source: trunk/kernel/kern/kernel_init.c @ 645

Last change on this file since 645 was 640, checked in by alain, 5 years ago

Remove all RPCs in page-fault handling.

File size: 62.2 KB
RevLine 
[1]1/*
2 * kernel_init.c - kernel parallel initialization
[127]3 *
[23]4 * Authors :  Mohamed Lamine Karaoui (2015)
[623]5 *            Alain Greiner  (2016,2017,2018,2019)
[1]6 *
7 * Copyright (c) Sorbonne Universites
8 *
9 * This file is part of ALMOS-MKH.
10 *
11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
15 * ALMOS-MKH is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[1]26#include <errno.h>
[457]27#include <hal_kernel_types.h>
[1]28#include <hal_special.h>
29#include <hal_context.h>
[279]30#include <hal_irqmask.h>
[564]31#include <hal_macros.h>
[296]32#include <hal_ppm.h>
[14]33#include <barrier.h>
[564]34#include <xbarrier.h>
[407]35#include <remote_fifo.h>
[1]36#include <core.h>
37#include <list.h>
[68]38#include <xlist.h>
[204]39#include <xhtab.h>
[1]40#include <thread.h>
41#include <scheduler.h>
42#include <kmem.h>
43#include <cluster.h>
44#include <string.h>
45#include <memcpy.h>
46#include <ppm.h>
47#include <page.h>
[5]48#include <chdev.h>
[1]49#include <boot_info.h>
50#include <dqdt.h>
51#include <dev_mmc.h>
[5]52#include <dev_dma.h>
53#include <dev_iob.h>
[1]54#include <dev_ioc.h>
[5]55#include <dev_txt.h>
[1]56#include <dev_pic.h>
57#include <printk.h>
58#include <vfs.h>
[23]59#include <devfs.h>
[68]60#include <mapper.h>
[1]61
62///////////////////////////////////////////////////////////////////////////////////////////
[279]63// All the following global variables are replicated in all clusters.
[1]64// They are initialised by the kernel_init() function.
[14]65//
[127]66// WARNING : The section names have been defined to control the base addresses of the
[14]67// boot_info structure and the idle thread descriptors, through the kernel.ld script:
[127]68// - the boot_info structure is built by the bootloader, and used by kernel_init.
69//   it must be the first object in the kdata segment.
[14]70// - the array of idle threads descriptors must be placed on the first page boundary after
71//   the boot_info structure in the kdata segment.
[1]72///////////////////////////////////////////////////////////////////////////////////////////
73
[5]74// This variable defines the local boot_info structure
75__attribute__((section(".kinfo")))
[14]76boot_info_t          boot_info;
[5]77
[14]78// This variable defines the "idle" threads descriptors array
79__attribute__((section(".kidle")))
[381]80char                 idle_threads[CONFIG_THREAD_DESC_SIZE *
[14]81                                   CONFIG_MAX_LOCAL_CORES]   CONFIG_PPM_PAGE_ALIGNED;
82
[127]83// This variable defines the local cluster manager
[5]84__attribute__((section(".kdata")))
[19]85cluster_t            cluster_manager                         CONFIG_CACHE_LINE_ALIGNED;
[1]86
[564]87// This variable defines the TXT_TX[0] chdev
[188]88__attribute__((section(".kdata")))
[564]89chdev_t              txt0_tx_chdev                           CONFIG_CACHE_LINE_ALIGNED;
[188]90
[564]91// This variable defines the TXT_RX[0] chdev
[539]92__attribute__((section(".kdata")))
[564]93chdev_t              txt0_rx_chdev                           CONFIG_CACHE_LINE_ALIGNED;
[539]94
[14]95// This variables define the kernel process0 descriptor
[5]96__attribute__((section(".kdata")))
[19]97process_t            process_zero                            CONFIG_CACHE_LINE_ALIGNED;
[1]98
[624]99// This variable defines a set of extended pointers on the distributed chdevs
[5]100__attribute__((section(".kdata")))
[14]101chdev_directory_t    chdev_dir                               CONFIG_CACHE_LINE_ALIGNED;
[1]102
[188]103// This variable contains the input IRQ indexes for the IOPIC controller
[5]104__attribute__((section(".kdata")))
[246]105iopic_input_t        iopic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]106
[188]107// This variable contains the input IRQ indexes for the LAPIC controller
[5]108__attribute__((section(".kdata")))
[188]109lapic_input_t        lapic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]110
[14]111// This variable defines the local cluster identifier
[5]112__attribute__((section(".kdata")))
[14]113cxy_t                local_cxy                               CONFIG_CACHE_LINE_ALIGNED;
[5]114
[623]115// This variable is used for core[0] cores synchronisation in kernel_init()
[5]116__attribute__((section(".kdata")))
[564]117xbarrier_t           global_barrier                          CONFIG_CACHE_LINE_ALIGNED;
[1]118
[127]119// This variable is used for local cores synchronisation in kernel_init()
[14]120__attribute__((section(".kdata")))
121barrier_t            local_barrier                           CONFIG_CACHE_LINE_ALIGNED;
122
[127]123// This variable defines the array of supported File System contexts
[50]124__attribute__((section(".kdata")))
125vfs_ctx_t            fs_context[FS_TYPES_NR]                 CONFIG_CACHE_LINE_ALIGNED;
126
[564]127// This array is used for debug, and describes the kernel locks usage,
128// It must be kept consistent with the defines in kernel_config.h file.
