source: trunk/kernel/kern/kernel_init.c @ 603

Last change on this file since 603 was 601, checked in by alain, 6 years ago

Improve the FAT32 file system to support cat, rm, cp commands.

File size: 60.0 KB
RevLine 
[1]1/*
2 * kernel_init.c - kernel parallel initialization
[127]3 *
[23]4 * Authors :  Mohamed Lamine Karaoui (2015)
5 *            Alain Greiner  (2016,2017)
[1]6 *
7 * Copyright (c) Sorbonne Universites
8 *
9 * This file is part of ALMOS-MKH.
10 *
11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
15 * ALMOS-MKH is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[1]26#include <errno.h>
[457]27#include <hal_kernel_types.h>
[1]28#include <hal_special.h>
29#include <hal_context.h>
[279]30#include <hal_irqmask.h>
[564]31#include <hal_macros.h>
[296]32#include <hal_ppm.h>
[14]33#include <barrier.h>
[564]34#include <xbarrier.h>
[407]35#include <remote_fifo.h>
[1]36#include <core.h>
37#include <list.h>
[68]38#include <xlist.h>
[204]39#include <xhtab.h>
[1]40#include <thread.h>
41#include <scheduler.h>
42#include <kmem.h>
43#include <cluster.h>
44#include <string.h>
45#include <memcpy.h>
46#include <ppm.h>
47#include <page.h>
[5]48#include <chdev.h>
[1]49#include <boot_info.h>
50#include <dqdt.h>
51#include <dev_mmc.h>
[5]52#include <dev_dma.h>
53#include <dev_iob.h>
[1]54#include <dev_ioc.h>
[5]55#include <dev_txt.h>
[1]56#include <dev_pic.h>
57#include <printk.h>
58#include <vfs.h>
[23]59#include <devfs.h>
[68]60#include <mapper.h>
[1]61
62///////////////////////////////////////////////////////////////////////////////////////////
[279]63// All the following global variables are replicated in all clusters.
[1]64// They are initialised by the kernel_init() function.
[14]65//
[127]66// WARNING : The section names have been defined to control the base addresses of the
[14]67// boot_info structure and the idle thread descriptors, through the kernel.ld script:
[127]68// - the boot_info structure is built by the bootloader, and used by kernel_init.
69//   it must be the first object in the kdata segment.
[14]70// - the array of idle threads descriptors must be placed on the first page boundary after
71//   the boot_info structure in the kdata segment.
[1]72///////////////////////////////////////////////////////////////////////////////////////////
73
[5]74// This variable defines the local boot_info structure
75__attribute__((section(".kinfo")))
[14]76boot_info_t          boot_info;
[5]77
[14]78// This variable defines the "idle" threads descriptors array
79__attribute__((section(".kidle")))
[381]80char                 idle_threads[CONFIG_THREAD_DESC_SIZE *
[14]81                                   CONFIG_MAX_LOCAL_CORES]   CONFIG_PPM_PAGE_ALIGNED;
82
[127]83// This variable defines the local cluster manager
[5]84__attribute__((section(".kdata")))
[19]85cluster_t            cluster_manager                         CONFIG_CACHE_LINE_ALIGNED;
[1]86
[564]87// This variable defines the TXT_TX[0] chdev
[188]88__attribute__((section(".kdata")))
[564]89chdev_t              txt0_tx_chdev                           CONFIG_CACHE_LINE_ALIGNED;
[188]90
[564]91// This variable defines the TXT_RX[0] chdev
[539]92__attribute__((section(".kdata")))
[564]93chdev_t              txt0_rx_chdev                           CONFIG_CACHE_LINE_ALIGNED;
[539]94
[14]95// This variables define the kernel process0 descriptor
[5]96__attribute__((section(".kdata")))
[19]97process_t            process_zero                            CONFIG_CACHE_LINE_ALIGNED;
[1]98
[14]99// This variable defines extended pointers on the distributed chdevs
[5]100__attribute__((section(".kdata")))
[14]101chdev_directory_t    chdev_dir                               CONFIG_CACHE_LINE_ALIGNED;
[1]102
[188]103// This variable contains the input IRQ indexes for the IOPIC controller
[5]104__attribute__((section(".kdata")))
[246]105iopic_input_t        iopic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]106
[188]107// This variable contains the input IRQ indexes for the LAPIC controller
[5]108__attribute__((section(".kdata")))
[188]109lapic_input_t        lapic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]110
[14]111// This variable defines the local cluster identifier
[5]112__attribute__((section(".kdata")))
[14]113cxy_t                local_cxy                               CONFIG_CACHE_LINE_ALIGNED;
[5]114
[127]115// This variable is used for CP0 cores synchronisation in kernel_init()
[5]116__attribute__((section(".kdata")))
[564]117xbarrier_t           global_barrier                          CONFIG_CACHE_LINE_ALIGNED;
[1]118
[127]119// This variable is used for local cores synchronisation in kernel_init()
[14]120__attribute__((section(".kdata")))
121barrier_t            local_barrier                           CONFIG_CACHE_LINE_ALIGNED;
122
[127]123// This variable defines the array of supported File System contexts
[50]124__attribute__((section(".kdata")))
125vfs_ctx_t            fs_context[FS_TYPES_NR]                 CONFIG_CACHE_LINE_ALIGNED;
126
[490]127// kernel_init is the entry point defined in hal/tsar_mips32/kernel.ld
[564]128// It is used by the bootloader.
[490]129extern void kernel_init( boot_info_t * info );
[50]130
[564]131// This array is used for debug, and describes the kernel locks usage,
132// It must be kept consistent with the defines in kernel_config.h file.
133char * lock_type_str[] =
134{
135    "unused_0",              //  0
[408]136
[564]137    "CLUSTER_KCM",           //  1
138    "PPM_FREE",              //  2
139    "SCHED_STATE",           //  3
140    "VMM_STACK",             //  4
141    "VMM_MMAP",              //  5
142    "VFS_CTX",               //  6
143    "KCM_STATE",             //  7
144    "KHM_STATE",             //  8
145    "HTAB_STATE",            //  9
146
147    "THREAD_JOIN",           // 10
148    "VFS_MAIN",              // 11
149    "CHDEV_QUEUE",           // 12
150    "CHDEV_TXT0",            // 13
151    "CHDEV_TXTLIST",         // 14
152    "PAGE_STATE",            // 15
153    "MUTEX_STATE",           // 16
154    "CONDVAR_STATE",         // 17
155    "SEM_STATE",             // 18
156    "XHTAB_STATE",           // 19
157
158    "unused_20",             // 20
159
160    "CLUSTER_PREFTBL",       // 21
[601]161
[564]162    "PPM_DIRTY",             // 22
163    "CLUSTER_LOCALS",        // 23
164    "CLUSTER_COPIES",        // 24
165    "PROCESS_CHILDREN",      // 25
166    "PROCESS_USERSYNC",      // 26
167    "PROCESS_FDARRAY",       // 27
[601]168    "FATFS_FREE",            // 28
[564]169
170    "PROCESS_THTBL",         // 29
171
[601]172    "MAPPER_STATE",          // 30
173    "PROCESS_CWD",           // 31
174    "VFS_INODE",             // 32
175    "VFS_FILE",              // 33
176    "VMM_VSL",               // 34
177    "VMM_GPT",               // 35
[564]178};       
179
[601]180// debug variables to analyse the sys_read() and sys_write() syscalls timing
[564]181
[438]182#if DEBUG_SYS_READ
[407]183uint32_t   enter_sys_read;
184uint32_t   exit_sys_read;
185
[435]186uint32_t   enter_devfs_read;
187uint32_t   exit_devfs_read;
[407]188
189uint32_t   enter_txt_read;
190uint32_t   exit_txt_read;
191
[435]192uint32_t   enter_chdev_cmd_read;
193uint32_t   exit_chdev_cmd_read;
[407]194
[435]195uint32_t   enter_chdev_server_read;
196uint32_t   exit_chdev_server_read;
[407]197
[435]198uint32_t   enter_tty_cmd_read;
199uint32_t   exit_tty_cmd_read;
[407]200
[435]201uint32_t   enter_tty_isr_read;
202uint32_t   exit_tty_isr_read;
[407]203#endif
204
[435]205// these debug variables are used to analyse the sys_write() syscall timing
206
[438]207#if DEBUG_SYS_WRITE   
[435]208uint32_t   enter_sys_write;
209uint32_t   exit_sys_write;
210
211uint32_t   enter_devfs_write;
212uint32_t   exit_devfs_write;
213
214uint32_t   enter_txt_write;
215uint32_t   exit_txt_write;
216
217uint32_t   enter_chdev_cmd_write;
218uint32_t   exit_chdev_cmd_write;
219
220uint32_t   enter_chdev_server_write;
221uint32_t   exit_chdev_server_write;
222
223uint32_t   enter_tty_cmd_write;
224uint32_t   exit_tty_cmd_write;
225
226uint32_t   enter_tty_isr_write;
227uint32_t   exit_tty_isr_write;
228#endif
229
[564]230// intrumentation variables : cumulated costs per syscall type in cluster
231uint32_t   syscalls_cumul_cost[SYSCALLS_NR];
232
233// intrumentation variables : number of syscalls per syscal type in cluster
234uint32_t   syscalls_occurences[SYSCALLS_NR];
235
[1]236///////////////////////////////////////////////////////////////////////////////////////////
[5]237// This function displays the ALMOS_MKH banner.
