source: trunk/kernel/kern/kernel_init.c @ 631

Last change on this file since 631 was 630, checked in by alain, 6 years ago

1) Fix a bug in the vfs_add_special_dentries() function:
The <.> and <..> dentries must not be created on IOC and on the mapper
for the VFS root directory.
2) Fix a bug in the hal_gpt_allocate_pt2 function, related to the
use of the TSAR_LOCKED attribute to avoid concurrent mapping of the PTD1.

File size: 61.9 KB
RevLine 
[1]1/*
2 * kernel_init.c - kernel parallel initialization
[127]3 *
[23]4 * Authors :  Mohamed Lamine Karaoui (2015)
[623]5 *            Alain Greiner  (2016,2017,2018,2019)
[1]6 *
7 * Copyright (c) Sorbonne Universites
8 *
9 * This file is part of ALMOS-MKH.
10 *
11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
15 * ALMOS-MKH is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[1]26#include <errno.h>
[457]27#include <hal_kernel_types.h>
[1]28#include <hal_special.h>
29#include <hal_context.h>
[279]30#include <hal_irqmask.h>
[564]31#include <hal_macros.h>
[296]32#include <hal_ppm.h>
[14]33#include <barrier.h>
[564]34#include <xbarrier.h>
[407]35#include <remote_fifo.h>
[1]36#include <core.h>
37#include <list.h>
[68]38#include <xlist.h>
[204]39#include <xhtab.h>
[1]40#include <thread.h>
41#include <scheduler.h>
42#include <kmem.h>
43#include <cluster.h>
44#include <string.h>
45#include <memcpy.h>
46#include <ppm.h>
47#include <page.h>
[5]48#include <chdev.h>
[1]49#include <boot_info.h>
50#include <dqdt.h>
51#include <dev_mmc.h>
[5]52#include <dev_dma.h>
53#include <dev_iob.h>
[1]54#include <dev_ioc.h>
[5]55#include <dev_txt.h>
[1]56#include <dev_pic.h>
57#include <printk.h>
58#include <vfs.h>
[23]59#include <devfs.h>
[68]60#include <mapper.h>
[1]61
62///////////////////////////////////////////////////////////////////////////////////////////
[279]63// All the following global variables are replicated in all clusters.
[1]64// They are initialised by the kernel_init() function.
[14]65//
[127]66// WARNING : The section names have been defined to control the base addresses of the
[14]67// boot_info structure and the idle thread descriptors, through the kernel.ld script:
[127]68// - the boot_info structure is built by the bootloader, and used by kernel_init.
69//   it must be the first object in the kdata segment.
[14]70// - the array of idle threads descriptors must be placed on the first page boundary after
71//   the boot_info structure in the kdata segment.
[1]72///////////////////////////////////////////////////////////////////////////////////////////
73
[5]74// This variable defines the local boot_info structure
75__attribute__((section(".kinfo")))
[14]76boot_info_t          boot_info;
[5]77
[14]78// This variable defines the "idle" threads descriptors array
79__attribute__((section(".kidle")))
[381]80char                 idle_threads[CONFIG_THREAD_DESC_SIZE *
[14]81                                   CONFIG_MAX_LOCAL_CORES]   CONFIG_PPM_PAGE_ALIGNED;
82
[127]83// This variable defines the local cluster manager
[5]84__attribute__((section(".kdata")))
[19]85cluster_t            cluster_manager                         CONFIG_CACHE_LINE_ALIGNED;
[1]86
[564]87// This variable defines the TXT_TX[0] chdev
[188]88__attribute__((section(".kdata")))
[564]89chdev_t              txt0_tx_chdev                           CONFIG_CACHE_LINE_ALIGNED;
[188]90
[564]91// This variable defines the TXT_RX[0] chdev
[539]92__attribute__((section(".kdata")))
[564]93chdev_t              txt0_rx_chdev                           CONFIG_CACHE_LINE_ALIGNED;
[539]94
[14]95// This variables define the kernel process0 descriptor
[5]96__attribute__((section(".kdata")))
[19]97process_t            process_zero                            CONFIG_CACHE_LINE_ALIGNED;
[1]98
[624]99// This variable defines a set of extended pointers on the distributed chdevs
[5]100__attribute__((section(".kdata")))
[14]101chdev_directory_t    chdev_dir                               CONFIG_CACHE_LINE_ALIGNED;
[1]102
[188]103// This variable contains the input IRQ indexes for the IOPIC controller
[5]104__attribute__((section(".kdata")))
[246]105iopic_input_t        iopic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]106
[188]107// This variable contains the input IRQ indexes for the LAPIC controller
[5]108__attribute__((section(".kdata")))
[188]109lapic_input_t        lapic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]110
[14]111// This variable defines the local cluster identifier
[5]112__attribute__((section(".kdata")))
[14]113cxy_t                local_cxy                               CONFIG_CACHE_LINE_ALIGNED;
[5]114
[623]115// This variable is used for core[0] cores synchronisation in kernel_init()
[5]116__attribute__((section(".kdata")))
[564]117xbarrier_t           global_barrier                          CONFIG_CACHE_LINE_ALIGNED;
[1]118
[127]119// This variable is used for local cores synchronisation in kernel_init()
[14]120__attribute__((section(".kdata")))
121barrier_t            local_barrier                           CONFIG_CACHE_LINE_ALIGNED;
122
[127]123// This variable defines the array of supported File System contexts
[50]124__attribute__((section(".kdata")))
125vfs_ctx_t            fs_context[FS_TYPES_NR]                 CONFIG_CACHE_LINE_ALIGNED;
126
[564]127// This array is used for debug, and describes the kernel locks usage,
128// It must be kept consistent with the defines in kernel_config.h file.
[624]129__attribute__((section(".kdata")))
[564]130char * lock_type_str[] =
131{
132    "unused_0",              //  0
[408]133
[564]134    "CLUSTER_KCM",           //  1
135    "PPM_FREE",              //  2
136    "SCHED_STATE",           //  3
137    "VMM_STACK",             //  4
138    "VMM_MMAP",              //  5
139    "VFS_CTX",               //  6
140    "KCM_STATE",             //  7
141    "KHM_STATE",             //  8
142    "HTAB_STATE",            //  9
143
144    "THREAD_JOIN",           // 10
[610]145    "XHTAB_STATE",           // 11
[564]146    "CHDEV_QUEUE",           // 12
147    "CHDEV_TXT0",            // 13
148    "CHDEV_TXTLIST",         // 14
149    "PAGE_STATE",            // 15
150    "MUTEX_STATE",           // 16
151    "CONDVAR_STATE",         // 17
152    "SEM_STATE",             // 18
[619]153    "PROCESS_CWD",           // 19
154    "BARRIER_STATE",         // 20
[564]155
156    "CLUSTER_PREFTBL",       // 21
[601]157
[564]158    "PPM_DIRTY",             // 22
159    "CLUSTER_LOCALS",        // 23
160    "CLUSTER_COPIES",        // 24
161    "PROCESS_CHILDREN",      // 25
162    "PROCESS_USERSYNC",      // 26
163    "PROCESS_FDARRAY",       // 27
[628]164    "PROCESS_DIR",           // 28
165    "unused_29",             // 29
[564]166
[611]167    "PROCESS_THTBL",         // 30
[564]168
[611]169    "MAPPER_STATE",          // 31
170    "VFS_SIZE",              // 32
171    "VFS_FILE",              // 33
172    "VMM_VSL",               // 34
[629]173    "VFS_MAIN",              // 35
174    "FATFS_FAT",             // 36
[564]175};       
176
[601]177// debug variables to analyse the sys_read() and sys_write() syscalls timing
[564]178
[438]179#if DEBUG_SYS_READ
[407]180uint32_t   enter_sys_read;
181uint32_t   exit_sys_read;
182
[435]183uint32_t   enter_devfs_read;
184uint32_t   exit_devfs_read;
[407]185
186uint32_t   enter_txt_read;
187uint32_t   exit_txt_read;
188
[435]189uint32_t   enter_chdev_cmd_read;
190uint32_t   exit_chdev_cmd_read;
[407]191
[435]192uint32_t   enter_chdev_server_read;
193uint32_t   exit_chdev_server_read;
[407]194
[435]195uint32_t   enter_tty_cmd_read;
196uint32_t   exit_tty_cmd_read;
[407]197
[435]198uint32_t   enter_tty_isr_read;
199uint32_t   exit_tty_isr_read;
[407]200#endif
201
[435]202// these debug variables are used to analyse the sys_write() syscall timing
203
[438]204#if DEBUG_SYS_WRITE   
[435]205uint32_t   enter_sys_write;
206uint32_t   exit_sys_write;
207
208uint32_t   enter_devfs_write;
209uint32_t   exit_devfs_write;
210
211uint32_t   enter_txt_write;
212uint32_t   exit_txt_write;
213
214uint32_t   enter_chdev_cmd_write;
215uint32_t   exit_chdev_cmd_write;
216
217uint32_t   enter_chdev_server_write;
218uint32_t   exit_chdev_server_write;
219
220uint32_t   enter_tty_cmd_write;
221uint32_t   exit_tty_cmd_write;
222
223uint32_t   enter_tty_isr_write;
224uint32_t   exit_tty_isr_write;
225#endif
226
[564]227// intrumentation variables : cumulated costs per syscall type in cluster
[624]228
229#if CONFIG_INSTRUMENTATION_SYSCALLS
230__attribute__((section(".kdata")))
[564]231uint32_t   syscalls_cumul_cost[SYSCALLS_NR];
232
[624]233__attribute__((section(".kdata")))
[564]234uint32_t   syscalls_occurences[SYSCALLS_NR];
[624]235#endif
[564]236
[1]237///////////////////////////////////////////////////////////////////////////////////////////
[5]238// This function displays the ALMOS_MKH banner.