[624]129__attribute__((section(".kdata")))
[564]130char * lock_type_str[] =
131{
132    "unused_0",              //  0
[408]133
[564]134    "CLUSTER_KCM",           //  1
[632]135    "SCHED_STATE",           //  2
136    "VMM_STACK",             //  3
137    "VMM_MMAP",              //  4
138    "VFS_CTX",               //  5
139    "KCM_STATE",             //  6
140    "KHM_STATE",             //  7
141    "HTAB_STATE",            //  8
[564]142
[632]143    "PPM_FREE",              //  9
[564]144    "THREAD_JOIN",           // 10
[610]145    "XHTAB_STATE",           // 11
[564]146    "CHDEV_QUEUE",           // 12
147    "CHDEV_TXT0",            // 13
148    "CHDEV_TXTLIST",         // 14
149    "PAGE_STATE",            // 15
150    "MUTEX_STATE",           // 16
151    "CONDVAR_STATE",         // 17
152    "SEM_STATE",             // 18
[619]153    "PROCESS_CWD",           // 19
154    "BARRIER_STATE",         // 20
[564]155
156    "CLUSTER_PREFTBL",       // 21
[601]157
[564]158    "PPM_DIRTY",             // 22
159    "CLUSTER_LOCALS",        // 23
160    "CLUSTER_COPIES",        // 24
161    "PROCESS_CHILDREN",      // 25
162    "PROCESS_USERSYNC",      // 26
163    "PROCESS_FDARRAY",       // 27
[628]164    "PROCESS_DIR",           // 28
[640]165    "VMM_VSL",               // 29
[564]166
[611]167    "PROCESS_THTBL",         // 30
[564]168
[611]169    "MAPPER_STATE",          // 31
170    "VFS_SIZE",              // 32
171    "VFS_FILE",              // 33
[640]172    "VFS_MAIN",              // 34
173    "FATFS_FAT",             // 35
[564]174};       
175
[601]176// debug variables to analyse the sys_read() and sys_write() syscalls timing
[564]177
[438]178#if DEBUG_SYS_READ
[407]179uint32_t   enter_sys_read;
180uint32_t   exit_sys_read;
181
[435]182uint32_t   enter_devfs_read;
183uint32_t   exit_devfs_read;
[407]184
185uint32_t   enter_txt_read;
186uint32_t   exit_txt_read;
187
[435]188uint32_t   enter_chdev_cmd_read;
189uint32_t   exit_chdev_cmd_read;
[407]190
[435]191uint32_t   enter_chdev_server_read;
192uint32_t   exit_chdev_server_read;
[407]193
[435]194uint32_t   enter_tty_cmd_read;
195uint32_t   exit_tty_cmd_read;
[407]196
[435]197uint32_t   enter_tty_isr_read;
198uint32_t   exit_tty_isr_read;
[407]199#endif
200
[435]201// these debug variables are used to analyse the sys_write() syscall timing
202
[438]203#if DEBUG_SYS_WRITE   
[435]204uint32_t   enter_sys_write;
205uint32_t   exit_sys_write;
206
207uint32_t   enter_devfs_write;
208uint32_t   exit_devfs_write;
209
210uint32_t   enter_txt_write;
211uint32_t   exit_txt_write;
212
213uint32_t   enter_chdev_cmd_write;
214uint32_t   exit_chdev_cmd_write;
215
216uint32_t   enter_chdev_server_write;
217uint32_t   exit_chdev_server_write;
218
219uint32_t   enter_tty_cmd_write;
220uint32_t   exit_tty_cmd_write;
221
222uint32_t   enter_tty_isr_write;
223uint32_t   exit_tty_isr_write;
224#endif
225
[564]226// intrumentation variables : cumulated costs per syscall type in cluster
[624]227
228#if CONFIG_INSTRUMENTATION_SYSCALLS
229__attribute__((section(".kdata")))
[564]230uint32_t   syscalls_cumul_cost[SYSCALLS_NR];
231
[624]232__attribute__((section(".kdata")))
[564]233uint32_t   syscalls_occurences[SYSCALLS_NR];
[624]234#endif
[564]235
[1]236///////////////////////////////////////////////////////////////////////////////////////////
[5]237// This function displays the ALMOS_MKH banner.
[1]238///////////////////////////////////////////////////////////////////////////////////////////
[5]239static void print_banner( uint32_t nclusters , uint32_t ncores )
[127]240{
[5]241    printk("\n"
242           "                    _        __    __     _____     ______         __    __    _   __   _     _   \n"
243           "          /\\       | |      |  \\  /  |   / ___ \\   / _____|       |  \\  /  |  | | / /  | |   | |  \n"
244           "         /  \\      | |      |   \\/   |  | /   \\ | | /             |   \\/   |  | |/ /   | |   | |  \n"
245           "        / /\\ \\     | |      | |\\  /| |  | |   | | | |_____   ___  | |\\  /| |  |   /    | |___| |  \n"
246           "       / /__\\ \\    | |      | | \\/ | |  | |   | | \\_____  \\ |___| | | \\/ | |  |   \\    |  ___  |  \n"
247           "      / ______ \\   | |      | |    | |  | |   | |       | |       | |    | |  | |\\ \\   | |   | |  \n"
248           "     / /      \\ \\  | |____  | |    | |  | \\___/ |  _____/ |       | |    | |  | | \\ \\  | |   | |  \n"
249           "    /_/        \\_\\ |______| |_|    |_|   \\_____/  |______/        |_|    |_|  |_|  \\_\\ |_|   |_|  \n"
250           "\n\n\t\t Advanced Locality Management Operating System / Multi Kernel Hybrid\n"
[457]251           "\n\n\t\t %s / %d cluster(s) / %d core(s) per cluster\n\n",
[635]252           CONFIG_VERSION , nclusters , ncores );
[5]253}
[1]254
255
[5]256///////////////////////////////////////////////////////////////////////////////////////////
[564]257// This function initializes the TXT_TX[0] and TXT_RX[0] chdev descriptors, implementing
258// the "kernel terminal", shared by all kernel instances for debug messages.
259// These chdev are implemented as global variables (replicated in all clusters),
260// because this terminal is used before the kmem allocator initialisation, but only
261// the chdevs in cluster 0 are registered in the "chdev_dir" directory.