[1]238///////////////////////////////////////////////////////////////////////////////////////////
[5]239static void print_banner( uint32_t nclusters , uint32_t ncores )
[127]240{
[5]241    printk("\n"
242           "                    _        __    __     _____     ______         __    __    _   __   _     _   \n"
243           "          /\\       | |      |  \\  /  |   / ___ \\   / _____|       |  \\  /  |  | | / /  | |   | |  \n"
244           "         /  \\      | |      |   \\/   |  | /   \\ | | /             |   \\/   |  | |/ /   | |   | |  \n"
245           "        / /\\ \\     | |      | |\\  /| |  | |   | | | |_____   ___  | |\\  /| |  |   /    | |___| |  \n"
246           "       / /__\\ \\    | |      | | \\/ | |  | |   | | \\_____  \\ |___| | | \\/ | |  |   \\    |  ___  |  \n"
247           "      / ______ \\   | |      | |    | |  | |   | |       | |       | |    | |  | |\\ \\   | |   | |  \n"
248           "     / /      \\ \\  | |____  | |    | |  | \\___/ |  _____/ |       | |    | |  | | \\ \\  | |   | |  \n"
249           "    /_/        \\_\\ |______| |_|    |_|   \\_____/  |______/        |_|    |_|  |_|  \\_\\ |_|   |_|  \n"
250           "\n\n\t\t Advanced Locality Management Operating System / Multi Kernel Hybrid\n"
[457]251           "\n\n\t\t %s / %d cluster(s) / %d core(s) per cluster\n\n",
252           CONFIG_ALMOS_VERSION , nclusters , ncores );
[5]253}
[1]254
255
[5]256///////////////////////////////////////////////////////////////////////////////////////////
[564]257// This function initializes the TXT_TX[0] and TXT_RX[0] chdev descriptors, implementing
258// the "kernel terminal", shared by all kernel instances for debug messages.
259// These chdev are implemented as global variables (replicated in all clusters),
260// because this terminal is used before the kmem allocator initialisation, but only
261// the chdevs in cluster 0 are registered in the "chdev_dir" directory.
[127]262// As this TXT0 chdev supports only the TXT_SYNC_WRITE command, we don't create
263// a server thread, we don't allocate a WTI, and we don't initialize the waiting queue.
[564]264// Note: The TXT_RX[0] chdev is created, but is not used by ALMOS-MKH (september 2018).
[5]265///////////////////////////////////////////////////////////////////////////////////////////
266// @ info    : pointer on the local boot-info structure.
267///////////////////////////////////////////////////////////////////////////////////////////
[564]268static void __attribute__ ((noinline)) txt0_device_init( boot_info_t * info )
[5]269{
270    boot_device_t * dev_tbl;         // pointer on array of devices in boot_info
[127]271    uint32_t        dev_nr;          // actual number of devices in this cluster
272    xptr_t          base;            // remote pointer on segment base
273    uint32_t        func;            // device functional index
[5]274    uint32_t        impl;            // device implementation index
[127]275    uint32_t        i;               // device index in dev_tbl
276    uint32_t        x;               // X cluster coordinate
277    uint32_t        y;               // Y cluster coordinate
[188]278    uint32_t        channels;        // number of channels
[1]279
[5]280    // get number of peripherals and base of devices array from boot_info
[127]281    dev_nr      = info->ext_dev_nr;
[5]282    dev_tbl     = info->ext_dev;
[1]283
[14]284    // loop on external peripherals to find TXT device
[127]285    for( i = 0 ; i < dev_nr ; i++ )
286    {
[5]287        base        = dev_tbl[i].base;
[188]288        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
289        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
290        channels    = dev_tbl[i].channels;
[5]291
[127]292        if (func == DEV_FUNC_TXT )
[5]293        {
[564]294            // initialize TXT_TX[0] chdev
295            txt0_tx_chdev.func    = func;
296            txt0_tx_chdev.impl    = impl;
297            txt0_tx_chdev.channel = 0;
298            txt0_tx_chdev.base    = base;
299            txt0_tx_chdev.is_rx   = false;
300            remote_busylock_init( XPTR( local_cxy , &txt0_tx_chdev.wait_lock ),
301                                  LOCK_CHDEV_TXT0 );
[188]302           
[564]303            // initialize TXT_RX[0] chdev
304            txt0_rx_chdev.func    = func;
305            txt0_rx_chdev.impl    = impl;
306            txt0_rx_chdev.channel = 0;
307            txt0_rx_chdev.base    = base;
308            txt0_rx_chdev.is_rx   = true;
309            remote_busylock_init( XPTR( local_cxy , &txt0_rx_chdev.wait_lock ),
310                                  LOCK_CHDEV_TXT0 );
311           
312            // make TXT specific initialisations
313            dev_txt_init( &txt0_tx_chdev );                 
314            dev_txt_init( &txt0_rx_chdev );
[14]315
[564]316            // register TXT_TX[0] & TXT_RX[0] in chdev_dir[x][y]
317            // for all valid clusters             
[5]318            for( x = 0 ; x < info->x_size ; x++ )
319            {
[564]320                for( y = 0 ; y < info->y_size ; y++ )
[5]321                {
[564]322                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
323
324                    if( cluster_is_active( cxy ) )
325                    {
326                        hal_remote_s64( XPTR( cxy , &chdev_dir.txt_tx[0] ) ,
327                                        XPTR( local_cxy , &txt0_tx_chdev ) );
328                        hal_remote_s64( XPTR( cxy , &chdev_dir.txt_rx[0] ) ,
329                                        XPTR( local_cxy , &txt0_rx_chdev ) );
[559]330                    }
[5]331                }
332            }
[564]333
334            hal_fence();
[5]335        }
[188]336        } // end loop on devices
337}  // end txt0_device_init()
[5]338
[1]339///////////////////////////////////////////////////////////////////////////////////////////
[188]340// This function allocates memory and initializes the chdev descriptors for the internal
341// peripherals contained in the local cluster, other than the LAPIC, as specified by
342// the boot_info, including the linking with the driver for the specified implementation.
343// The relevant entries in all copies of the devices directory are initialised.
[1]344///////////////////////////////////////////////////////////////////////////////////////////
345// @ info    : pointer on the local boot-info structure.