[1]239///////////////////////////////////////////////////////////////////////////////////////////
[5]240static void print_banner( uint32_t nclusters , uint32_t ncores )
[127]241{
[5]242    printk("\n"
243           "                    _        __    __     _____     ______         __    __    _   __   _     _   \n"
244           "          /\\       | |      |  \\  /  |   / ___ \\   / _____|       |  \\  /  |  | | / /  | |   | |  \n"
245           "         /  \\      | |      |   \\/   |  | /   \\ | | /             |   \\/   |  | |/ /   | |   | |  \n"
246           "        / /\\ \\     | |      | |\\  /| |  | |   | | | |_____   ___  | |\\  /| |  |   /    | |___| |  \n"
247           "       / /__\\ \\    | |      | | \\/ | |  | |   | | \\_____  \\ |___| | | \\/ | |  |   \\    |  ___  |  \n"
248           "      / ______ \\   | |      | |    | |  | |   | |       | |       | |    | |  | |\\ \\   | |   | |  \n"
249           "     / /      \\ \\  | |____  | |    | |  | \\___/ |  _____/ |       | |    | |  | | \\ \\  | |   | |  \n"
250           "    /_/        \\_\\ |______| |_|    |_|   \\_____/  |______/        |_|    |_|  |_|  \\_\\ |_|   |_|  \n"
251           "\n\n\t\t Advanced Locality Management Operating System / Multi Kernel Hybrid\n"
[457]252           "\n\n\t\t %s / %d cluster(s) / %d core(s) per cluster\n\n",
253           CONFIG_ALMOS_VERSION , nclusters , ncores );
[5]254}
[1]255
256
[5]257///////////////////////////////////////////////////////////////////////////////////////////
[564]258// This function initializes the TXT_TX[0] and TXT_RX[0] chdev descriptors, implementing
259// the "kernel terminal", shared by all kernel instances for debug messages.
260// These chdev are implemented as global variables (replicated in all clusters),
261// because this terminal is used before the kmem allocator initialisation, but only
262// the chdevs in cluster 0 are registered in the "chdev_dir" directory.
[127]263// As this TXT0 chdev supports only the TXT_SYNC_WRITE command, we don't create
264// a server thread, we don't allocate a WTI, and we don't initialize the waiting queue.
[564]265// Note: The TXT_RX[0] chdev is created, but is not used by ALMOS-MKH (september 2018).
[5]266///////////////////////////////////////////////////////////////////////////////////////////
267// @ info    : pointer on the local boot-info structure.
268///////////////////////////////////////////////////////////////////////////////////////////
[564]269static void __attribute__ ((noinline)) txt0_device_init( boot_info_t * info )
[5]270{
271    boot_device_t * dev_tbl;         // pointer on array of devices in boot_info
[127]272    uint32_t        dev_nr;          // actual number of devices in this cluster
273    xptr_t          base;            // remote pointer on segment base
274    uint32_t        func;            // device functional index
[5]275    uint32_t        impl;            // device implementation index
[127]276    uint32_t        i;               // device index in dev_tbl
277    uint32_t        x;               // X cluster coordinate
278    uint32_t        y;               // Y cluster coordinate
[188]279    uint32_t        channels;        // number of channels
[1]280
[5]281    // get number of peripherals and base of devices array from boot_info
[127]282    dev_nr      = info->ext_dev_nr;
[5]283    dev_tbl     = info->ext_dev;
[1]284
[14]285    // loop on external peripherals to find TXT device
[127]286    for( i = 0 ; i < dev_nr ; i++ )
287    {
[5]288        base        = dev_tbl[i].base;
[188]289        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
290        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
291        channels    = dev_tbl[i].channels;
[5]292
[127]293        if (func == DEV_FUNC_TXT )
[5]294        {
[564]295            // initialize TXT_TX[0] chdev
296            txt0_tx_chdev.func    = func;
297            txt0_tx_chdev.impl    = impl;
298            txt0_tx_chdev.channel = 0;
299            txt0_tx_chdev.base    = base;
300            txt0_tx_chdev.is_rx   = false;
301            remote_busylock_init( XPTR( local_cxy , &txt0_tx_chdev.wait_lock ),
302                                  LOCK_CHDEV_TXT0 );
[188]303           
[564]304            // initialize TXT_RX[0] chdev
305            txt0_rx_chdev.func    = func;
306            txt0_rx_chdev.impl    = impl;
307            txt0_rx_chdev.channel = 0;
308            txt0_rx_chdev.base    = base;
309            txt0_rx_chdev.is_rx   = true;
310            remote_busylock_init( XPTR( local_cxy , &txt0_rx_chdev.wait_lock ),
311                                  LOCK_CHDEV_TXT0 );
312           
313            // make TXT specific initialisations
314            dev_txt_init( &txt0_tx_chdev );                 
315            dev_txt_init( &txt0_rx_chdev );
[14]316
[564]317            // register TXT_TX[0] & TXT_RX[0] in chdev_dir[x][y]
318            // for all valid clusters             
[5]319            for( x = 0 ; x < info->x_size ; x++ )
320            {
[564]321                for( y = 0 ; y < info->y_size ; y++ )
[5]322                {
[564]323                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
324
325                    if( cluster_is_active( cxy ) )
326                    {
327                        hal_remote_s64( XPTR( cxy , &chdev_dir.txt_tx[0] ) ,
328                                        XPTR( local_cxy , &txt0_tx_chdev ) );
329                        hal_remote_s64( XPTR( cxy , &chdev_dir.txt_rx[0] ) ,
330                                        XPTR( local_cxy , &txt0_rx_chdev ) );
[559]331                    }
[5]332                }
333            }
[564]334
335            hal_fence();
[5]336        }
[188]337        } // end loop on devices
338}  // end txt0_device_init()
[5]339
[1]340///////////////////////////////////////////////////////////////////////////////////////////
[188]341// This function allocates memory and initializes the chdev descriptors for the internal
342// peripherals contained in the local cluster, other than the LAPIC, as specified by
343// the boot_info, including the linking with the driver for the specified implementation.
344// The relevant entries in all copies of the devices directory are initialised.
[1]345///////////////////////////////////////////////////////////////////////////////////////////
346// @ info    : pointer on the local boot-info structure.