[127]262// As this TXT0 chdev supports only the TXT_SYNC_WRITE command, we don't create
263// a server thread, we don't allocate a WTI, and we don't initialize the waiting queue.
[564]264// Note: The TXT_RX[0] chdev is created, but is not used by ALMOS-MKH (september 2018).
[5]265///////////////////////////////////////////////////////////////////////////////////////////
266// @ info    : pointer on the local boot-info structure.
267///////////////////////////////////////////////////////////////////////////////////////////
[564]268static void __attribute__ ((noinline)) txt0_device_init( boot_info_t * info )
[5]269{
270    boot_device_t * dev_tbl;         // pointer on array of devices in boot_info
[127]271    uint32_t        dev_nr;          // actual number of devices in this cluster
272    xptr_t          base;            // remote pointer on segment base
273    uint32_t        func;            // device functional index
[5]274    uint32_t        impl;            // device implementation index
[127]275    uint32_t        i;               // device index in dev_tbl
276    uint32_t        x;               // X cluster coordinate
277    uint32_t        y;               // Y cluster coordinate
[1]278
[5]279    // get number of peripherals and base of devices array from boot_info
[127]280    dev_nr      = info->ext_dev_nr;
[5]281    dev_tbl     = info->ext_dev;
[1]282
[14]283    // loop on external peripherals to find TXT device
[127]284    for( i = 0 ; i < dev_nr ; i++ )
285    {
[5]286        base        = dev_tbl[i].base;
[188]287        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
288        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
[5]289
[127]290        if (func == DEV_FUNC_TXT )
[5]291        {
[564]292            // initialize TXT_TX[0] chdev
293            txt0_tx_chdev.func    = func;
294            txt0_tx_chdev.impl    = impl;
295            txt0_tx_chdev.channel = 0;
296            txt0_tx_chdev.base    = base;
297            txt0_tx_chdev.is_rx   = false;
298            remote_busylock_init( XPTR( local_cxy , &txt0_tx_chdev.wait_lock ),
299                                  LOCK_CHDEV_TXT0 );
[188]300           
[564]301            // initialize TXT_RX[0] chdev
302            txt0_rx_chdev.func    = func;
303            txt0_rx_chdev.impl    = impl;
304            txt0_rx_chdev.channel = 0;
305            txt0_rx_chdev.base    = base;
306            txt0_rx_chdev.is_rx   = true;
307            remote_busylock_init( XPTR( local_cxy , &txt0_rx_chdev.wait_lock ),
308                                  LOCK_CHDEV_TXT0 );
309           
310            // make TXT specific initialisations
311            dev_txt_init( &txt0_tx_chdev );                 
312            dev_txt_init( &txt0_rx_chdev );
[14]313
[564]314            // register TXT_TX[0] & TXT_RX[0] in chdev_dir[x][y]
315            // for all valid clusters             
[5]316            for( x = 0 ; x < info->x_size ; x++ )
317            {
[564]318                for( y = 0 ; y < info->y_size ; y++ )
[5]319                {
[564]320                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
321
322                    if( cluster_is_active( cxy ) )
323                    {
324                        hal_remote_s64( XPTR( cxy , &chdev_dir.txt_tx[0] ) ,
325                                        XPTR( local_cxy , &txt0_tx_chdev ) );
326                        hal_remote_s64( XPTR( cxy , &chdev_dir.txt_rx[0] ) ,
327                                        XPTR( local_cxy , &txt0_rx_chdev ) );
[559]328                    }
[5]329                }
330            }
[564]331
332            hal_fence();
[5]333        }
[188]334        } // end loop on devices
335}  // end txt0_device_init()
[5]336
[1]337///////////////////////////////////////////////////////////////////////////////////////////
[188]338// This function allocates memory and initializes the chdev descriptors for the internal
339// peripherals contained in the local cluster, other than the LAPIC, as specified by
340// the boot_info, including the linking with the driver for the specified implementation.
341// The relevant entries in all copies of the devices directory are initialised.
[1]342///////////////////////////////////////////////////////////////////////////////////////////
343// @ info    : pointer on the local boot-info structure.
344///////////////////////////////////////////////////////////////////////////////////////////
[564]345static void __attribute__ ((noinline)) internal_devices_init( boot_info_t * info )
[1]346{
[188]347    boot_device_t * dev_tbl;         // pointer on array of internaldevices in boot_info
348        uint32_t        dev_nr;          // actual number of devices in this cluster
349        xptr_t          base;            // remote pointer on segment base
350    uint32_t        func;            // device functionnal index
351    uint32_t        impl;            // device implementation index
352        uint32_t        i;               // device index in dev_tbl
353        uint32_t        x;               // X cluster coordinate
354        uint32_t        y;               // Y cluster coordinate
355        uint32_t        channels;        // number of channels
356        uint32_t        channel;         // channel index
357        chdev_t       * chdev_ptr;       // local pointer on created chdev
[1]358
[188]359    // get number of internal peripherals and base from boot_info
360        dev_nr  = info->int_dev_nr;
361    dev_tbl = info->int_dev;
[1]362
[188]363    // loop on internal peripherals
364        for( i = 0 ; i < dev_nr ; i++ )
365        {
366        base        = dev_tbl[i].base;
367        channels    = dev_tbl[i].channels;
368        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
369        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
[204]370 
[188]371        //////////////////////////
372        if( func == DEV_FUNC_MMC ) 
[5]373        {
[1]374
[564]375            // check channels
376            if( channels != 1 )
[580]377            {
378                printk("\n[PANIC] in %s : MMC device must be single channel\n",
379                __FUNCTION__ );
380                hal_core_sleep();
381            }
[564]382
[188]383            // create chdev in local cluster
384            chdev_ptr = chdev_create( func,