346///////////////////////////////////////////////////////////////////////////////////////////
[564]347static void __attribute__ ((noinline)) internal_devices_init( boot_info_t * info )
[1]348{
[188]349    boot_device_t * dev_tbl;         // pointer on array of internaldevices in boot_info
350        uint32_t        dev_nr;          // actual number of devices in this cluster
351        xptr_t          base;            // remote pointer on segment base
352    uint32_t        func;            // device functionnal index
353    uint32_t        impl;            // device implementation index
354        uint32_t        i;               // device index in dev_tbl
355        uint32_t        x;               // X cluster coordinate
356        uint32_t        y;               // Y cluster coordinate
357        uint32_t        channels;        // number of channels
358        uint32_t        channel;         // channel index
359        chdev_t       * chdev_ptr;       // local pointer on created chdev
[1]360
[188]361    // get number of internal peripherals and base from boot_info
362        dev_nr  = info->int_dev_nr;
363    dev_tbl = info->int_dev;
[1]364
[188]365    // loop on internal peripherals
366        for( i = 0 ; i < dev_nr ; i++ )
367        {
368        base        = dev_tbl[i].base;
369        channels    = dev_tbl[i].channels;
370        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
371        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
[204]372 
[188]373        //////////////////////////
374        if( func == DEV_FUNC_MMC ) 
[5]375        {
[1]376
[564]377            // check channels
378            if( channels != 1 )
[580]379            {
380                printk("\n[PANIC] in %s : MMC device must be single channel\n",
381                __FUNCTION__ );
382                hal_core_sleep();
383            }
[564]384
[188]385            // create chdev in local cluster
386            chdev_ptr = chdev_create( func,
387                                      impl,
388                                      0,          // channel
389                                      false,      // direction
390                                      base );
[14]391
[564]392            // check memory
393            if( chdev_ptr == NULL )
[580]394            {
395                printk("\n[PANIC] in %s : cannot create MMC chdev\n",
396                __FUNCTION__ );
397                hal_core_sleep();
398            }
[188]399           
400            // make MMC specific initialisation
401            dev_mmc_init( chdev_ptr );
[1]402
[188]403            // set the MMC field in all chdev_dir[x][y] structures
404            for( x = 0 ; x < info->x_size ; x++ )
[1]405            {
[564]406                for( y = 0 ; y < info->y_size ; y++ )
[188]407                {
[564]408                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
409
410                    if( cluster_is_active( cxy ) )
411                    {
412                        hal_remote_s64( XPTR( cxy , &chdev_dir.mmc[local_cxy] ), 
[559]413                                        XPTR( local_cxy , chdev_ptr ) );
414                    }
[188]415                }
[1]416            }
[188]417
[438]418#if( DEBUG_KERNEL_INIT & 0x1 )
419if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[601]420printk("\n[%s] : created MMC in cluster %x / chdev = %x\n",
[407]421__FUNCTION__ , local_cxy , chdev_ptr );
[389]422#endif
[14]423        }
[188]424        ///////////////////////////////
425        else if( func == DEV_FUNC_DMA )
[127]426        {
[188]427            // create one chdev per channel in local cluster
428            for( channel = 0 ; channel < channels ; channel++ )
429            {   
430                // create chdev[channel] in local cluster
431                chdev_ptr = chdev_create( func,
432                                          impl,
433                                          channel,
434                                          false,     // direction
435                                          base );
[5]436
[564]437                // check memory
438                if( chdev_ptr == NULL )
[580]439                {
440                    printk("\n[PANIC] in %s : cannot create DMA chdev\n",
441                    __FUNCTION__ );
442                    hal_core_sleep();
443                }
[564]444           
[188]445                // make DMA specific initialisation
446                dev_dma_init( chdev_ptr );     
[127]447
[188]448                // initialize only the DMA[channel] field in the local chdev_dir[x][y]
449                // structure because the DMA device is not remotely accessible.
450                chdev_dir.dma[channel] = XPTR( local_cxy , chdev_ptr );
[5]451
[438]452#if( DEBUG_KERNEL_INIT & 0x1 )
453if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[601]454printk("\n[%s] : created DMA[%d] in cluster %x / chdev = %x\n",
[389]455__FUNCTION__ , channel , local_cxy , chdev_ptr );
456#endif
[188]457            }
[14]458        }
[127]459    }
[5]460}  // end internal_devices_init()
461
462///////////////////////////////////////////////////////////////////////////////////////////
[188]463// This function allocates memory and initializes the chdev descriptors for the 
[408]464// external (shared) peripherals other than the IOPIC, as specified by the boot_info.
465// This includes the dynamic linking with the driver for the specified implementation.
[188]466// These chdev descriptors are distributed on all clusters, using a modulo on a global
[408]467// index, identically computed in all clusters.
468// This function is executed in all clusters by the CP0 core, that computes a global index
469// for all external chdevs. Each CP0 core creates only the chdevs that must be placed in
470// the local cluster, because the global index matches the local index.
[188]471// The relevant entries in all copies of the devices directory are initialised.
[5]472///////////////////////////////////////////////////////////////////////////////////////////
473// @ info    : pointer on the local boot-info structure.
474///////////////////////////////////////////////////////////////////////////////////////////
475static void external_devices_init( boot_info_t * info )
476{
[188]477    boot_device_t * dev_tbl;         // pointer on array of external devices in boot_info
478        uint32_t        dev_nr;          // actual number of external devices
479        xptr_t          base;            // remote pointer on segment base
[5]480    uint32_t        func;            // device functionnal index
481    uint32_t        impl;            // device implementation index
[188]482        uint32_t        i;               // device index in dev_tbl
483        uint32_t        x;               // X cluster coordinate
484        uint32_t        y;               // Y cluster coordinate
485        uint32_t        channels;        // number of channels
486        uint32_t        channel;         // channel index
487        uint32_t        directions;      // number of directions (1 or 2)
488        uint32_t        rx;              // direction index (0 or 1)
[127]489    chdev_t       * chdev;           // local pointer on one channel_device descriptor
[188]490    uint32_t        ext_chdev_gid;   // global index of external chdev
[5]491
492    // get number of peripherals and base of devices array from boot_info
[127]493    dev_nr      = info->ext_dev_nr;
[5]494    dev_tbl     = info->ext_dev;
495
[188]496    // initializes global index (PIC is already placed in cluster 0
497    ext_chdev_gid = 1;
498
[5]499    // loop on external peripherals
[127]500    for( i = 0 ; i < dev_nr ; i++ )
501    {
[188]502        base     = dev_tbl[i].base;
503        channels = dev_tbl[i].channels;
504        func     = FUNC_FROM_TYPE( dev_tbl[i].type );
505        impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
[5]506
[407]507        // There is one chdev per direction for NIC and for TXT
508        if((func == DEV_FUNC_NIC) || (func == DEV_FUNC_TXT)) directions = 2;
509        else                                                 directions = 1;
[5]510
[407]511        // do nothing for ROM, that does not require a device descriptor.