347///////////////////////////////////////////////////////////////////////////////////////////
[564]348static void __attribute__ ((noinline)) internal_devices_init( boot_info_t * info )
[1]349{
[188]350    boot_device_t * dev_tbl;         // pointer on array of internaldevices in boot_info
351        uint32_t        dev_nr;          // actual number of devices in this cluster
352        xptr_t          base;            // remote pointer on segment base
353    uint32_t        func;            // device functionnal index
354    uint32_t        impl;            // device implementation index
355        uint32_t        i;               // device index in dev_tbl
356        uint32_t        x;               // X cluster coordinate
357        uint32_t        y;               // Y cluster coordinate
358        uint32_t        channels;        // number of channels
359        uint32_t        channel;         // channel index
360        chdev_t       * chdev_ptr;       // local pointer on created chdev
[1]361
[188]362    // get number of internal peripherals and base from boot_info
363        dev_nr  = info->int_dev_nr;
364    dev_tbl = info->int_dev;
[1]365
[188]366    // loop on internal peripherals
367        for( i = 0 ; i < dev_nr ; i++ )
368        {
369        base        = dev_tbl[i].base;
370        channels    = dev_tbl[i].channels;
371        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
372        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
[204]373 
[188]374        //////////////////////////
375        if( func == DEV_FUNC_MMC ) 
[5]376        {
[1]377
[564]378            // check channels
379            if( channels != 1 )
[580]380            {
381                printk("\n[PANIC] in %s : MMC device must be single channel\n",
382                __FUNCTION__ );
383                hal_core_sleep();
384            }
[564]385
[188]386            // create chdev in local cluster
387            chdev_ptr = chdev_create( func,
388                                      impl,
389                                      0,          // channel
390                                      false,      // direction
391                                      base );
[14]392
[564]393            // check memory
394            if( chdev_ptr == NULL )
[580]395            {
396                printk("\n[PANIC] in %s : cannot create MMC chdev\n",
397                __FUNCTION__ );
398                hal_core_sleep();
399            }
[188]400           
401            // make MMC specific initialisation
402            dev_mmc_init( chdev_ptr );
[1]403
[188]404            // set the MMC field in all chdev_dir[x][y] structures
405            for( x = 0 ; x < info->x_size ; x++ )
[1]406            {
[564]407                for( y = 0 ; y < info->y_size ; y++ )
[188]408                {
[564]409                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
410
411                    if( cluster_is_active( cxy ) )
412                    {
413                        hal_remote_s64( XPTR( cxy , &chdev_dir.mmc[local_cxy] ), 
[559]414                                        XPTR( local_cxy , chdev_ptr ) );
415                    }
[188]416                }
[1]417            }
[188]418
[438]419#if( DEBUG_KERNEL_INIT & 0x1 )
420if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[601]421printk("\n[%s] : created MMC in cluster %x / chdev = %x\n",
[407]422__FUNCTION__ , local_cxy , chdev_ptr );
[389]423#endif
[14]424        }
[188]425        ///////////////////////////////
426        else if( func == DEV_FUNC_DMA )
[127]427        {
[188]428            // create one chdev per channel in local cluster
429            for( channel = 0 ; channel < channels ; channel++ )
430            {   
431                // create chdev[channel] in local cluster
432                chdev_ptr = chdev_create( func,
433                                          impl,
434                                          channel,
435                                          false,     // direction
436                                          base );
[5]437
[564]438                // check memory
439                if( chdev_ptr == NULL )
[580]440                {
441                    printk("\n[PANIC] in %s : cannot create DMA chdev\n",
442                    __FUNCTION__ );
443                    hal_core_sleep();
444                }
[564]445           
[188]446                // make DMA specific initialisation
447                dev_dma_init( chdev_ptr );     
[127]448
[188]449                // initialize only the DMA[channel] field in the local chdev_dir[x][y]
450                // structure because the DMA device is not remotely accessible.
451                chdev_dir.dma[channel] = XPTR( local_cxy , chdev_ptr );
[5]452
[438]453#if( DEBUG_KERNEL_INIT & 0x1 )
454if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[601]455printk("\n[%s] : created DMA[%d] in cluster %x / chdev = %x\n",
[389]456__FUNCTION__ , channel , local_cxy , chdev_ptr );
457#endif
[188]458            }
[14]459        }
[127]460    }
[5]461}  // end internal_devices_init()
462
463///////////////////////////////////////////////////////////////////////////////////////////
[188]464// This function allocates memory and initializes the chdev descriptors for the 
[408]465// external (shared) peripherals other than the IOPIC, as specified by the boot_info.
466// This includes the dynamic linking with the driver for the specified implementation.
[188]467// These chdev descriptors are distributed on all clusters, using a modulo on a global
[408]468// index, identically computed in all clusters.
[623]469// This function is executed in all clusters by the core[0] core, that computes a global index
470// for all external chdevs. Each core[0] core creates only the chdevs that must be placed in
[408]471// the local cluster, because the global index matches the local index.
[188]472// The relevant entries in all copies of the devices directory are initialised.
[5]473///////////////////////////////////////////////////////////////////////////////////////////
474// @ info    : pointer on the local boot-info structure.
475///////////////////////////////////////////////////////////////////////////////////////////
476static void external_devices_init( boot_info_t * info )
477{
[188]478    boot_device_t * dev_tbl;         // pointer on array of external devices in boot_info
479        uint32_t        dev_nr;          // actual number of external devices
480        xptr_t          base;            // remote pointer on segment base
[5]481    uint32_t        func;            // device functionnal index
482    uint32_t        impl;            // device implementation index
[188]483        uint32_t        i;               // device index in dev_tbl
484        uint32_t        x;               // X cluster coordinate
485        uint32_t        y;               // Y cluster coordinate
486        uint32_t        channels;        // number of channels
487        uint32_t        channel;         // channel index
488        uint32_t        directions;      // number of directions (1 or 2)
489        uint32_t        rx;              // direction index (0 or 1)
[127]490    chdev_t       * chdev;           // local pointer on one channel_device descriptor
[188]491    uint32_t        ext_chdev_gid;   // global index of external chdev
[5]492
493    // get number of peripherals and base of devices array from boot_info
[127]494    dev_nr      = info->ext_dev_nr;
[5]495    dev_tbl     = info->ext_dev;
496
[188]497    // initializes global index (PIC is already placed in cluster 0
498    ext_chdev_gid = 1;
499
[5]500    // loop on external peripherals
[127]501    for( i = 0 ; i < dev_nr ; i++ )
502    {
[188]503        base     = dev_tbl[i].base;
504        channels = dev_tbl[i].channels;
505        func     = FUNC_FROM_TYPE( dev_tbl[i].type );
506        impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
[5]507
[407]508        // There is one chdev per direction for NIC and for TXT
509        if((func == DEV_FUNC_NIC) || (func == DEV_FUNC_TXT)) directions = 2;
510        else                                                 directions = 1;
[5]511
[407]512        // do nothing for ROM, that does not require a device descriptor.