385                                      impl,
386                                      0,          // channel
387                                      false,      // direction
388                                      base );
[14]389
[564]390            // check memory
391            if( chdev_ptr == NULL )
[580]392            {
393                printk("\n[PANIC] in %s : cannot create MMC chdev\n",
394                __FUNCTION__ );
395                hal_core_sleep();
396            }
[188]397           
398            // make MMC specific initialisation
399            dev_mmc_init( chdev_ptr );
[1]400
[188]401            // set the MMC field in all chdev_dir[x][y] structures
402            for( x = 0 ; x < info->x_size ; x++ )
[1]403            {
[564]404                for( y = 0 ; y < info->y_size ; y++ )
[188]405                {
[564]406                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
407
408                    if( cluster_is_active( cxy ) )
409                    {
410                        hal_remote_s64( XPTR( cxy , &chdev_dir.mmc[local_cxy] ), 
[559]411                                        XPTR( local_cxy , chdev_ptr ) );
412                    }
[188]413                }
[1]414            }
[188]415
[438]416#if( DEBUG_KERNEL_INIT & 0x1 )
417if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[601]418printk("\n[%s] : created MMC in cluster %x / chdev = %x\n",
[407]419__FUNCTION__ , local_cxy , chdev_ptr );
[389]420#endif
[14]421        }
[188]422        ///////////////////////////////
423        else if( func == DEV_FUNC_DMA )
[127]424        {
[188]425            // create one chdev per channel in local cluster
426            for( channel = 0 ; channel < channels ; channel++ )
427            {   
428                // create chdev[channel] in local cluster
429                chdev_ptr = chdev_create( func,
430                                          impl,
431                                          channel,
432                                          false,     // direction
433                                          base );
[5]434
[564]435                // check memory
436                if( chdev_ptr == NULL )
[580]437                {
438                    printk("\n[PANIC] in %s : cannot create DMA chdev\n",
439                    __FUNCTION__ );
440                    hal_core_sleep();
441                }
[564]442           
[188]443                // make DMA specific initialisation
444                dev_dma_init( chdev_ptr );     
[127]445
[188]446                // initialize only the DMA[channel] field in the local chdev_dir[x][y]
447                // structure because the DMA device is not remotely accessible.
448                chdev_dir.dma[channel] = XPTR( local_cxy , chdev_ptr );
[5]449
[438]450#if( DEBUG_KERNEL_INIT & 0x1 )
451if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[601]452printk("\n[%s] : created DMA[%d] in cluster %x / chdev = %x\n",
[389]453__FUNCTION__ , channel , local_cxy , chdev_ptr );
454#endif
[188]455            }
[14]456        }
[127]457    }
[5]458}  // end internal_devices_init()
459
460///////////////////////////////////////////////////////////////////////////////////////////
[188]461// This function allocates memory and initializes the chdev descriptors for the 
[408]462// external (shared) peripherals other than the IOPIC, as specified by the boot_info.
463// This includes the dynamic linking with the driver for the specified implementation.
[188]464// These chdev descriptors are distributed on all clusters, using a modulo on a global
[408]465// index, identically computed in all clusters.
[623]466// This function is executed in all clusters by the core[0] core, that computes a global index
467// for all external chdevs. Each core[0] core creates only the chdevs that must be placed in
[408]468// the local cluster, because the global index matches the local index.
[188]469// The relevant entries in all copies of the devices directory are initialised.
[5]470///////////////////////////////////////////////////////////////////////////////////////////
471// @ info    : pointer on the local boot-info structure.
472///////////////////////////////////////////////////////////////////////////////////////////
473static void external_devices_init( boot_info_t * info )
474{
[188]475    boot_device_t * dev_tbl;         // pointer on array of external devices in boot_info
476        uint32_t        dev_nr;          // actual number of external devices
477        xptr_t          base;            // remote pointer on segment base
[5]478    uint32_t        func;            // device functionnal index
479    uint32_t        impl;            // device implementation index
[188]480        uint32_t        i;               // device index in dev_tbl
481        uint32_t        x;               // X cluster coordinate
482        uint32_t        y;               // Y cluster coordinate
483        uint32_t        channels;        // number of channels
484        uint32_t        channel;         // channel index
485        uint32_t        directions;      // number of directions (1 or 2)
486        uint32_t        rx;              // direction index (0 or 1)
[127]487    chdev_t       * chdev;           // local pointer on one channel_device descriptor
[188]488    uint32_t        ext_chdev_gid;   // global index of external chdev
[5]489
490    // get number of peripherals and base of devices array from boot_info
[127]491    dev_nr      = info->ext_dev_nr;
[5]492    dev_tbl     = info->ext_dev;
493
[188]494    // initializes global index (PIC is already placed in cluster 0
495    ext_chdev_gid = 1;
496
[5]497    // loop on external peripherals
[127]498    for( i = 0 ; i < dev_nr ; i++ )
499    {
[188]500        base     = dev_tbl[i].base;
501        channels = dev_tbl[i].channels;
502        func     = FUNC_FROM_TYPE( dev_tbl[i].type );
503        impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
[5]504
[407]505        // There is one chdev per direction for NIC and for TXT
506        if((func == DEV_FUNC_NIC) || (func == DEV_FUNC_TXT)) directions = 2;
507        else                                                 directions = 1;
[5]508
[407]509        // do nothing for ROM, that does not require a device descriptor.