[5]512        if( func == DEV_FUNC_ROM ) continue;
513
[188]514        // do nothing for PIC, that is already initialized
515        if( func == DEV_FUNC_PIC ) continue;
[5]516
[188]517        // check PIC device initialized
[564]518        if( chdev_dir.pic == XPTR_NULL )
[580]519        {
520            printk("\n[PANIC] in %s : PIC device must be initialized first\n",
521            __FUNCTION__ );
522            hal_core_sleep();
523        }
[188]524
525        // check external device functionnal type
[564]526        if( (func != DEV_FUNC_IOB) && (func != DEV_FUNC_IOC) && (func != DEV_FUNC_TXT) &&
527            (func != DEV_FUNC_NIC) && (func != DEV_FUNC_FBF) )
[580]528        {
529            printk("\n[PANIC] in %s : undefined peripheral type\n",
530            __FUNCTION__ );
531            hal_core_sleep();
532        }
[188]533
[127]534        // loops on channels
[428]535        for( channel = 0 ; channel < channels ; channel++ )
[127]536        {
[5]537            // loop on directions
[188]538            for( rx = 0 ; rx < directions ; rx++ )
[1]539            {
[564]540                // skip TXT0 that has already been initialized
541                if( (func == DEV_FUNC_TXT) && (channel == 0) ) continue;
[428]542
[564]543                // all kernel instances compute the target cluster for all chdevs,
544                // computing the global index ext_chdev_gid[func,channel,direction]
545                cxy_t target_cxy;
546                while( 1 )
[536]547                {
[564]548                    uint32_t offset     = ext_chdev_gid % ( info->x_size * info->y_size );
549                    uint32_t x          = offset / info->y_size;
550                    uint32_t y          = offset % info->y_size;
[536]551
[564]552                    target_cxy = HAL_CXY_FROM_XY( x , y );
553
554                    // exit loop if target cluster is active
555                    if( cluster_is_active( target_cxy ) ) break;
556               
557                    // increment global index otherwise
558                    ext_chdev_gid++;
[550]559                }
560
[5]561                // allocate and initialize a local chdev
[407]562                // when local cluster matches target cluster
[5]563                if( target_cxy == local_cxy )
[1]564                {
[5]565                    chdev = chdev_create( func,
566                                          impl,
567                                          channel,
[188]568                                          rx,          // direction
[5]569                                          base );
570
[564]571                    if( chdev == NULL )
[580]572                    {
573                        printk("\n[PANIC] in %s : cannot allocate chdev\n",
574                        __FUNCTION__ );
575                        hal_core_sleep();
576                    }
[5]577
578                    // make device type specific initialisation
579                    if     ( func == DEV_FUNC_IOB ) dev_iob_init( chdev );
580                    else if( func == DEV_FUNC_IOC ) dev_ioc_init( chdev );
581                    else if( func == DEV_FUNC_TXT ) dev_txt_init( chdev );
582                    else if( func == DEV_FUNC_NIC ) dev_nic_init( chdev );
[188]583                    else if( func == DEV_FUNC_FBF ) dev_fbf_init( chdev );
[5]584
[127]585                    // all external (shared) devices are remotely accessible
[5]586                    // initialize the replicated chdev_dir[x][y] structures
[127]587                    // defining the extended pointers on chdev descriptors
588                    xptr_t * entry;
589
[188]590                    if(func==DEV_FUNC_IOB             ) entry  = &chdev_dir.iob;
591                    if(func==DEV_FUNC_IOC             ) entry  = &chdev_dir.ioc[channel];
592                    if(func==DEV_FUNC_FBF             ) entry  = &chdev_dir.fbf[channel];
[407]593                    if((func==DEV_FUNC_TXT) && (rx==0)) entry  = &chdev_dir.txt_tx[channel];
594                    if((func==DEV_FUNC_TXT) && (rx==1)) entry  = &chdev_dir.txt_rx[channel];
[188]595                    if((func==DEV_FUNC_NIC) && (rx==0)) entry  = &chdev_dir.nic_tx[channel];
596                    if((func==DEV_FUNC_NIC) && (rx==1)) entry  = &chdev_dir.nic_rx[channel];
[127]597
[1]598                    for( x = 0 ; x < info->x_size ; x++ )
599                    {
[564]600                        for( y = 0 ; y < info->y_size ; y++ )
[1]601                        {
[564]602                            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
603
604                            if( cluster_is_active( cxy ) )
605                            {
606                                hal_remote_s64( XPTR( cxy , entry ),
[559]607                                                XPTR( local_cxy , chdev ) );
608                            }
[5]609                        }
[1]610                    }
611
[438]612#if( DEBUG_KERNEL_INIT & 0x1 )
613if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[601]614printk("\n[%s] : create chdev %s / channel = %d / rx = %d / cluster %x / chdev = %x\n",
[407]615__FUNCTION__ , chdev_func_str( func ), channel , rx , local_cxy , chdev );
[389]616#endif
[5]617                }  // end if match
618
[19]619                // increment chdev global index (matching or not)
[188]620                ext_chdev_gid++;
[5]621
622            } // end loop on directions
623        }  // end loop on channels
[188]624        } // end loop on devices
625}  // end external_devices_init()
[5]626
[188]627///////////////////////////////////////////////////////////////////////////////////////////
628// This function is called by CP0 in cluster 0 to allocate memory and initialize the PIC
[407]629// device, namely the informations attached to the external IOPIC controller, that
630// must be replicated in all clusters (struct iopic_input).
[188]631// This initialisation must be done before other devices initialisation because the IRQ
[407]632// routing infrastructure is required for both internal and external devices init.
[188]633///////////////////////////////////////////////////////////////////////////////////////////
634// @ info    : pointer on the local boot-info structure.
635///////////////////////////////////////////////////////////////////////////////////////////
[564]636static void __attribute__ ((noinline)) iopic_init( boot_info_t * info )
[188]637{
638    boot_device_t * dev_tbl;         // pointer on boot_info external devices array
639        uint32_t        dev_nr;          // actual number of external devices
640        xptr_t          base;            // remote pointer on segment base
641    uint32_t        func;            // device functionnal index
642    uint32_t        impl;            // device implementation index
643        uint32_t        i;               // device index in dev_tbl
644    uint32_t        x;               // cluster X coordinate
645    uint32_t        y;               // cluster Y coordinate
646    bool_t          found;           // IOPIC found
647        chdev_t       * chdev;           // pointer on PIC chdev descriptor
648
649    // get number of external peripherals and base of array from boot_info
650        dev_nr      = info->ext_dev_nr;
651    dev_tbl     = info->ext_dev;
652
[564]653    // avoid GCC warning
654    base        = XPTR_NULL;
655    impl        = 0;
656
[188]657    // loop on external peripherals to get the IOPIC 
658        for( i = 0 , found = false ; i < dev_nr ; i++ )
659        {
660        func = FUNC_FROM_TYPE( dev_tbl[i].type );
661
[127]662        if( func == DEV_FUNC_PIC )
[1]663        {
[188]664            base     = dev_tbl[i].base;
665            impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
666            found    = true;
667            break;
668        }
669    }
[5]670
[564]671    // check PIC existence
672    if( found == false )
[580]673    {
674        printk("\n[PANIC] in %s : PIC device not found\n",
675        __FUNCTION__ );
676        hal_core_sleep();
677    }
[1]678
[407]679    // allocate and initialize the PIC chdev in cluster 0
680    chdev = chdev_create( DEV_FUNC_PIC,
[188]681                          impl,
682                          0,      // channel
683                          0,      // direction,
684                          base );
[5]685
[564]686    // check memory
687    if( chdev == NULL )
[580]688    {
689        printk("\n[PANIC] in %s : no memory for PIC chdev\n",
690        __FUNCTION__ );
691        hal_core_sleep();
692    }
[5]693
[188]694    // make PIC device type specific initialisation
695    dev_pic_init( chdev );
[1]696
[407]697    // register, in all clusters, the extended pointer
698    // on PIC chdev in "chdev_dir" array
[188]699    xptr_t * entry = &chdev_dir.pic;   
700               
701    for( x = 0 ; x < info->x_size ; x++ )
702    {
[564]703        for( y = 0 ; y < info->y_size ; y++ )
[188]704        {
[564]705            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
706
707            if( cluster_is_active( cxy ) )
708            {
709                hal_remote_s64( XPTR( cxy , entry ) , 
[559]710                                XPTR( local_cxy , chdev ) );
711            }
[188]712        }
713    }
[1]714
[407]715    // initialize, in all clusters, the "iopic_input" structure
[188]716    // defining how external IRQs are connected to IOPIC
717
[407]718    // register default value for unused inputs
719    for( x = 0 ; x < info->x_size ; x++ )
720    {
[564]721        for( y = 0 ; y < info->y_size ; y++ )
[407]722        {
[564]723            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
724
725            if( cluster_is_active( cxy ) )
726            {
727                hal_remote_memset( XPTR( cxy , &iopic_input ), 
728                                   0xFF , sizeof(iopic_input_t) );
[559]729            }
[407]730        }
731    }
732
733    // register input IRQ index for valid inputs
[577]734    uint32_t   id;             // input IRQ index
735    uint8_t    valid;          // input IRQ is connected
736    uint32_t   type;           // source device type
737    uint8_t    channel;        // source device channel
738    uint8_t    is_rx;          // source device direction
739    uint32_t * ptr = NULL;     // local pointer on one field in iopic_input stucture
[407]740
[188]741    for( id = 0 ; id < CONFIG_MAX_EXTERNAL_IRQS ; id++ )
742    {
743        valid   = dev_tbl[i].irq[id].valid;
744        type    = dev_tbl[i].irq[id].dev_type;
745        channel = dev_tbl[i].irq[id].channel;
746        is_rx   = dev_tbl[i].irq[id].is_rx;
[407]747        func    = FUNC_FROM_TYPE( type );
[188]748
[407]749        // get pointer on relevant field in iopic_input
750        if( valid )
[188]751        {
[407]752            if     ( func == DEV_FUNC_IOC )                 ptr = &iopic_input.ioc[channel]; 
753            else if((func == DEV_FUNC_TXT) && (is_rx == 0)) ptr = &iopic_input.txt_tx[channel];
754            else if((func == DEV_FUNC_TXT) && (is_rx != 0)) ptr = &iopic_input.txt_rx[channel];
[492]755            else if((func == DEV_FUNC_NIC) && (is_rx == 0)) ptr = &iopic_input.nic_tx[channel];
756            else if((func == DEV_FUNC_NIC) && (is_rx != 0)) ptr = &iopic_input.nic_rx[channel];
757            else if( func == DEV_FUNC_IOB )                 ptr = &iopic_input.iob;
[580]758            else
759            {
760                printk("\n[PANIC] in %s : illegal source device for IOPIC input\n",
761                __FUNCTION__ );
762                hal_core_sleep();
763            }
[188]764
[407]765            // set one entry in all "iopic_input" structures
766            for( x = 0 ; x < info->x_size ; x++ )
767            {
[564]768                for( y = 0 ; y < info->y_size ; y++ )
[407]769                {
[564]770                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
771
772                    if( cluster_is_active( cxy ) )
773                    {
774                        hal_remote_s64( XPTR( cxy , ptr ) , id ); 
[559]775                    }
[407]776                }
777            }
[188]778        }
779    } 
780
[438]781#if( DEBUG_KERNEL_INIT & 0x1 )
[601]782if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[407]783{
[601]784    printk("\n[%s] created PIC chdev in cluster %x at cycle %d\n",
[407]785    __FUNCTION__ , local_cxy , (uint32_t)hal_time_stamp() );
786    dev_pic_inputs_display();
787}
[389]788#endif
[188]789   
790}  // end iopic_init()
791
[1]792///////////////////////////////////////////////////////////////////////////////////////////
[188]793// This function is called by all CP0s in all cluster to complete the PIC device
794// initialisation, namely the informations attached to the LAPIC controller.