[5]513        if( func == DEV_FUNC_ROM ) continue;
514
[188]515        // do nothing for PIC, that is already initialized
516        if( func == DEV_FUNC_PIC ) continue;
[5]517
[188]518        // check PIC device initialized
[564]519        if( chdev_dir.pic == XPTR_NULL )
[580]520        {
521            printk("\n[PANIC] in %s : PIC device must be initialized first\n",
522            __FUNCTION__ );
523            hal_core_sleep();
524        }
[188]525
526        // check external device functionnal type
[564]527        if( (func != DEV_FUNC_IOB) && (func != DEV_FUNC_IOC) && (func != DEV_FUNC_TXT) &&
528            (func != DEV_FUNC_NIC) && (func != DEV_FUNC_FBF) )
[580]529        {
530            printk("\n[PANIC] in %s : undefined peripheral type\n",
531            __FUNCTION__ );
532            hal_core_sleep();
533        }
[188]534
[127]535        // loops on channels
[428]536        for( channel = 0 ; channel < channels ; channel++ )
[127]537        {
[5]538            // loop on directions
[188]539            for( rx = 0 ; rx < directions ; rx++ )
[1]540            {
[564]541                // skip TXT0 that has already been initialized
542                if( (func == DEV_FUNC_TXT) && (channel == 0) ) continue;
[428]543
[564]544                // all kernel instances compute the target cluster for all chdevs,
545                // computing the global index ext_chdev_gid[func,channel,direction]
546                cxy_t target_cxy;
547                while( 1 )
[536]548                {
[564]549                    uint32_t offset     = ext_chdev_gid % ( info->x_size * info->y_size );
550                    uint32_t x          = offset / info->y_size;
551                    uint32_t y          = offset % info->y_size;
[536]552
[564]553                    target_cxy = HAL_CXY_FROM_XY( x , y );
554
555                    // exit loop if target cluster is active
556                    if( cluster_is_active( target_cxy ) ) break;
557               
558                    // increment global index otherwise
559                    ext_chdev_gid++;
[550]560                }
561
[5]562                // allocate and initialize a local chdev
[407]563                // when local cluster matches target cluster
[5]564                if( target_cxy == local_cxy )
[1]565                {
[5]566                    chdev = chdev_create( func,
567                                          impl,
568                                          channel,
[188]569                                          rx,          // direction
[5]570                                          base );
571
[564]572                    if( chdev == NULL )
[580]573                    {
574                        printk("\n[PANIC] in %s : cannot allocate chdev\n",
575                        __FUNCTION__ );
576                        hal_core_sleep();
577                    }
[5]578
579                    // make device type specific initialisation
580                    if     ( func == DEV_FUNC_IOB ) dev_iob_init( chdev );
581                    else if( func == DEV_FUNC_IOC ) dev_ioc_init( chdev );
582                    else if( func == DEV_FUNC_TXT ) dev_txt_init( chdev );
583                    else if( func == DEV_FUNC_NIC ) dev_nic_init( chdev );
[188]584                    else if( func == DEV_FUNC_FBF ) dev_fbf_init( chdev );
[5]585
[127]586                    // all external (shared) devices are remotely accessible
[5]587                    // initialize the replicated chdev_dir[x][y] structures
[127]588                    // defining the extended pointers on chdev descriptors
589                    xptr_t * entry;
590
[188]591                    if(func==DEV_FUNC_IOB             ) entry  = &chdev_dir.iob;
592                    if(func==DEV_FUNC_IOC             ) entry  = &chdev_dir.ioc[channel];
593                    if(func==DEV_FUNC_FBF             ) entry  = &chdev_dir.fbf[channel];
[407]594                    if((func==DEV_FUNC_TXT) && (rx==0)) entry  = &chdev_dir.txt_tx[channel];
595                    if((func==DEV_FUNC_TXT) && (rx==1)) entry  = &chdev_dir.txt_rx[channel];
[188]596                    if((func==DEV_FUNC_NIC) && (rx==0)) entry  = &chdev_dir.nic_tx[channel];
597                    if((func==DEV_FUNC_NIC) && (rx==1)) entry  = &chdev_dir.nic_rx[channel];
[127]598
[1]599                    for( x = 0 ; x < info->x_size ; x++ )
600                    {
[564]601                        for( y = 0 ; y < info->y_size ; y++ )
[1]602                        {
[564]603                            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
604
605                            if( cluster_is_active( cxy ) )
606                            {
607                                hal_remote_s64( XPTR( cxy , entry ),
[559]608                                                XPTR( local_cxy , chdev ) );
609                            }
[5]610                        }
[1]611                    }
612
[438]613#if( DEBUG_KERNEL_INIT & 0x1 )
614if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[601]615printk("\n[%s] : create chdev %s / channel = %d / rx = %d / cluster %x / chdev = %x\n",
[407]616__FUNCTION__ , chdev_func_str( func ), channel , rx , local_cxy , chdev );
[389]617#endif
[5]618                }  // end if match
619
[19]620                // increment chdev global index (matching or not)
[188]621                ext_chdev_gid++;
[5]622
623            } // end loop on directions
624        }  // end loop on channels
[188]625        } // end loop on devices
626}  // end external_devices_init()
[5]627
[188]628///////////////////////////////////////////////////////////////////////////////////////////
[623]629// This function is called by core[0] in cluster 0 to allocate memory and initialize the PIC
[407]630// device, namely the informations attached to the external IOPIC controller, that
631// must be replicated in all clusters (struct iopic_input).
[188]632// This initialisation must be done before other devices initialisation because the IRQ
[407]633// routing infrastructure is required for both internal and external devices init.
[188]634///////////////////////////////////////////////////////////////////////////////////////////
635// @ info    : pointer on the local boot-info structure.
636///////////////////////////////////////////////////////////////////////////////////////////
[564]637static void __attribute__ ((noinline)) iopic_init( boot_info_t * info )
[188]638{
639    boot_device_t * dev_tbl;         // pointer on boot_info external devices array
640        uint32_t        dev_nr;          // actual number of external devices
641        xptr_t          base;            // remote pointer on segment base
642    uint32_t        func;            // device functionnal index
643    uint32_t        impl;            // device implementation index
644        uint32_t        i;               // device index in dev_tbl
645    uint32_t        x;               // cluster X coordinate
646    uint32_t        y;               // cluster Y coordinate
647    bool_t          found;           // IOPIC found
648        chdev_t       * chdev;           // pointer on PIC chdev descriptor
649
650    // get number of external peripherals and base of array from boot_info
651        dev_nr      = info->ext_dev_nr;
652    dev_tbl     = info->ext_dev;
653
[564]654    // avoid GCC warning
655    base        = XPTR_NULL;
656    impl        = 0;
657
[188]658    // loop on external peripherals to get the IOPIC 
659        for( i = 0 , found = false ; i < dev_nr ; i++ )
660        {
661        func = FUNC_FROM_TYPE( dev_tbl[i].type );
662
[127]663        if( func == DEV_FUNC_PIC )
[1]664        {
[188]665            base     = dev_tbl[i].base;
666            impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
667            found    = true;
668            break;
669        }
670    }
[5]671
[564]672    // check PIC existence
673    if( found == false )
[580]674    {
675        printk("\n[PANIC] in %s : PIC device not found\n",
676        __FUNCTION__ );
677        hal_core_sleep();
678    }
[1]679
[407]680    // allocate and initialize the PIC chdev in cluster 0
681    chdev = chdev_create( DEV_FUNC_PIC,
[188]682                          impl,
683                          0,      // channel
684                          0,      // direction,
685                          base );
[5]686
[564]687    // check memory
688    if( chdev == NULL )
[580]689    {
690        printk("\n[PANIC] in %s : no memory for PIC chdev\n",
691        __FUNCTION__ );
692        hal_core_sleep();
693    }
[5]694
[188]695    // make PIC device type specific initialisation
696    dev_pic_init( chdev );
[1]697
[407]698    // register, in all clusters, the extended pointer
699    // on PIC chdev in "chdev_dir" array
[188]700    xptr_t * entry = &chdev_dir.pic;   
701               
702    for( x = 0 ; x < info->x_size ; x++ )
703    {
[564]704        for( y = 0 ; y < info->y_size ; y++ )
[188]705        {
[564]706            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
707
708            if( cluster_is_active( cxy ) )
709            {
710                hal_remote_s64( XPTR( cxy , entry ) , 
[559]711                                XPTR( local_cxy , chdev ) );
712            }
[188]713        }
714    }
[1]715
[407]716    // initialize, in all clusters, the "iopic_input" structure
[188]717    // defining how external IRQs are connected to IOPIC
718
[407]719    // register default value for unused inputs
720    for( x = 0 ; x < info->x_size ; x++ )
721    {
[564]722        for( y = 0 ; y < info->y_size ; y++ )
[407]723        {
[564]724            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
725
726            if( cluster_is_active( cxy ) )
727            {
728                hal_remote_memset( XPTR( cxy , &iopic_input ), 
729                                   0xFF , sizeof(iopic_input_t) );
[559]730            }
[407]731        }
732    }
733
734    // register input IRQ index for valid inputs
[577]735    uint32_t   id;             // input IRQ index
736    uint8_t    valid;          // input IRQ is connected
737    uint32_t   type;           // source device type
738    uint8_t    channel;        // source device channel
739    uint8_t    is_rx;          // source device direction
740    uint32_t * ptr = NULL;     // local pointer on one field in iopic_input stucture
[407]741
[188]742    for( id = 0 ; id < CONFIG_MAX_EXTERNAL_IRQS ; id++ )
743    {
744        valid   = dev_tbl[i].irq[id].valid;
745        type    = dev_tbl[i].irq[id].dev_type;
746        channel = dev_tbl[i].irq[id].channel;
747        is_rx   = dev_tbl[i].irq[id].is_rx;
[407]748        func    = FUNC_FROM_TYPE( type );
[188]749
[407]750        // get pointer on relevant field in iopic_input
751        if( valid )
[188]752        {
[407]753            if     ( func == DEV_FUNC_IOC )                 ptr = &iopic_input.ioc[channel]; 
754            else if((func == DEV_FUNC_TXT) && (is_rx == 0)) ptr = &iopic_input.txt_tx[channel];
755            else if((func == DEV_FUNC_TXT) && (is_rx != 0)) ptr = &iopic_input.txt_rx[channel];
[492]756            else if((func == DEV_FUNC_NIC) && (is_rx == 0)) ptr = &iopic_input.nic_tx[channel];
757            else if((func == DEV_FUNC_NIC) && (is_rx != 0)) ptr = &iopic_input.nic_rx[channel];
758            else if( func == DEV_FUNC_IOB )                 ptr = &iopic_input.iob;
[580]759            else
760            {
761                printk("\n[PANIC] in %s : illegal source device for IOPIC input\n",
762                __FUNCTION__ );
763                hal_core_sleep();
764            }
[188]765
[407]766            // set one entry in all "iopic_input" structures
767            for( x = 0 ; x < info->x_size ; x++ )
768            {
[564]769                for( y = 0 ; y < info->y_size ; y++ )
[407]770                {
[564]771                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
772
773                    if( cluster_is_active( cxy ) )
774                    {
775                        hal_remote_s64( XPTR( cxy , ptr ) , id ); 
[559]776                    }
[407]777                }
778            }
[188]779        }
780    } 
781
[438]782#if( DEBUG_KERNEL_INIT & 0x1 )
[601]783if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[407]784{
[601]785    printk("\n[%s] created PIC chdev in cluster %x at cycle %d\n",
[407]786    __FUNCTION__ , local_cxy , (uint32_t)hal_time_stamp() );
787    dev_pic_inputs_display();
788}
[389]789#endif
[188]790   
791}  // end iopic_init()
792
[1]793///////////////////////////////////////////////////////////////////////////////////////////
[623]794// This function is called by all core[0]s in all cluster to complete the PIC device
[188]795// initialisation, namely the informations attached to the LAPIC controller.