[5]510        if( func == DEV_FUNC_ROM ) continue;
511
[188]512        // do nothing for PIC, that is already initialized
513        if( func == DEV_FUNC_PIC ) continue;
[5]514
[188]515        // check PIC device initialized
[564]516        if( chdev_dir.pic == XPTR_NULL )
[580]517        {
518            printk("\n[PANIC] in %s : PIC device must be initialized first\n",
519            __FUNCTION__ );
520            hal_core_sleep();
521        }
[188]522
523        // check external device functionnal type
[564]524        if( (func != DEV_FUNC_IOB) && (func != DEV_FUNC_IOC) && (func != DEV_FUNC_TXT) &&
525            (func != DEV_FUNC_NIC) && (func != DEV_FUNC_FBF) )
[580]526        {
527            printk("\n[PANIC] in %s : undefined peripheral type\n",
528            __FUNCTION__ );
529            hal_core_sleep();
530        }
[188]531
[127]532        // loops on channels
[428]533        for( channel = 0 ; channel < channels ; channel++ )
[127]534        {
[5]535            // loop on directions
[188]536            for( rx = 0 ; rx < directions ; rx++ )
[1]537            {
[564]538                // skip TXT0 that has already been initialized
539                if( (func == DEV_FUNC_TXT) && (channel == 0) ) continue;
[428]540
[564]541                // all kernel instances compute the target cluster for all chdevs,
542                // computing the global index ext_chdev_gid[func,channel,direction]
543                cxy_t target_cxy;
544                while( 1 )
[536]545                {
[564]546                    uint32_t offset     = ext_chdev_gid % ( info->x_size * info->y_size );
547                    uint32_t x          = offset / info->y_size;
548                    uint32_t y          = offset % info->y_size;
[536]549
[564]550                    target_cxy = HAL_CXY_FROM_XY( x , y );
551
552                    // exit loop if target cluster is active
553                    if( cluster_is_active( target_cxy ) ) break;
554               
555                    // increment global index otherwise
556                    ext_chdev_gid++;
[550]557                }
558
[5]559                // allocate and initialize a local chdev
[407]560                // when local cluster matches target cluster
[5]561                if( target_cxy == local_cxy )
[1]562                {
[5]563                    chdev = chdev_create( func,
564                                          impl,
565                                          channel,
[188]566                                          rx,          // direction
[5]567                                          base );
568
[564]569                    if( chdev == NULL )
[580]570                    {
571                        printk("\n[PANIC] in %s : cannot allocate chdev\n",
572                        __FUNCTION__ );
573                        hal_core_sleep();
574                    }
[5]575
576                    // make device type specific initialisation
577                    if     ( func == DEV_FUNC_IOB ) dev_iob_init( chdev );
578                    else if( func == DEV_FUNC_IOC ) dev_ioc_init( chdev );
579                    else if( func == DEV_FUNC_TXT ) dev_txt_init( chdev );
580                    else if( func == DEV_FUNC_NIC ) dev_nic_init( chdev );
[188]581                    else if( func == DEV_FUNC_FBF ) dev_fbf_init( chdev );
[5]582
[127]583                    // all external (shared) devices are remotely accessible
[5]584                    // initialize the replicated chdev_dir[x][y] structures
[127]585                    // defining the extended pointers on chdev descriptors
[633]586                    xptr_t * entry = NULL;
[127]587
[188]588                    if(func==DEV_FUNC_IOB             ) entry  = &chdev_dir.iob;
589                    if(func==DEV_FUNC_IOC             ) entry  = &chdev_dir.ioc[channel];
590                    if(func==DEV_FUNC_FBF             ) entry  = &chdev_dir.fbf[channel];
[407]591                    if((func==DEV_FUNC_TXT) && (rx==0)) entry  = &chdev_dir.txt_tx[channel];
592                    if((func==DEV_FUNC_TXT) && (rx==1)) entry  = &chdev_dir.txt_rx[channel];
[188]593                    if((func==DEV_FUNC_NIC) && (rx==0)) entry  = &chdev_dir.nic_tx[channel];
594                    if((func==DEV_FUNC_NIC) && (rx==1)) entry  = &chdev_dir.nic_rx[channel];
[127]595
[1]596                    for( x = 0 ; x < info->x_size ; x++ )
597                    {
[564]598                        for( y = 0 ; y < info->y_size ; y++ )
[1]599                        {
[564]600                            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
601
[633]602                            if( cluster_is_active( cxy ) && ( entry != NULL ) )
[564]603                            {
604                                hal_remote_s64( XPTR( cxy , entry ),
[559]605                                                XPTR( local_cxy , chdev ) );
606                            }
[5]607                        }
[1]608                    }
609
[438]610#if( DEBUG_KERNEL_INIT & 0x1 )
611if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[601]612printk("\n[%s] : create chdev %s / channel = %d / rx = %d / cluster %x / chdev = %x\n",
[407]613__FUNCTION__ , chdev_func_str( func ), channel , rx , local_cxy , chdev );
[389]614#endif
[5]615                }  // end if match
616
[19]617                // increment chdev global index (matching or not)
[188]618                ext_chdev_gid++;
[5]619
620            } // end loop on directions
621        }  // end loop on channels
[188]622        } // end loop on devices
623}  // end external_devices_init()
[5]624
[188]625///////////////////////////////////////////////////////////////////////////////////////////
[623]626// This function is called by core[0] in cluster 0 to allocate memory and initialize the PIC
[407]627// device, namely the informations attached to the external IOPIC controller, that
628// must be replicated in all clusters (struct iopic_input).
[188]629// This initialisation must be done before other devices initialisation because the IRQ
[407]630// routing infrastructure is required for both internal and external devices init.
[188]631///////////////////////////////////////////////////////////////////////////////////////////
632// @ info    : pointer on the local boot-info structure.
