DEBUG_KERNEL_INIT
1447printk("\n[DBG] %s : thread %x on core[%x,%d] jumps to thread_idle_func() / cycle %d\n",
1448__FUNCTION__ , CURRENT_THREAD , local_cxy , core_lid , (uint32_t)hal_get_cycles() );
1449#endif
1450
[407]1451    // each core jump to thread_idle_func
[50]1452    thread_idle_func();
[127]1453}
[14]1454
Note: See TracBrowser for help on using the repository browser.