795// This initialisation must be done after the IOPIC initialisation, but before other
796// devices initialisation because the IRQ routing infrastructure is required for both
797// internal and external devices initialisation.
798///////////////////////////////////////////////////////////////////////////////////////////
799// @ info    : pointer on the local boot-info structure.
800///////////////////////////////////////////////////////////////////////////////////////////
[564]801static void __attribute__ ((noinline)) lapic_init( boot_info_t * info )
[188]802{
803    boot_device_t * dev_tbl;      // pointer on boot_info internal devices array
804    uint32_t        dev_nr;       // number of internal devices
805    uint32_t        i;            // device index in dev_tbl
806        xptr_t          base;         // remote pointer on segment base
807    uint32_t        func;         // device functionnal type in boot_info
808    bool_t          found;        // LAPIC found
809
810    // get number of internal peripherals and base
811        dev_nr      = info->int_dev_nr;
812    dev_tbl     = info->int_dev;
813
814    // loop on internal peripherals to get the lapic device
815        for( i = 0 , found = false ; i < dev_nr ; i++ )
816        {
817        func = FUNC_FROM_TYPE( dev_tbl[i].type );
818
819        if( func == DEV_FUNC_ICU )
820        {
821            base     = dev_tbl[i].base;
822            found    = true;
823            break;
824        }
825    }
826
827    // if the LAPIC controller is not defined in the boot_info,
828    // we simply don't initialize the PIC extensions in the kernel,
829    // making the assumption that the LAPIC related informations
830    // are hidden in the hardware specific PIC driver.
831    if( found )
832    {
833        // initialise the PIC extensions for
834        // the core descriptor and core manager extensions
835        dev_pic_extend_init( (uint32_t *)GET_PTR( base ) );
836
837        // initialize the "lapic_input" structure
838        // defining how internal IRQs are connected to LAPIC
839        uint32_t        id;
840        uint8_t         valid;
841        uint8_t         channel;
842        uint32_t        func;
843
844        for( id = 0 ; id < CONFIG_MAX_INTERNAL_IRQS ; id++ )
845        {
846            valid    = dev_tbl[i].irq[id].valid;
847            func     = FUNC_FROM_TYPE( dev_tbl[i].irq[id].dev_type );
848            channel  = dev_tbl[i].irq[id].channel;
849
850            if( valid ) // only valid local IRQs are registered
851            {
852                if     ( func == DEV_FUNC_MMC ) lapic_input.mmc = id;
853                else if( func == DEV_FUNC_DMA ) lapic_input.dma[channel] = id;
[580]854                else
855                {
856                    printk("\n[PANIC] in %s : illegal source device for LAPIC input\n",
857                    __FUNCTION__ );
858                    hal_core_sleep();
859                }
[188]860            }
861        }
862    }
863}  // end lapic_init()
864
865///////////////////////////////////////////////////////////////////////////////////////////
[14]866// This static function returns the identifiers of the calling core.
867///////////////////////////////////////////////////////////////////////////////////////////
868// @ info    : pointer on boot_info structure.
869// @ lid     : [out] core local index in cluster.
870// @ cxy     : [out] cluster identifier.
871// @ lid     : [out] core global identifier (hardware).
872// @ return 0 if success / return EINVAL if not found.
873///////////////////////////////////////////////////////////////////////////////////////////
[564]874static error_t __attribute__ ((noinline)) get_core_identifiers( boot_info_t * info,
875                                                                lid_t       * lid,
876                                                                cxy_t       * cxy,
877                                                                gid_t       * gid )
[14]878{
[127]879    uint32_t   i;
[14]880    gid_t      global_id;
[19]881
[14]882    // get global identifier from hardware register
[127]883    global_id = hal_get_gid();
[14]884
885    // makes an associative search in boot_info to get (cxy,lid) from global_id
886    for( i = 0 ; i < info->cores_nr ; i++ )
887    {
888        if( global_id == info->core[i].gid )
889        {
890            *lid = info->core[i].lid;
891            *cxy = info->core[i].cxy;
892            *gid = global_id;
893            return 0;
894        }
895    }
896    return EINVAL;
[19]897}
[14]898
899///////////////////////////////////////////////////////////////////////////////////////////
[1]900// This function is the entry point for the kernel initialisation.
[19]901// It is executed by all cores in all clusters, but only core[0], called CP0,
[14]902// initializes the shared resources such as the cluster manager, or the local peripherals.
[19]903// To comply with the multi-kernels paradigm, it accesses only local cluster memory, using
904// only information contained in the local boot_info_t structure, set by the bootloader.
[103]905// Only CP0 in cluster 0 print the log messages.
[1]906///////////////////////////////////////////////////////////////////////////////////////////
907// @ info    : pointer on the local boot-info structure.
908///////////////////////////////////////////////////////////////////////////////////////////
909void kernel_init( boot_info_t * info )
910{
[204]911    lid_t        core_lid = -1;             // running core local index
912    cxy_t        core_cxy = -1;             // running core cluster identifier
913    gid_t        core_gid;                  // running core hardware identifier
914    cluster_t  * cluster;                   // pointer on local cluster manager
915    core_t     * core;                      // pointer on running core descriptor
916    thread_t   * thread;                    // pointer on idle thread descriptor
917
918    xptr_t       vfs_root_inode_xp;         // extended pointer on VFS root inode
919    xptr_t       devfs_dev_inode_xp;        // extended pointer on DEVFS dev inode   
920    xptr_t       devfs_external_inode_xp;   // extended pointer on DEVFS external inode       
921    xptr_t       devfs_internal_inode_xp;   // extended pointer on DEVFS internal inode       
922
[1]923    error_t      error;
[285]924    reg_t        status;                    // running core status register
[1]925
[188]926    /////////////////////////////////////////////////////////////////////////////////
927    // STEP 0 : Each core get its core identifier from boot_info, and makes
928    //          a partial initialisation of its private idle thread descriptor.
929    //          CP0 initializes the "local_cxy" global variable.
930    //          CP0 in cluster IO initializes the TXT0 chdev to print log messages.