796// This initialisation must be done after the IOPIC initialisation, but before other
797// devices initialisation because the IRQ routing infrastructure is required for both
798// internal and external devices initialisation.
799///////////////////////////////////////////////////////////////////////////////////////////
800// @ info    : pointer on the local boot-info structure.
801///////////////////////////////////////////////////////////////////////////////////////////
[564]802static void __attribute__ ((noinline)) lapic_init( boot_info_t * info )
[188]803{
804    boot_device_t * dev_tbl;      // pointer on boot_info internal devices array
805    uint32_t        dev_nr;       // number of internal devices
806    uint32_t        i;            // device index in dev_tbl
807        xptr_t          base;         // remote pointer on segment base
808    uint32_t        func;         // device functionnal type in boot_info
809    bool_t          found;        // LAPIC found
810
811    // get number of internal peripherals and base
812        dev_nr      = info->int_dev_nr;
813    dev_tbl     = info->int_dev;
814
815    // loop on internal peripherals to get the lapic device
816        for( i = 0 , found = false ; i < dev_nr ; i++ )
817        {
818        func = FUNC_FROM_TYPE( dev_tbl[i].type );
819
820        if( func == DEV_FUNC_ICU )
821        {
822            base     = dev_tbl[i].base;
823            found    = true;
824            break;
825        }
826    }
827
828    // if the LAPIC controller is not defined in the boot_info,
829    // we simply don't initialize the PIC extensions in the kernel,
830    // making the assumption that the LAPIC related informations
831    // are hidden in the hardware specific PIC driver.
832    if( found )
833    {
834        // initialise the PIC extensions for
835        // the core descriptor and core manager extensions
836        dev_pic_extend_init( (uint32_t *)GET_PTR( base ) );
837
838        // initialize the "lapic_input" structure
839        // defining how internal IRQs are connected to LAPIC
840        uint32_t        id;
841        uint8_t         valid;
842        uint8_t         channel;
843        uint32_t        func;
844
845        for( id = 0 ; id < CONFIG_MAX_INTERNAL_IRQS ; id++ )
846        {
847            valid    = dev_tbl[i].irq[id].valid;
848            func     = FUNC_FROM_TYPE( dev_tbl[i].irq[id].dev_type );
849            channel  = dev_tbl[i].irq[id].channel;
850
851            if( valid ) // only valid local IRQs are registered
852            {
853                if     ( func == DEV_FUNC_MMC ) lapic_input.mmc = id;
854                else if( func == DEV_FUNC_DMA ) lapic_input.dma[channel] = id;
[580]855                else
856                {
857                    printk("\n[PANIC] in %s : illegal source device for LAPIC input\n",
858                    __FUNCTION__ );
859                    hal_core_sleep();
860                }
[188]861            }
862        }
863    }
864}  // end lapic_init()
865
866///////////////////////////////////////////////////////////////////////////////////////////
[14]867// This static function returns the identifiers of the calling core.
868///////////////////////////////////////////////////////////////////////////////////////////
869// @ info    : pointer on boot_info structure.
870// @ lid     : [out] core local index in cluster.
871// @ cxy     : [out] cluster identifier.
872// @ lid     : [out] core global identifier (hardware).
873// @ return 0 if success / return EINVAL if not found.
874///////////////////////////////////////////////////////////////////////////////////////////
[564]875static error_t __attribute__ ((noinline)) get_core_identifiers( boot_info_t * info,
876                                                                lid_t       * lid,
877                                                                cxy_t       * cxy,
878                                                                gid_t       * gid )
[14]879{
[127]880    uint32_t   i;
[14]881    gid_t      global_id;
[19]882
[14]883    // get global identifier from hardware register
[127]884    global_id = hal_get_gid();
[14]885
886    // makes an associative search in boot_info to get (cxy,lid) from global_id
887    for( i = 0 ; i < info->cores_nr ; i++ )
888    {
889        if( global_id == info->core[i].gid )
890        {
891            *lid = info->core[i].lid;
892            *cxy = info->core[i].cxy;
893            *gid = global_id;
894            return 0;
895        }
896    }
897    return EINVAL;
[19]898}
[14]899
[626]900
901
902
903
904/////////////////////////////////
905// kleenex debug function
906/////////////////////////////////
907void display_fat( uint32_t step )
908{
909    fatfs_ctx_t * fatfs_ctx = fs_context[FS_TYPE_FATFS].extend;
910    if( fatfs_ctx != NULL ) 
911    {
912        printk("\n[%s] step %d at cycle %d\n", __FUNCTION__, step, (uint32_t)hal_get_cycles() );
913        xptr_t     mapper_xp = fatfs_ctx->fat_mapper_xp;
914        mapper_display_page( mapper_xp , 0 , 128 );
915    }
916    else
917    {
918        printk("\n[%s] step %d : fatfs context not initialized\n", __FUNCTION__, step );
919    }
920}
921
922
923
924
925
[14]926///////////////////////////////////////////////////////////////////////////////////////////
[1]927// This function is the entry point for the kernel initialisation.
[623]928// It is executed by all cores in all clusters, but only core[0] initializes
929// the shared resources such as the cluster manager, or the local peripherals.
[19]930// To comply with the multi-kernels paradigm, it accesses only local cluster memory, using
931// only information contained in the local boot_info_t structure, set by the bootloader.
[623]932// Only core[0] in cluster 0 print the log messages.
[1]933///////////////////////////////////////////////////////////////////////////////////////////
934// @ info    : pointer on the local boot-info structure.
935///////////////////////////////////////////////////////////////////////////////////////////
936void kernel_init( boot_info_t * info )
937{
[204]938    lid_t        core_lid = -1;             // running core local index
939    cxy_t        core_cxy = -1;             // running core cluster identifier
940    gid_t        core_gid;                  // running core hardware identifier
941    cluster_t  * cluster;                   // pointer on local cluster manager
942    core_t     * core;                      // pointer on running core descriptor
943    thread_t   * thread;                    // pointer on idle thread descriptor
944
945    xptr_t       vfs_root_inode_xp;         // extended pointer on VFS root inode
946    xptr_t       devfs_dev_inode_xp;        // extended pointer on DEVFS dev inode   
947    xptr_t       devfs_external_inode_xp;   // extended pointer on DEVFS external inode       
948    xptr_t       devfs_internal_inode_xp;   // extended pointer on DEVFS internal inode       
949
[1]950    error_t      error;
[285]951    reg_t        status;                    // running core status register
[1]952
[188]953    /////////////////////////////////////////////////////////////////////////////////
[623]954    // STEP 1 : Each core get its core identifier from boot_info, and makes
[188]955    //          a partial initialisation of its private idle thread descriptor.
[623]956    //          core[0] initializes the "local_cxy" global variable.
957    //          core[0] in cluster[0] initializes the TXT0 chdev for log messages.