633///////////////////////////////////////////////////////////////////////////////////////////
[564]634static void __attribute__ ((noinline)) iopic_init( boot_info_t * info )
[188]635{
636    boot_device_t * dev_tbl;         // pointer on boot_info external devices array
637        uint32_t        dev_nr;          // actual number of external devices
638        xptr_t          base;            // remote pointer on segment base
639    uint32_t        func;            // device functionnal index
640    uint32_t        impl;            // device implementation index
641        uint32_t        i;               // device index in dev_tbl
642    uint32_t        x;               // cluster X coordinate
643    uint32_t        y;               // cluster Y coordinate
644    bool_t          found;           // IOPIC found
645        chdev_t       * chdev;           // pointer on PIC chdev descriptor
646
647    // get number of external peripherals and base of array from boot_info
648        dev_nr      = info->ext_dev_nr;
649    dev_tbl     = info->ext_dev;
650
[564]651    // avoid GCC warning
652    base        = XPTR_NULL;
653    impl        = 0;
654
[188]655    // loop on external peripherals to get the IOPIC 
656        for( i = 0 , found = false ; i < dev_nr ; i++ )
657        {
658        func = FUNC_FROM_TYPE( dev_tbl[i].type );
659
[127]660        if( func == DEV_FUNC_PIC )
[1]661        {
[188]662            base     = dev_tbl[i].base;
663            impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
664            found    = true;
665            break;
666        }
667    }
[5]668
[564]669    // check PIC existence
670    if( found == false )
[580]671    {
672        printk("\n[PANIC] in %s : PIC device not found\n",
673        __FUNCTION__ );
674        hal_core_sleep();
675    }
[1]676
[407]677    // allocate and initialize the PIC chdev in cluster 0
678    chdev = chdev_create( DEV_FUNC_PIC,
[188]679                          impl,
680                          0,      // channel
681                          0,      // direction,
682                          base );
[5]683
[564]684    // check memory
685    if( chdev == NULL )
[580]686    {
687        printk("\n[PANIC] in %s : no memory for PIC chdev\n",
688        __FUNCTION__ );
689        hal_core_sleep();
690    }
[5]691
[188]692    // make PIC device type specific initialisation
693    dev_pic_init( chdev );
[1]694
[407]695    // register, in all clusters, the extended pointer
696    // on PIC chdev in "chdev_dir" array
[188]697    xptr_t * entry = &chdev_dir.pic;   
698               
699    for( x = 0 ; x < info->x_size ; x++ )
700    {
[564]701        for( y = 0 ; y < info->y_size ; y++ )
[188]702        {
[564]703            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
704
705            if( cluster_is_active( cxy ) )
706            {
707                hal_remote_s64( XPTR( cxy , entry ) , 
[559]708                                XPTR( local_cxy , chdev ) );
709            }
[188]710        }
711    }
[1]712
[407]713    // initialize, in all clusters, the "iopic_input" structure
[188]714    // defining how external IRQs are connected to IOPIC
715
[407]716    // register default value for unused inputs
717    for( x = 0 ; x < info->x_size ; x++ )
718    {
[564]719        for( y = 0 ; y < info->y_size ; y++ )
[407]720        {
[564]721            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
722
723            if( cluster_is_active( cxy ) )
724            {
725                hal_remote_memset( XPTR( cxy , &iopic_input ), 
726                                   0xFF , sizeof(iopic_input_t) );
[559]727            }
[407]728        }
729    }
730
731    // register input IRQ index for valid inputs
[577]732    uint32_t   id;             // input IRQ index
733    uint8_t    valid;          // input IRQ is connected
734    uint32_t   type;           // source device type
735    uint8_t    channel;        // source device channel
736    uint8_t    is_rx;          // source device direction
737    uint32_t * ptr = NULL;     // local pointer on one field in iopic_input stucture
[407]738
[188]739    for( id = 0 ; id < CONFIG_MAX_EXTERNAL_IRQS ; id++ )
740    {
741        valid   = dev_tbl[i].irq[id].valid;
742        type    = dev_tbl[i].irq[id].dev_type;
743        channel = dev_tbl[i].irq[id].channel;
744        is_rx   = dev_tbl[i].irq[id].is_rx;
[407]745        func    = FUNC_FROM_TYPE( type );
[188]746
[407]747        // get pointer on relevant field in iopic_input
748        if( valid )
[188]749        {
[407]750            if     ( func == DEV_FUNC_IOC )                 ptr = &iopic_input.ioc[channel]; 
751            else if((func == DEV_FUNC_TXT) && (is_rx == 0)) ptr = &iopic_input.txt_tx[channel];
752            else if((func == DEV_FUNC_TXT) && (is_rx != 0)) ptr = &iopic_input.txt_rx[channel];
[492]753            else if((func == DEV_FUNC_NIC) && (is_rx == 0)) ptr = &iopic_input.nic_tx[channel];
754            else if((func == DEV_FUNC_NIC) && (is_rx != 0)) ptr = &iopic_input.nic_rx[channel];
755            else if( func == DEV_FUNC_IOB )                 ptr = &iopic_input.iob;
[580]756            else
757            {
758                printk("\n[PANIC] in %s : illegal source device for IOPIC input\n",
759                __FUNCTION__ );
760                hal_core_sleep();
761            }
[188]762
[407]763            // set one entry in all "iopic_input" structures
764            for( x = 0 ; x < info->x_size ; x++ )
765            {
[564]766                for( y = 0 ; y < info->y_size ; y++ )
[407]767                {
[564]768                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
769
770                    if( cluster_is_active( cxy ) )
771                    {
772                        hal_remote_s64( XPTR( cxy , ptr ) , id ); 
[559]773                    }
[407]774                }
775            }
[188]776        }
777    } 
778
[438]779#if( DEBUG_KERNEL_INIT & 0x1 )
[601]780if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[407]781{
[601]782    printk("\n[%s] created PIC chdev in cluster %x at cycle %d\n",
[407]783    __FUNCTION__ , local_cxy , (uint32_t)hal_time_stamp() );
784    dev_pic_inputs_display();
785}
[389]786#endif
[188]787   
788}  // end iopic_init()
789
[1]790///////////////////////////////////////////////////////////////////////////////////////////
[623]791// This function is called by all core[0]s in all cluster to complete the PIC device
[188]792// initialisation, namely the informations attached to the LAPIC controller.
793// This initialisation must be done after the IOPIC initialisation, but before other
794// devices initialisation because the IRQ routing infrastructure is required for both
795// internal and external devices initialisation.
796///////////////////////////////////////////////////////////////////////////////////////////
797// @ info    : pointer on the local boot-info structure.