931    /////////////////////////////////////////////////////////////////////////////////
932
[23]933    error = get_core_identifiers( info,
[14]934                                  &core_lid,
935                                  &core_cxy,
936                                  &core_gid );
[1]937
[582]938    // all CP0s initialize cluster identifier
[14]939    if( core_lid == 0 ) local_cxy = info->cxy;
[1]940
[127]941    // each core gets a pointer on its private idle thread descriptor
942    thread = (thread_t *)( idle_threads + (core_lid * CONFIG_THREAD_DESC_SIZE) );
[68]943
[127]944    // each core registers this thread pointer in hardware register
[68]945    hal_set_current_thread( thread );
[71]946
[407]947    // each core register core descriptor pointer in idle thread descriptor
948    thread->core = &LOCAL_CLUSTER->core_tbl[core_lid];
949
[564]950    // each core initializes the idle thread locks counters
951    thread->busylocks = 0;
[124]952
[564]953#if DEBUG_BUSYLOCK
954    // each core initialise the idle thread list of busylocks
955    xlist_root_init( XPTR( local_cxy , &thread->busylocks_root ) );
956#endif
[14]957
[582]958    // all CP0s initialize cluster info
[564]959    if( core_lid == 0 ) cluster_info_init( info );
960
961    // CP0 in cluster 0 initialises TXT0 chdev descriptor
962    if( (core_lid == 0) && (core_cxy == 0) ) txt0_device_init( info );
963
[14]964    /////////////////////////////////////////////////////////////////////////////////
[564]965    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
966                                        (info->x_size * info->y_size) );
[14]967    barrier_wait( &local_barrier , info->cores_nr );
[437]968    /////////////////////////////////////////////////////////////////////////////////
[14]969
[438]970#if DEBUG_KERNEL_INIT
[583]971if( (core_lid ==  0) & (local_cxy == 0) ) 
[601]972printk("\n[%s] : exit barrier 0 : TXT0 initialized / sr %x / cycle %d\n",
[564]973__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]974#endif
[14]975
[188]976    /////////////////////////////////////////////////////////////////////////////
[407]977    // STEP 1 : all cores check core identifier.
[188]978    //          CP0 initializes the local cluster manager.
979    //          This includes the memory allocators.
980    /////////////////////////////////////////////////////////////////////////////
981
982    // all cores check identifiers
[14]983    if( error )
[580]984    {
985        printk("\n[PANIC] in %s : illegal core : gid %x / cxy %x / lid %d",
986        __FUNCTION__, core_lid, core_cxy, core_lid );
987        hal_core_sleep();
988    }
[1]989
[582]990    // all CP0s initialise DQDT (only CPO in cluster 0 build the quad-tree)
991    if( core_lid == 0 ) dqdt_init();
992   
993    // all CP0s initialize other cluster manager complex structures
[14]994    if( core_lid == 0 )
[1]995    {
[564]996        error = cluster_manager_init( info );
[1]997
[14]998        if( error )
[580]999        {
1000             printk("\n[PANIC] in %s : cannot initialize cluster manager in cluster %x\n",
1001             __FUNCTION__, local_cxy );
1002             hal_core_sleep();
1003        }
[14]1004    }
[5]1005
[14]1006    /////////////////////////////////////////////////////////////////////////////////
[564]1007    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1008                                        (info->x_size * info->y_size) );
[14]1009    barrier_wait( &local_barrier , info->cores_nr );
1010    /////////////////////////////////////////////////////////////////////////////////
[1]1011
[438]1012#if DEBUG_KERNEL_INIT
1013if( (core_lid ==  0) & (local_cxy == 0) ) 
[601]1014printk("\n[%s] : exit barrier 1 : clusters initialised / sr %x / cycle %d\n",
[564]1015__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1016#endif
[1]1017
[188]1018    /////////////////////////////////////////////////////////////////////////////////
[407]1019    // STEP 2 : CP0 initializes the process_zero descriptor.
[296]1020    //          CP0 in cluster 0 initializes the IOPIC device.
[188]1021    /////////////////////////////////////////////////////////////////////////////////
1022
1023    // all cores get pointer on local cluster manager & core descriptor
[14]1024    cluster = &cluster_manager;
[127]1025    core    = &cluster->core_tbl[core_lid];
[1]1026
[188]1027    // all CP0s initialize the process_zero descriptor
[428]1028    if( core_lid == 0 ) process_zero_create( &process_zero );
[5]1029
[188]1030    // CP0 in cluster 0 initializes the PIC chdev,
1031    if( (core_lid == 0) && (local_cxy == 0) ) iopic_init( info );
1032   
1033    ////////////////////////////////////////////////////////////////////////////////
[564]1034    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1035                                        (info->x_size * info->y_size) );
[188]1036    barrier_wait( &local_barrier , info->cores_nr );
1037    ////////////////////////////////////////////////////////////////////////////////
[127]1038
[438]1039#if DEBUG_KERNEL_INIT
1040if( (core_lid ==  0) & (local_cxy == 0) ) 
[601]1041printk("\n[%s] : exit barrier 2 : PIC initialised / sr %x / cycle %d\n",
[564]1042__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1043#endif
[1]1044
[188]1045    ////////////////////////////////////////////////////////////////////////////////
[407]1046    // STEP 3 : CP0 initializes the distibuted LAPIC descriptor.
1047    //          CP0 initializes the internal chdev descriptors
1048    //          CP0 initialize the local external chdev descriptors
[188]1049    ////////////////////////////////////////////////////////////////////////////////
[5]1050
[279]1051    // all CP0s initialize their local LAPIC extension,
1052    if( core_lid == 0 ) lapic_init( info );
1053
[188]1054    // CP0 scan the internal (private) peripherals,
1055    // and allocates memory for the corresponding chdev descriptors.
1056    if( core_lid == 0 ) internal_devices_init( info );
1057       
[1]1058
[50]1059    // All CP0s contribute to initialise external peripheral chdev descriptors.
[14]1060    // Each CP0[cxy] scan the set of external (shared) peripherals (but the TXT0),
1061    // and allocates memory for the chdev descriptors that must be placed
[127]1062    // on the (cxy) cluster according to the global index value.
[188]1063
[14]1064    if( core_lid == 0 ) external_devices_init( info );
[1]1065
[14]1066    /////////////////////////////////////////////////////////////////////////////////
[564]1067    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1068                                        (info->x_size * info->y_size) );
[14]1069    barrier_wait( &local_barrier , info->cores_nr );
1070    /////////////////////////////////////////////////////////////////////////////////
[5]1071
[438]1072#if DEBUG_KERNEL_INIT
1073if( (core_lid ==  0) & (local_cxy == 0) ) 
[601]1074printk("\n[%s] : exit barrier 3 : all chdevs initialised / sr %x / cycle %d\n",
[564]1075__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1076#endif
[1]1077
[438]1078#if( DEBUG_KERNEL_INIT & 1 )
[443]1079if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1080chdev_dir_display();
1081#endif
1082   
[188]1083    /////////////////////////////////////////////////////////////////////////////////
[279]1084    // STEP 4 : All cores enable IPI (Inter Procesor Interrupt),
1085    //          Alh cores initialize IDLE thread.
[188]1086    //          Only CP0 in cluster 0 creates the VFS root inode.
1087    //          It access the boot device to initialize the file system context.