[188]958    /////////////////////////////////////////////////////////////////////////////////
959
[23]960    error = get_core_identifiers( info,
[14]961                                  &core_lid,
962                                  &core_cxy,
963                                  &core_gid );
[1]964
[623]965    // core[0] initialize cluster identifier
[14]966    if( core_lid == 0 ) local_cxy = info->cxy;
[1]967
[127]968    // each core gets a pointer on its private idle thread descriptor
969    thread = (thread_t *)( idle_threads + (core_lid * CONFIG_THREAD_DESC_SIZE) );
[68]970
[127]971    // each core registers this thread pointer in hardware register
[68]972    hal_set_current_thread( thread );
[71]973
[407]974    // each core register core descriptor pointer in idle thread descriptor
975    thread->core = &LOCAL_CLUSTER->core_tbl[core_lid];
976
[564]977    // each core initializes the idle thread locks counters
978    thread->busylocks = 0;
[124]979
[564]980#if DEBUG_BUSYLOCK
981    // each core initialise the idle thread list of busylocks
982    xlist_root_init( XPTR( local_cxy , &thread->busylocks_root ) );
983#endif
[14]984
[623]985    // core[0] initializes cluster info
[564]986    if( core_lid == 0 ) cluster_info_init( info );
987
[623]988    // core[0] in cluster[0] initialises TXT0 chdev descriptor
[564]989    if( (core_lid == 0) && (core_cxy == 0) ) txt0_device_init( info );
990
[623]991    // all cores check identifiers
992    if( error )
993    {
994        printk("\n[PANIC] in %s : illegal core : gid %x / cxy %x / lid %d",
995        __FUNCTION__, core_lid, core_cxy, core_lid );
996        hal_core_sleep();
997    }
998
[14]999    /////////////////////////////////////////////////////////////////////////////////
[564]1000    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1001                                        (info->x_size * info->y_size) );
[14]1002    barrier_wait( &local_barrier , info->cores_nr );
[437]1003    /////////////////////////////////////////////////////////////////////////////////
[14]1004
[438]1005#if DEBUG_KERNEL_INIT
[583]1006if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1007printk("\n[%s] exit barrier 1 : TXT0 initialized / cycle %d\n",
[610]1008__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1009#endif
[14]1010
[623]1011    /////////////////////////////////////////////////////////////////////////////////
1012    // STEP 2 : core[0] initializes the cluter manager,
1013    //          including the physical memory allocator.
1014    /////////////////////////////////////////////////////////////////////////////////
[188]1015
[623]1016    // core[0] initialises DQDT (only core[0] in cluster 0 build the quad-tree)
[582]1017    if( core_lid == 0 ) dqdt_init();
1018   
[623]1019    // core[0] initialize other cluster manager complex structures
[14]1020    if( core_lid == 0 )
[1]1021    {
[564]1022        error = cluster_manager_init( info );
[1]1023
[14]1024        if( error )
[580]1025        {
1026             printk("\n[PANIC] in %s : cannot initialize cluster manager in cluster %x\n",
1027             __FUNCTION__, local_cxy );
1028             hal_core_sleep();
1029        }
[14]1030    }
[5]1031
[14]1032    /////////////////////////////////////////////////////////////////////////////////
[564]1033    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1034                                        (info->x_size * info->y_size) );
[14]1035    barrier_wait( &local_barrier , info->cores_nr );
1036    /////////////////////////////////////////////////////////////////////////////////
[1]1037
[438]1038#if DEBUG_KERNEL_INIT
1039if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1040printk("\n[%s] exit barrier 2 : cluster manager initialized / cycle %d\n",
[610]1041__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1042#endif
[1]1043
[188]1044    /////////////////////////////////////////////////////////////////////////////////
[624]1045    // STEP 3 : all cores initialize the idle thread descriptor.
1046    //          core[0] initializes the process_zero descriptor,
[623]1047    //          including the kernel VMM (both GPT and VSL)
[188]1048    /////////////////////////////////////////////////////////////////////////////////
1049
1050    // all cores get pointer on local cluster manager & core descriptor
[14]1051    cluster = &cluster_manager;
[127]1052    core    = &cluster->core_tbl[core_lid];
[1]1053
[624]1054    // all cores update the register(s) defining the kernel
1055    // entry points for interrupts, exceptions and syscalls,
1056    // this must be done before VFS initialisation, because
1057    // kernel_init() uses RPCs requiring IPIs...
1058    hal_set_kentry();
1059
1060    // all cores initialize the idle thread descriptor
1061    thread_idle_init( thread,
1062                      THREAD_IDLE,
1063                      &thread_idle_func,
1064                      NULL,
1065                      core_lid );
1066
[623]1067    // core[0] initializes the process_zero descriptor,
1068    if( core_lid == 0 ) process_zero_create( &process_zero , info );
[5]1069
[623]1070    /////////////////////////////////////////////////////////////////////////////////
1071    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1072                                        (info->x_size * info->y_size) );
1073    barrier_wait( &local_barrier , info->cores_nr );
1074    /////////////////////////////////////////////////////////////////////////////////
1075
1076#if DEBUG_KERNEL_INIT
1077if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1078printk("\n[%s] exit barrier 3 : kernel processs initialized / cycle %d\n",
[623]1079__FUNCTION__, (uint32_t)hal_get_cycles() );
1080#endif
1081
1082    /////////////////////////////////////////////////////////////////////////////////
1083    // STEP 4 : all cores initialize their private MMU
1084    //          core[0] in cluster 0 initializes the IOPIC device.
1085    /////////////////////////////////////////////////////////////////////////////////
1086
1087    // all cores initialise their MMU
1088    hal_mmu_init( &process_zero.vmm.gpt );
1089
1090    // core[0] in cluster[0] initializes the PIC chdev,
[188]1091    if( (core_lid == 0) && (local_cxy == 0) ) iopic_init( info );
1092   
1093    ////////////////////////////////////////////////////////////////////////////////
[564]1094    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1095                                        (info->x_size * info->y_size) );
[188]1096    barrier_wait( &local_barrier , info->cores_nr );
1097    ////////////////////////////////////////////////////////////////////////////////
[127]1098
[438]1099#if DEBUG_KERNEL_INIT
1100if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1101printk("\n[%s] exit barrier 4 : MMU and IOPIC initialized / cycle %d\n",
[610]1102__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1103#endif
[1]1104
[188]1105    ////////////////////////////////////////////////////////////////////////////////
[623]1106    // STEP 5 : core[0] initializes the distibuted LAPIC descriptor.
1107    //          core[0] initializes the internal chdev descriptors
1108    //          core[0] initialize the local external chdev descriptors
[188]1109    ////////////////////////////////////////////////////////////////////////////////
[5]1110
[623]1111    // all core[0]s initialize their local LAPIC extension,
[279]1112    if( core_lid == 0 ) lapic_init( info );
1113
[623]1114    // core[0] scan the internal (private) peripherals,
[188]1115    // and allocates memory for the corresponding chdev descriptors.
1116    if( core_lid == 0 ) internal_devices_init( info );
1117       
[1]1118
[623]1119    // All core[0]s contribute to initialise external peripheral chdev descriptors.
1120    // Each core[0][cxy] scan the set of external (shared) peripherals (but the TXT0),
[14]1121    // and allocates memory for the chdev descriptors that must be placed
[127]1122    // on the (cxy) cluster according to the global index value.
[188]1123
[14]1124    if( core_lid == 0 ) external_devices_init( info );
[1]1125
[14]1126    /////////////////////////////////////////////////////////////////////////////////
[564]1127    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1128                                        (info->x_size * info->y_size) );
[14]1129    barrier_wait( &local_barrier , info->cores_nr );
1130    /////////////////////////////////////////////////////////////////////////////////
[5]1131
[438]1132#if DEBUG_KERNEL_INIT
1133if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1134printk("\n[%s] exit barrier 5 : chdevs initialised / cycle %d\n",
[610]1135__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1136#endif
[1]1137
[438]1138#if( DEBUG_KERNEL_INIT & 1 )
[443]1139if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1140chdev_dir_display();
1141#endif
1142   
[188]1143    /////////////////////////////////////////////////////////////////////////////////
[624]1144    // STEP 6 : all cores enable IPI (Inter Procesor Interrupt),
1145    //          all cores unblock the idle thread, and register it in scheduler.
1146    //          core[0] in cluster[0] creates the VFS root inode.
[188]1147    //          It access the boot device to initialize the file system context.