798///////////////////////////////////////////////////////////////////////////////////////////
[564]799static void __attribute__ ((noinline)) lapic_init( boot_info_t * info )
[188]800{
801    boot_device_t * dev_tbl;      // pointer on boot_info internal devices array
802    uint32_t        dev_nr;       // number of internal devices
803    uint32_t        i;            // device index in dev_tbl
804        xptr_t          base;         // remote pointer on segment base
805    uint32_t        func;         // device functionnal type in boot_info
806    bool_t          found;        // LAPIC found
807
808    // get number of internal peripherals and base
809        dev_nr      = info->int_dev_nr;
810    dev_tbl     = info->int_dev;
811
812    // loop on internal peripherals to get the lapic device
813        for( i = 0 , found = false ; i < dev_nr ; i++ )
814        {
815        func = FUNC_FROM_TYPE( dev_tbl[i].type );
816
817        if( func == DEV_FUNC_ICU )
818        {
819            base     = dev_tbl[i].base;
820            found    = true;
821            break;
822        }
823    }
824
825    // if the LAPIC controller is not defined in the boot_info,
826    // we simply don't initialize the PIC extensions in the kernel,
827    // making the assumption that the LAPIC related informations
828    // are hidden in the hardware specific PIC driver.
829    if( found )
830    {
831        // initialise the PIC extensions for
832        // the core descriptor and core manager extensions
833        dev_pic_extend_init( (uint32_t *)GET_PTR( base ) );
834
835        // initialize the "lapic_input" structure
836        // defining how internal IRQs are connected to LAPIC
837        uint32_t        id;
838        uint8_t         valid;
839        uint8_t         channel;
840        uint32_t        func;
841
842        for( id = 0 ; id < CONFIG_MAX_INTERNAL_IRQS ; id++ )
843        {
844            valid    = dev_tbl[i].irq[id].valid;
845            func     = FUNC_FROM_TYPE( dev_tbl[i].irq[id].dev_type );
846            channel  = dev_tbl[i].irq[id].channel;
847
848            if( valid ) // only valid local IRQs are registered
849            {
850                if     ( func == DEV_FUNC_MMC ) lapic_input.mmc = id;
851                else if( func == DEV_FUNC_DMA ) lapic_input.dma[channel] = id;
[580]852                else
853                {
854                    printk("\n[PANIC] in %s : illegal source device for LAPIC input\n",
855                    __FUNCTION__ );
856                    hal_core_sleep();
857                }
[188]858            }
859        }
860    }
861}  // end lapic_init()
862
863///////////////////////////////////////////////////////////////////////////////////////////
[14]864// This static function returns the identifiers of the calling core.
865///////////////////////////////////////////////////////////////////////////////////////////
866// @ info    : pointer on boot_info structure.
867// @ lid     : [out] core local index in cluster.
868// @ cxy     : [out] cluster identifier.
869// @ lid     : [out] core global identifier (hardware).
870// @ return 0 if success / return EINVAL if not found.
871///////////////////////////////////////////////////////////////////////////////////////////
[564]872static error_t __attribute__ ((noinline)) get_core_identifiers( boot_info_t * info,
873                                                                lid_t       * lid,
874                                                                cxy_t       * cxy,
875                                                                gid_t       * gid )
[14]876{
[127]877    uint32_t   i;
[14]878    gid_t      global_id;
[19]879
[14]880    // get global identifier from hardware register
[127]881    global_id = hal_get_gid();
[14]882
883    // makes an associative search in boot_info to get (cxy,lid) from global_id
884    for( i = 0 ; i < info->cores_nr ; i++ )
885    {
886        if( global_id == info->core[i].gid )
887        {
888            *lid = info->core[i].lid;
889            *cxy = info->core[i].cxy;
890            *gid = global_id;
891            return 0;
892        }
893    }
894    return EINVAL;
[19]895}
[14]896
[626]897
898
899
900
901/////////////////////////////////
902// kleenex debug function
903/////////////////////////////////
904void display_fat( uint32_t step )
905{
906    fatfs_ctx_t * fatfs_ctx = fs_context[FS_TYPE_FATFS].extend;
907    if( fatfs_ctx != NULL ) 
908    {
909        printk("\n[%s] step %d at cycle %d\n", __FUNCTION__, step, (uint32_t)hal_get_cycles() );
910        xptr_t     mapper_xp = fatfs_ctx->fat_mapper_xp;
911        mapper_display_page( mapper_xp , 0 , 128 );
912    }
913    else
914    {
915        printk("\n[%s] step %d : fatfs context not initialized\n", __FUNCTION__, step );
916    }
917}
918
919
920
921
922
[14]923///////////////////////////////////////////////////////////////////////////////////////////
[1]924// This function is the entry point for the kernel initialisation.
[623]925// It is executed by all cores in all clusters, but only core[0] initializes
926// the shared resources such as the cluster manager, or the local peripherals.
[19]927// To comply with the multi-kernels paradigm, it accesses only local cluster memory, using
928// only information contained in the local boot_info_t structure, set by the bootloader.
[623]929// Only core[0] in cluster 0 print the log messages.
[1]930///////////////////////////////////////////////////////////////////////////////////////////
931// @ info    : pointer on the local boot-info structure.
932///////////////////////////////////////////////////////////////////////////////////////////
933void kernel_init( boot_info_t * info )
934{
[204]935    lid_t        core_lid = -1;             // running core local index
936    cxy_t        core_cxy = -1;             // running core cluster identifier
937    gid_t        core_gid;                  // running core hardware identifier
938    cluster_t  * cluster;                   // pointer on local cluster manager
939    core_t     * core;                      // pointer on running core descriptor
940    thread_t   * thread;                    // pointer on idle thread descriptor
941
942    xptr_t       vfs_root_inode_xp;         // extended pointer on VFS root inode
943    xptr_t       devfs_dev_inode_xp;        // extended pointer on DEVFS dev inode   
944    xptr_t       devfs_external_inode_xp;   // extended pointer on DEVFS external inode       
945    xptr_t       devfs_internal_inode_xp;   // extended pointer on DEVFS internal inode       
946
[1]947    error_t      error;
[285]948    reg_t        status;                    // running core status register
[1]949
[188]950    /////////////////////////////////////////////////////////////////////////////////
[623]951    // STEP 1 : Each core get its core identifier from boot_info, and makes
[188]952    //          a partial initialisation of its private idle thread descriptor.