1088    /////////////////////////////////////////////////////////////////////////////////
1089
[564]1090    // All cores enable IPI
[279]1091    dev_pic_enable_ipi();
1092    hal_enable_irq( &status );
1093
[296]1094    // all cores initialize the idle thread descriptor
[457]1095    thread_idle_init( thread,
1096                      THREAD_IDLE,
1097                      &thread_idle_func,
1098                      NULL,
1099                      core_lid );
[1]1100
[296]1101    // all cores unblock idle thread, and register it in scheduler
1102    thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_GLOBAL );
[103]1103    core->scheduler.idle = thread;
[1]1104
[438]1105#if( DEBUG_KERNEL_INIT & 1 )
[407]1106sched_display( core_lid );
[389]1107#endif
[14]1108
[188]1109    // CPO in cluster 0 creates the VFS root
1110    if( (core_lid ==  0) && (local_cxy == 0 ) ) 
[14]1111    {
[188]1112        vfs_root_inode_xp = XPTR_NULL;
[23]1113
[188]1114        // File System must be FATFS in this implementation,
1115        // but other File System can be introduced here
[23]1116        if( CONFIG_VFS_ROOT_IS_FATFS )
1117        {
[601]1118            // 1. allocate memory for FATFS context extension in cluster 0
[188]1119            fatfs_ctx_t * fatfs_ctx = fatfs_ctx_alloc();
1120
[564]1121            if( fatfs_ctx == NULL )
[580]1122            {
1123                printk("\n[PANIC] in %s : cannot create FATFS context in cluster 0\n",
1124                __FUNCTION__ );
1125                hal_core_sleep();
1126            }
[188]1127
1128            // 2. access boot device to initialize FATFS context
1129            fatfs_ctx_init( fatfs_ctx );
1130 
1131            // 3. get various informations from FATFS context
1132            uint32_t root_dir_cluster = fatfs_ctx->root_dir_cluster;
1133            uint32_t cluster_size     = fatfs_ctx->bytes_per_sector * 
1134                                        fatfs_ctx->sectors_per_cluster;
1135            uint32_t total_clusters   = fatfs_ctx->fat_sectors_count << 7;
1136 
[601]1137            // 4. create VFS root inode in cluster 0
[188]1138            error = vfs_inode_create( XPTR_NULL,                           // dentry_xp
1139                                      FS_TYPE_FATFS,                       // fs_type
1140                                      INODE_TYPE_DIR,                      // inode_type
1141                                      0,                                   // attr
1142                                      0,                                   // rights
1143                                      0,                                   // uid
1144                                      0,                                   // gid
1145                                      &vfs_root_inode_xp );                // return
[564]1146            if( error )
[580]1147            {
1148                printk("\n[PANIC] in %s : cannot create VFS root inode in cluster 0\n",
1149                __FUNCTION__ );
1150                hal_core_sleep();
1151            }
[188]1152
[601]1153            // 5. update FATFS root inode extension 
1154            cxy_t         vfs_root_cxy = GET_CXY( vfs_root_inode_xp );
1155            vfs_inode_t * vfs_root_ptr = GET_PTR( vfs_root_inode_xp );
1156            hal_remote_spt( XPTR( vfs_root_cxy , &vfs_root_ptr->extend ), 
1157                            (void*)(intptr_t)root_dir_cluster );
[188]1158
[601]1159            // 6. initialize the generic VFS context for FATFS
1160            vfs_ctx_init( FS_TYPE_FATFS,                               // fs type
1161                          0,                                           // attributes: unused
1162                              total_clusters,                              // number of clusters
1163                              cluster_size,                                // bytes
1164                              vfs_root_inode_xp,                           // VFS root
1165                          fatfs_ctx );                                 // extend
[23]1166        }
1167        else
1168        {
[564]1169            printk("\n[PANIC] in %s : unsupported VFS type in cluster 0\n",
1170            __FUNCTION__ );
[580]1171            hal_core_sleep();
[23]1172        }
1173
[389]1174        // register VFS root inode in process_zero descriptor of cluster 0
[188]1175        process_zero.vfs_root_xp = vfs_root_inode_xp;
1176        process_zero.vfs_cwd_xp  = vfs_root_inode_xp;
1177    }
1178
1179    /////////////////////////////////////////////////////////////////////////////////
[564]1180    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1181                                        (info->x_size * info->y_size) );
[188]1182    barrier_wait( &local_barrier , info->cores_nr );
1183    /////////////////////////////////////////////////////////////////////////////////
1184
[438]1185#if DEBUG_KERNEL_INIT
1186if( (core_lid ==  0) & (local_cxy == 0) ) 
[601]1187printk("\n[%s] : exit barrier 4 : VFS root initialized in cluster 0 / sr %x / cycle %d\n",
[564]1188__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1189#endif
[188]1190
1191    /////////////////////////////////////////////////////////////////////////////////
1192    // STEP 5 : Other CP0s allocate memory for the selected FS context,
1193    //          and initialise both the local FS context and the local VFS context
1194    //          from values stored in cluster 0.
1195    //          They get the VFS root inode extended pointer from cluster 0.
1196    /////////////////////////////////////////////////////////////////////////////////
1197
1198    if( (core_lid ==  0) && (local_cxy != 0) ) 
1199    {
1200        // File System must be FATFS in this implementation,
1201        // but other File System can be introduced here
1202        if( CONFIG_VFS_ROOT_IS_FATFS )
[23]1203        {
[389]1204            // 1. allocate memory for local FATFS context
1205            fatfs_ctx_t * local_fatfs_ctx = fatfs_ctx_alloc();
[188]1206
[564]1207            // check memory
1208            if( local_fatfs_ctx == NULL )
[580]1209            {
1210                printk("\n[PANIC] in %s : cannot create FATFS context in cluster %x\n",
1211                __FUNCTION__ , local_cxy );
1212                hal_core_sleep();
1213            }
[188]1214
[389]1215            // 2. get local pointer on VFS context for FATFS
[188]1216            vfs_ctx_t   * vfs_ctx = &fs_context[FS_TYPE_FATFS];
1217
[389]1218            // 3. get local pointer on FATFS context in cluster 0
1219            fatfs_ctx_t * remote_fatfs_ctx = hal_remote_lpt( XPTR( 0 , &vfs_ctx->extend ) );
1220
1221            // 4. copy FATFS context from cluster 0 to local cluster
1222            hal_remote_memcpy( XPTR( local_cxy , local_fatfs_ctx ), 
1223                               XPTR( 0 ,         remote_fatfs_ctx ), sizeof(fatfs_ctx_t) );
1224
1225            // 5. copy VFS context from cluster 0 to local cluster
[188]1226            hal_remote_memcpy( XPTR( local_cxy , vfs_ctx ), 
[389]1227                               XPTR( 0 ,         vfs_ctx ), sizeof(vfs_ctx_t) );
[188]1228
[389]1229            // 6. update extend field in local copy of VFS context
1230            vfs_ctx->extend = local_fatfs_ctx;
[188]1231
[564]1232            if( ((fatfs_ctx_t *)vfs_ctx->extend)->sectors_per_cluster != 8 )
[580]1233            {
1234                printk("\n[PANIC] in %s : illegal FATFS context in cluster %x\n",
1235                __FUNCTION__ , local_cxy );
1236                hal_core_sleep();
1237            }
[23]1238        }
1239
[188]1240        // get extended pointer on VFS root inode from cluster 0
[564]1241        vfs_root_inode_xp = hal_remote_l64( XPTR( 0 , &process_zero.vfs_root_xp ) );
[101]1242
[188]1243        // update local process_zero descriptor
1244        process_zero.vfs_root_xp = vfs_root_inode_xp;
1245        process_zero.vfs_cwd_xp  = vfs_root_inode_xp;
[14]1246    }
1247
[188]1248    /////////////////////////////////////////////////////////////////////////////////
[564]1249    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1250                                        (info->x_size * info->y_size) );
[188]1251    barrier_wait( &local_barrier , info->cores_nr );
[204]1252    /////////////////////////////////////////////////////////////////////////////////
[101]1253
[438]1254#if DEBUG_KERNEL_INIT
[564]1255if( (core_lid ==  0) & (local_cxy == 1) ) 
[601]1256printk("\n[%s] : exit barrier 5 : VFS root initialized in cluster 1 / sr %x / cycle %d\n",
[564]1257__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1258#endif
[188]1259
1260    /////////////////////////////////////////////////////////////////////////////////
[564]1261    // STEP 6 : CP0 in cluster 0 makes the global DEVFS tree initialisation:
1262    //          It initializes the DEVFS context, and creates the DEVFS
1263    //          "dev" and "external" inodes in cluster 0.