1148    /////////////////////////////////////////////////////////////////////////////////
1149
[564]1150    // All cores enable IPI
[279]1151    dev_pic_enable_ipi();
1152    hal_enable_irq( &status );
1153
[624]1154    // all cores unblock the idle thread, and register it in scheduler
[296]1155    thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_GLOBAL );
[103]1156    core->scheduler.idle = thread;
[1]1157
[623]1158    // core[O] in cluster[0] creates the VFS root
[188]1159    if( (core_lid ==  0) && (local_cxy == 0 ) ) 
[14]1160    {
[188]1161        vfs_root_inode_xp = XPTR_NULL;
[23]1162
[614]1163        // Only FATFS is supported yet,
1164        // other File System can be introduced here
[23]1165        if( CONFIG_VFS_ROOT_IS_FATFS )
1166        {
[626]1167            // 1. allocate memory for FATFS context in cluster 0
[188]1168            fatfs_ctx_t * fatfs_ctx = fatfs_ctx_alloc();
1169
[564]1170            if( fatfs_ctx == NULL )
[580]1171            {
1172                printk("\n[PANIC] in %s : cannot create FATFS context in cluster 0\n",
1173                __FUNCTION__ );
1174                hal_core_sleep();
1175            }
[188]1176
1177            // 2. access boot device to initialize FATFS context
1178            fatfs_ctx_init( fatfs_ctx );
[626]1179
[188]1180            // 3. get various informations from FATFS context
1181            uint32_t root_dir_cluster = fatfs_ctx->root_dir_cluster;
1182            uint32_t cluster_size     = fatfs_ctx->bytes_per_sector * 
1183                                        fatfs_ctx->sectors_per_cluster;
1184            uint32_t total_clusters   = fatfs_ctx->fat_sectors_count << 7;
1185 
[601]1186            // 4. create VFS root inode in cluster 0
[610]1187            error = vfs_inode_create( FS_TYPE_FATFS,                       // fs_type
[188]1188                                      0,                                   // attr
1189                                      0,                                   // rights
1190                                      0,                                   // uid
1191                                      0,                                   // gid
1192                                      &vfs_root_inode_xp );                // return
[564]1193            if( error )
[580]1194            {
1195                printk("\n[PANIC] in %s : cannot create VFS root inode in cluster 0\n",
1196                __FUNCTION__ );
1197                hal_core_sleep();
1198            }
[188]1199
[623]1200            // 5. update FATFS root inode "type" and "extend" fields 
[601]1201            cxy_t         vfs_root_cxy = GET_CXY( vfs_root_inode_xp );
1202            vfs_inode_t * vfs_root_ptr = GET_PTR( vfs_root_inode_xp );
[624]1203            hal_remote_s32( XPTR( vfs_root_cxy , &vfs_root_ptr->type ), INODE_TYPE_DIR );
[601]1204            hal_remote_spt( XPTR( vfs_root_cxy , &vfs_root_ptr->extend ), 
1205                            (void*)(intptr_t)root_dir_cluster );
[188]1206
[601]1207            // 6. initialize the generic VFS context for FATFS
1208            vfs_ctx_init( FS_TYPE_FATFS,                               // fs type
1209                          0,                                           // attributes: unused
1210                              total_clusters,                              // number of clusters
1211                              cluster_size,                                // bytes
1212                              vfs_root_inode_xp,                           // VFS root
1213                          fatfs_ctx );                                 // extend
[23]1214        }
1215        else
1216        {
[564]1217            printk("\n[PANIC] in %s : unsupported VFS type in cluster 0\n",
1218            __FUNCTION__ );
[580]1219            hal_core_sleep();
[23]1220        }
1221
[614]1222        // create the <.> and <..> dentries in VFS root directory
1223        // the VFS root parent inode is the VFS root inode itself
1224        vfs_add_special_dentries( vfs_root_inode_xp,
1225                                  vfs_root_inode_xp );
1226
[389]1227        // register VFS root inode in process_zero descriptor of cluster 0
[188]1228        process_zero.vfs_root_xp = vfs_root_inode_xp;
[610]1229        process_zero.cwd_xp      = vfs_root_inode_xp;
[188]1230    }
1231
1232    /////////////////////////////////////////////////////////////////////////////////
[564]1233    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1234                                        (info->x_size * info->y_size) );
[188]1235    barrier_wait( &local_barrier , info->cores_nr );
1236    /////////////////////////////////////////////////////////////////////////////////
1237
[438]1238#if DEBUG_KERNEL_INIT
1239if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1240printk("\n[%s] exit barrier 6 : VFS root (%x,%x) in cluster 0 / cycle %d\n",
[610]1241__FUNCTION__, GET_CXY(process_zero.vfs_root_xp),
1242GET_PTR(process_zero.vfs_root_xp), (uint32_t)hal_get_cycles() );
[437]1243#endif
[188]1244
1245    /////////////////////////////////////////////////////////////////////////////////
[623]1246    // STEP 7 : In all other clusters than cluster[0], the core[0] allocates memory
1247    //          for the selected FS context, and initialise the local FS context and
1248    //          the local VFS context from values stored in cluster 0.
[188]1249    //          They get the VFS root inode extended pointer from cluster 0.
1250    /////////////////////////////////////////////////////////////////////////////////
1251
1252    if( (core_lid ==  0) && (local_cxy != 0) ) 
1253    {
1254        // File System must be FATFS in this implementation,
1255        // but other File System can be introduced here
1256        if( CONFIG_VFS_ROOT_IS_FATFS )
[23]1257        {
[389]1258            // 1. allocate memory for local FATFS context
1259            fatfs_ctx_t * local_fatfs_ctx = fatfs_ctx_alloc();
[188]1260
[564]1261            // check memory
1262            if( local_fatfs_ctx == NULL )
[580]1263            {
1264                printk("\n[PANIC] in %s : cannot create FATFS context in cluster %x\n",
1265                __FUNCTION__ , local_cxy );
1266                hal_core_sleep();
1267            }
[188]1268
[389]1269            // 2. get local pointer on VFS context for FATFS
[188]1270            vfs_ctx_t   * vfs_ctx = &fs_context[FS_TYPE_FATFS];
1271
[389]1272            // 3. get local pointer on FATFS context in cluster 0
1273            fatfs_ctx_t * remote_fatfs_ctx = hal_remote_lpt( XPTR( 0 , &vfs_ctx->extend ) );
1274
1275            // 4. copy FATFS context from cluster 0 to local cluster
1276            hal_remote_memcpy( XPTR( local_cxy , local_fatfs_ctx ), 
1277                               XPTR( 0 ,         remote_fatfs_ctx ), sizeof(fatfs_ctx_t) );
1278
1279            // 5. copy VFS context from cluster 0 to local cluster
[188]1280            hal_remote_memcpy( XPTR( local_cxy , vfs_ctx ), 
[389]1281                               XPTR( 0 ,         vfs_ctx ), sizeof(vfs_ctx_t) );
[188]1282
[389]1283            // 6. update extend field in local copy of VFS context
1284            vfs_ctx->extend = local_fatfs_ctx;
[188]1285
[564]1286            if( ((fatfs_ctx_t *)vfs_ctx->extend)->sectors_per_cluster != 8 )
[580]1287            {
1288                printk("\n[PANIC] in %s : illegal FATFS context in cluster %x\n",
1289                __FUNCTION__ , local_cxy );
1290                hal_core_sleep();
1291            }
[23]1292        }
1293
[188]1294        // get extended pointer on VFS root inode from cluster 0
[564]1295        vfs_root_inode_xp = hal_remote_l64( XPTR( 0 , &process_zero.vfs_root_xp ) );
[101]1296
[188]1297        // update local process_zero descriptor
1298        process_zero.vfs_root_xp = vfs_root_inode_xp;
[610]1299        process_zero.cwd_xp      = vfs_root_inode_xp;
[14]1300    }
1301
[188]1302    /////////////////////////////////////////////////////////////////////////////////
[564]1303    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1304                                        (info->x_size * info->y_size) );
[188]1305    barrier_wait( &local_barrier , info->cores_nr );
[204]1306    /////////////////////////////////////////////////////////////////////////////////
[101]1307
[438]1308#if DEBUG_KERNEL_INIT
[564]1309if( (core_lid ==  0) & (local_cxy == 1) ) 
[624]1310printk("\n[%s] exit barrier 7 : VFS root (%x,%x) in cluster 1 / cycle %d\n",
[610]1311__FUNCTION__, GET_CXY(process_zero.vfs_root_xp),
1312GET_PTR(process_zero.vfs_root_xp), (uint32_t)hal_get_cycles() );
[437]1313#endif
[188]1314
1315    /////////////////////////////////////////////////////////////////////////////////
[623]1316    // STEP 8 : core[0] in cluster 0 makes the global DEVFS initialisation:
[564]1317    //          It initializes the DEVFS context, and creates the DEVFS
1318    //          "dev" and "external" inodes in cluster 0.