[188]1264    /////////////////////////////////////////////////////////////////////////////////
1265
[564]1266    if( (core_lid ==  0) && (local_cxy == 0) ) 
[1]1267    {
[564]1268        // 1. allocate memory for DEVFS context extension in cluster 0
1269        devfs_ctx_t * devfs_ctx = devfs_ctx_alloc();
1270
1271        if( devfs_ctx == NULL )
[580]1272        {
1273            printk("\n[PANIC] in %s : cannot create DEVFS context in cluster 0\n",
1274            __FUNCTION__ , local_cxy );
1275            hal_core_sleep();
1276        }
[564]1277
1278        // 2. initialize the DEVFS entry in the vfs_context[] array
1279        vfs_ctx_init( FS_TYPE_DEVFS,                                // fs type
1280                      0,                                            // attributes: unused
1281                          0,                                            // total_clusters: unused
1282                          0,                                            // cluster_size: unused
1283                          vfs_root_inode_xp,                            // VFS root
1284                      devfs_ctx );                                  // extend
1285
1286        // 3. create "dev" and "external" inodes (directories)
[188]1287        devfs_global_init( process_zero.vfs_root_xp,
[204]1288                           &devfs_dev_inode_xp,
[188]1289                           &devfs_external_inode_xp );
1290
[564]1291        // 4. initializes DEVFS context extension
1292        devfs_ctx_init( devfs_ctx,
1293                        devfs_dev_inode_xp,
1294                        devfs_external_inode_xp );
[188]1295    }   
1296
1297    /////////////////////////////////////////////////////////////////////////////////
[564]1298    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1299                                        (info->x_size * info->y_size) );
[188]1300    barrier_wait( &local_barrier , info->cores_nr );
[204]1301    /////////////////////////////////////////////////////////////////////////////////
[188]1302
[438]1303#if DEBUG_KERNEL_INIT
1304if( (core_lid ==  0) & (local_cxy == 0) ) 
[601]1305printk("\n[%s] : exit barrier 6 : DEVFS root initialized in cluster 0 / sr %x / cycle %d\n",
[564]1306__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1307#endif
[188]1308
1309    /////////////////////////////////////////////////////////////////////////////////
1310    // STEP 7 : All CP0s complete in parallel the DEVFS tree initialization.
1311    //          Each CP0 get the "dev" and "external" extended pointers from
[564]1312    //          values stored in cluster 0.
1313    //          Then each CP0 in cluster(i) creates the DEVFS "internal" directory,
[204]1314    //          and creates the pseudo-files for all chdevs in cluster (i).
[188]1315    /////////////////////////////////////////////////////////////////////////////////
1316
1317    if( core_lid == 0 )
1318    {
[564]1319        // get extended pointer on "extend" field of VFS context for DEVFS in cluster 0
1320        xptr_t  extend_xp = XPTR( 0 , &fs_context[FS_TYPE_DEVFS].extend );
[188]1321
[457]1322        // get pointer on DEVFS context in cluster 0
[188]1323        devfs_ctx_t * devfs_ctx = hal_remote_lpt( extend_xp );
1324       
[564]1325        devfs_dev_inode_xp      = hal_remote_l64( XPTR( 0 , &devfs_ctx->dev_inode_xp ) );
1326        devfs_external_inode_xp = hal_remote_l64( XPTR( 0 , &devfs_ctx->external_inode_xp ) );
[188]1327
[204]1328        // populate DEVFS in all clusters
1329        devfs_local_init( devfs_dev_inode_xp,
1330                          devfs_external_inode_xp,
1331                          &devfs_internal_inode_xp );
[188]1332    }
1333
1334    /////////////////////////////////////////////////////////////////////////////////
[564]1335    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1336                                        (info->x_size * info->y_size) );
[188]1337    barrier_wait( &local_barrier , info->cores_nr );
[204]1338    /////////////////////////////////////////////////////////////////////////////////
[188]1339
[438]1340#if DEBUG_KERNEL_INIT
1341if( (core_lid ==  0) & (local_cxy == 0) ) 
[601]1342printk("\n[%s] : exit barrier 7 : DEV initialized in cluster 0 / sr %x / cycle %d\n",
[564]1343__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1344#endif
[188]1345
1346    /////////////////////////////////////////////////////////////////////////////////
[428]1347    // STEP 8 : CP0 in cluster 0 creates the first user process (process_init)
[188]1348    /////////////////////////////////////////////////////////////////////////////////
1349
[457]1350    if( (core_lid == 0) && (local_cxy == 0) ) 
[188]1351    {
[428]1352
[438]1353#if( DEBUG_KERNEL_INIT & 1 )
[428]1354vfs_display( vfs_root_inode_xp );
1355#endif
1356
1357       process_init_create();
[188]1358    }
[101]1359
[188]1360    /////////////////////////////////////////////////////////////////////////////////
[564]1361    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ),
1362                                        (info->x_size * info->y_size) );
[188]1363    barrier_wait( &local_barrier , info->cores_nr );
[204]1364    /////////////////////////////////////////////////////////////////////////////////
[188]1365
[438]1366#if DEBUG_KERNEL_INIT
1367if( (core_lid ==  0) & (local_cxy == 0) ) 
[601]1368printk("\n[%s] : exit barrier 8 : process init created / sr %x / cycle %d\n", 
[564]1369__FUNCTION__, (uint32_t)hal_get_sr(), (uint32_t)hal_get_cycles() );
[437]1370#endif
[188]1371
[443]1372#if (DEBUG_KERNEL_INIT & 1)
[564]1373if( (core_lid ==  0) & (local_cxy == 0) ) 
[443]1374sched_display( 0 );
1375#endif
1376
[188]1377    /////////////////////////////////////////////////////////////////////////////////
1378    // STEP 9 : CP0 in cluster 0 print banner
1379    /////////////////////////////////////////////////////////////////////////////////
1380   
[564]1381    if( (core_lid == 0) && (local_cxy == 0) ) 
[188]1382    {
[5]1383        print_banner( (info->x_size * info->y_size) , info->cores_nr );
[68]1384
[438]1385#if( DEBUG_KERNEL_INIT & 1 )
[437]1386printk("\n\n***** memory fooprint for main kernel objects\n\n"
[68]1387                   " - thread descriptor  : %d bytes\n"
1388                   " - process descriptor : %d bytes\n"
1389                   " - cluster manager    : %d bytes\n"
1390                   " - chdev descriptor   : %d bytes\n"
1391                   " - core descriptor    : %d bytes\n"
1392                   " - scheduler          : %d bytes\n"
1393                   " - rpc fifo           : %d bytes\n"
1394                   " - page descriptor    : %d bytes\n"
1395                   " - mapper root        : %d bytes\n"
1396                   " - ppm manager        : %d bytes\n"
1397                   " - kcm manager        : %d bytes\n"
1398                   " - khm manager        : %d bytes\n"
1399                   " - vmm manager        : %d bytes\n"
1400                   " - gpt root           : %d bytes\n"
1401                   " - list item          : %d bytes\n"
1402                   " - xlist item         : %d bytes\n"
[564]1403                   " - busylock           : %d bytes\n"
1404                   " - remote busylock    : %d bytes\n"
1405                   " - queuelock          : %d bytes\n"
1406                   " - remote queuelock   : %d bytes\n"
[68]1407                   " - rwlock             : %d bytes\n"
1408                   " - remote rwlock      : %d bytes\n",
[564]1409                   sizeof( thread_t           ),
1410                   sizeof( process_t          ),
1411                   sizeof( cluster_t          ),
1412                   sizeof( chdev_t            ),
1413                   sizeof( core_t             ),
1414                   sizeof( scheduler_t        ),
1415                   sizeof( remote_fifo_t      ),
1416                   sizeof( page_t             ),
1417                   sizeof( mapper_t           ),
1418                   sizeof( ppm_t              ),
1419                   sizeof( kcm_t              ),
1420                   sizeof( khm_t              ),
1421                   sizeof( vmm_t              ),
1422                   sizeof( gpt_t              ),
1423                   sizeof( list_entry_t       ),
1424                   sizeof( xlist_entry_t      ),
1425                   sizeof( busylock_t         ),
1426                   sizeof( remote_busylock_t  ),
1427                   sizeof( queuelock_t        ),
1428                   sizeof( remote_queuelock_t ),
1429                   sizeof( rwlock_t           ),
1430                   sizeof( remote_rwlock_t    ));
[406]1431#endif
1432
[1]1433    }
1434
[398]1435    // each core activates its private TICK IRQ
1436    dev_pic_enable_timer( CONFIG_SCHED_TICK_MS_PERIOD );
[14]1437
[440]1438#if DEBUG_KERNEL_INIT
[601]1439printk("\n[%s] : thread %x on core[%x,%d] jumps to thread_idle_func() / cycle %d\n",
[440]1440__FUNCTION__ , CURRENT_THREAD , local_cxy , core_lid , (uint32_t)hal_get_cycles() );
1441#endif
1442
[407]1443    // each core jump to thread_idle_func
[50]1444    thread_idle_func();
[127]1445}
[14]1446
Note: See TracBrowser for help on using the repository browser.