[188]1319    /////////////////////////////////////////////////////////////////////////////////
1320
[564]1321    if( (core_lid ==  0) && (local_cxy == 0) ) 
[1]1322    {
[564]1323        // 1. allocate memory for DEVFS context extension in cluster 0
1324        devfs_ctx_t * devfs_ctx = devfs_ctx_alloc();
1325
1326        if( devfs_ctx == NULL )
[580]1327        {
1328            printk("\n[PANIC] in %s : cannot create DEVFS context in cluster 0\n",
1329            __FUNCTION__ , local_cxy );
1330            hal_core_sleep();
1331        }
[564]1332
1333        // 2. initialize the DEVFS entry in the vfs_context[] array
1334        vfs_ctx_init( FS_TYPE_DEVFS,                                // fs type
1335                      0,                                            // attributes: unused
1336                          0,                                            // total_clusters: unused
1337                          0,                                            // cluster_size: unused
1338                          vfs_root_inode_xp,                            // VFS root
1339                      devfs_ctx );                                  // extend
1340
1341        // 3. create "dev" and "external" inodes (directories)
[188]1342        devfs_global_init( process_zero.vfs_root_xp,
[204]1343                           &devfs_dev_inode_xp,
[188]1344                           &devfs_external_inode_xp );
1345
[564]1346        // 4. initializes DEVFS context extension
1347        devfs_ctx_init( devfs_ctx,
1348                        devfs_dev_inode_xp,
1349                        devfs_external_inode_xp );
[188]1350    }   
1351
1352    /////////////////////////////////////////////////////////////////////////////////
[564]1353    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1354                                        (info->x_size * info->y_size) );
[188]1355    barrier_wait( &local_barrier , info->cores_nr );
[204]1356    /////////////////////////////////////////////////////////////////////////////////
[188]1357
[438]1358#if DEBUG_KERNEL_INIT
1359if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1360printk("\n[%s] exit barrier 8 : DEVFS root initialized in cluster 0 / cycle %d\n",
[610]1361__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1362#endif
[188]1363
1364    /////////////////////////////////////////////////////////////////////////////////
[624]1365    // STEP 9 : In all clusters in parallel, core[0] completes DEVFS initialization.
[623]1366    //          Each core[0] get the "dev" and "external" extended pointers from
[624]1367    //          values stored in cluster(0), creates the DEVFS "internal" directory,
1368    //          and creates the pseudo-files for all chdevs in local cluster.
[188]1369    /////////////////////////////////////////////////////////////////////////////////
1370
1371    if( core_lid == 0 )
1372    {
[564]1373        // get extended pointer on "extend" field of VFS context for DEVFS in cluster 0
1374        xptr_t  extend_xp = XPTR( 0 , &fs_context[FS_TYPE_DEVFS].extend );
[188]1375
[457]1376        // get pointer on DEVFS context in cluster 0
[188]1377        devfs_ctx_t * devfs_ctx = hal_remote_lpt( extend_xp );
1378       
[564]1379        devfs_dev_inode_xp      = hal_remote_l64( XPTR( 0 , &devfs_ctx->dev_inode_xp ) );
1380        devfs_external_inode_xp = hal_remote_l64( XPTR( 0 , &devfs_ctx->external_inode_xp ) );
[188]1381
[204]1382        // populate DEVFS in all clusters
1383        devfs_local_init( devfs_dev_inode_xp,
1384                          devfs_external_inode_xp,
1385                          &devfs_internal_inode_xp );
[188]1386    }
1387
1388    /////////////////////////////////////////////////////////////////////////////////
[564]1389    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1390                                        (info->x_size * info->y_size) );
[188]1391    barrier_wait( &local_barrier , info->cores_nr );
[204]1392    /////////////////////////////////////////////////////////////////////////////////
[188]1393
[438]1394#if DEBUG_KERNEL_INIT
1395if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1396printk("\n[%s] exit barrier 9 : DEVFS initialized in cluster 0 / cycle %d\n",
[610]1397__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1398#endif
[188]1399
[623]1400#if( DEBUG_KERNEL_INIT & 1 )
1401if( (core_lid ==  0) & (local_cxy == 0) ) 
1402vfs_display( vfs_root_inode_xp );
1403#endif
1404
[188]1405    /////////////////////////////////////////////////////////////////////////////////
[623]1406    // STEP 10 : core[0] in cluster 0 creates the first user process (process_init).
1407    //           This include the first user process VMM (GPT and VSL) creation.
1408    //           Finally, it prints the ALMOS-MKH banner.
[188]1409    /////////////////////////////////////////////////////////////////////////////////
1410
[457]1411    if( (core_lid == 0) && (local_cxy == 0) ) 
[188]1412    {
[428]1413       process_init_create();
[188]1414    }
[101]1415
[624]1416#if DEBUG_KERNEL_INIT
1417if( (core_lid ==  0) & (local_cxy == 0) ) 
1418printk("\n[%s] exit barrier 10 : process_init created in cluster 0 / cycle %d\n",
1419__FUNCTION__, (uint32_t)hal_get_cycles() );
1420#endif
1421
[443]1422#if (DEBUG_KERNEL_INIT & 1)
[564]1423if( (core_lid ==  0) & (local_cxy == 0) ) 
[443]1424sched_display( 0 );
1425#endif
1426
[564]1427    if( (core_lid == 0) && (local_cxy == 0) ) 
[188]1428    {
[5]1429        print_banner( (info->x_size * info->y_size) , info->cores_nr );
[623]1430    }
[68]1431
[438]1432#if( DEBUG_KERNEL_INIT & 1 )
[623]1433if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1434printk("\n\n***** memory fooprint for main kernel objects\n\n"
[68]1435                   " - thread descriptor  : %d bytes\n"
1436                   " - process descriptor : %d bytes\n"
1437                   " - cluster manager    : %d bytes\n"
1438                   " - chdev descriptor   : %d bytes\n"
1439                   " - core descriptor    : %d bytes\n"
1440                   " - scheduler          : %d bytes\n"
1441                   " - rpc fifo           : %d bytes\n"
1442                   " - page descriptor    : %d bytes\n"
1443                   " - mapper root        : %d bytes\n"
1444                   " - ppm manager        : %d bytes\n"
1445                   " - kcm manager        : %d bytes\n"
1446                   " - khm manager        : %d bytes\n"
1447                   " - vmm manager        : %d bytes\n"
1448                   " - gpt root           : %d bytes\n"
1449                   " - list item          : %d bytes\n"
1450                   " - xlist item         : %d bytes\n"
[564]1451                   " - busylock           : %d bytes\n"
1452                   " - remote busylock    : %d bytes\n"
1453                   " - queuelock          : %d bytes\n"
1454                   " - remote queuelock   : %d bytes\n"
[68]1455                   " - rwlock             : %d bytes\n"
1456                   " - remote rwlock      : %d bytes\n",
[564]1457                   sizeof( thread_t           ),
1458                   sizeof( process_t          ),
1459                   sizeof( cluster_t          ),
1460                   sizeof( chdev_t            ),
1461                   sizeof( core_t             ),
1462                   sizeof( scheduler_t        ),
1463                   sizeof( remote_fifo_t      ),
1464                   sizeof( page_t             ),
1465                   sizeof( mapper_t           ),
1466                   sizeof( ppm_t              ),
1467                   sizeof( kcm_t              ),
1468                   sizeof( khm_t              ),
1469                   sizeof( vmm_t              ),
1470                   sizeof( gpt_t              ),
1471                   sizeof( list_entry_t       ),
1472                   sizeof( xlist_entry_t      ),
1473                   sizeof( busylock_t         ),
1474                   sizeof( remote_busylock_t  ),
1475                   sizeof( queuelock_t        ),
1476                   sizeof( remote_queuelock_t ),
1477                   sizeof( rwlock_t           ),
1478                   sizeof( remote_rwlock_t    ));
[406]1479#endif
1480
[398]1481    // each core activates its private TICK IRQ
1482    dev_pic_enable_timer( CONFIG_SCHED_TICK_MS_PERIOD );
[14]1483
[610]1484    /////////////////////////////////////////////////////////////////////////////////
1485    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ),
1486                                        (info->x_size * info->y_size) );
1487    barrier_wait( &local_barrier , info->cores_nr );
1488    /////////////////////////////////////////////////////////////////////////////////
1489
[623]1490#if( DEBUG_KERNEL_INIT & 1 )
[610]1491thread_t * this = CURRENT_THREAD;
1492printk("\n[%s] : thread[%x,%x] on core[%x,%d] jumps to thread_idle_func() / cycle %d\n",
1493__FUNCTION__ , this->process->pid, this->trdid,
1494local_cxy, core_lid, (uint32_t)hal_get_cycles() );
[440]1495#endif
1496
[407]1497    // each core jump to thread_idle_func
[50]1498    thread_idle_func();
[14]1499
[610]1500}  // end kernel_init()
1501
Note: See TracBrowser for help on using the repository browser.