[623]953    //          core[0] initializes the "local_cxy" global variable.
954    //          core[0] in cluster[0] initializes the TXT0 chdev for log messages.
[188]955    /////////////////////////////////////////////////////////////////////////////////
956
[23]957    error = get_core_identifiers( info,
[14]958                                  &core_lid,
959                                  &core_cxy,
960                                  &core_gid );
[1]961
[623]962    // core[0] initialize cluster identifier
[14]963    if( core_lid == 0 ) local_cxy = info->cxy;
[1]964
[127]965    // each core gets a pointer on its private idle thread descriptor
966    thread = (thread_t *)( idle_threads + (core_lid * CONFIG_THREAD_DESC_SIZE) );
[68]967
[127]968    // each core registers this thread pointer in hardware register
[68]969    hal_set_current_thread( thread );
[71]970
[407]971    // each core register core descriptor pointer in idle thread descriptor
972    thread->core = &LOCAL_CLUSTER->core_tbl[core_lid];
973
[564]974    // each core initializes the idle thread locks counters
975    thread->busylocks = 0;
[124]976
[564]977#if DEBUG_BUSYLOCK
978    // each core initialise the idle thread list of busylocks
979    xlist_root_init( XPTR( local_cxy , &thread->busylocks_root ) );
980#endif
[14]981
[623]982    // core[0] initializes cluster info
[564]983    if( core_lid == 0 ) cluster_info_init( info );
984
[623]985    // core[0] in cluster[0] initialises TXT0 chdev descriptor
[564]986    if( (core_lid == 0) && (core_cxy == 0) ) txt0_device_init( info );
987
[623]988    // all cores check identifiers
989    if( error )
990    {
991        printk("\n[PANIC] in %s : illegal core : gid %x / cxy %x / lid %d",
992        __FUNCTION__, core_lid, core_cxy, core_lid );
993        hal_core_sleep();
994    }
995
[14]996    /////////////////////////////////////////////////////////////////////////////////
[564]997    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
998                                        (info->x_size * info->y_size) );
[14]999    barrier_wait( &local_barrier , info->cores_nr );
[437]1000    /////////////////////////////////////////////////////////////////////////////////
[14]1001
[438]1002#if DEBUG_KERNEL_INIT
[583]1003if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1004printk("\n[%s] exit barrier 1 : TXT0 initialized / cycle %d\n",
[610]1005__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1006#endif
[14]1007
[623]1008    /////////////////////////////////////////////////////////////////////////////////
[637]1009    // STEP 2 : core[0] initializes the cluster manager,
1010    //          including the physical memory allocators.
[623]1011    /////////////////////////////////////////////////////////////////////////////////
[188]1012
[623]1013    // core[0] initialises DQDT (only core[0] in cluster 0 build the quad-tree)
[582]1014    if( core_lid == 0 ) dqdt_init();
1015   
[623]1016    // core[0] initialize other cluster manager complex structures
[14]1017    if( core_lid == 0 )
[1]1018    {
[564]1019        error = cluster_manager_init( info );
[1]1020
[14]1021        if( error )
[580]1022        {
1023             printk("\n[PANIC] in %s : cannot initialize cluster manager in cluster %x\n",
1024             __FUNCTION__, local_cxy );
1025             hal_core_sleep();
1026        }
[14]1027    }
[5]1028
[14]1029    /////////////////////////////////////////////////////////////////////////////////
[564]1030    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1031                                        (info->x_size * info->y_size) );
[14]1032    barrier_wait( &local_barrier , info->cores_nr );
1033    /////////////////////////////////////////////////////////////////////////////////
[1]1034
[438]1035#if DEBUG_KERNEL_INIT
1036if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1037printk("\n[%s] exit barrier 2 : cluster manager initialized / cycle %d\n",
[610]1038__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1039#endif
[1]1040
[188]1041    /////////////////////////////////////////////////////////////////////////////////
[624]1042    // STEP 3 : all cores initialize the idle thread descriptor.
1043    //          core[0] initializes the process_zero descriptor,
[623]1044    //          including the kernel VMM (both GPT and VSL)
[188]1045    /////////////////////////////////////////////////////////////////////////////////
1046
1047    // all cores get pointer on local cluster manager & core descriptor
[14]1048    cluster = &cluster_manager;
[127]1049    core    = &cluster->core_tbl[core_lid];
[1]1050
[624]1051    // all cores update the register(s) defining the kernel
1052    // entry points for interrupts, exceptions and syscalls,
1053    // this must be done before VFS initialisation, because
1054    // kernel_init() uses RPCs requiring IPIs...
1055    hal_set_kentry();
1056
1057    // all cores initialize the idle thread descriptor
1058    thread_idle_init( thread,
1059                      THREAD_IDLE,
1060                      &thread_idle_func,
1061                      NULL,
1062                      core_lid );
1063
[623]1064    // core[0] initializes the process_zero descriptor,
1065    if( core_lid == 0 ) process_zero_create( &process_zero , info );
[5]1066
[623]1067    /////////////////////////////////////////////////////////////////////////////////
1068    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1069                                        (info->x_size * info->y_size) );
1070    barrier_wait( &local_barrier , info->cores_nr );
1071    /////////////////////////////////////////////////////////////////////////////////
1072
1073#if DEBUG_KERNEL_INIT
1074if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1075printk("\n[%s] exit barrier 3 : kernel processs initialized / cycle %d\n",
[623]1076__FUNCTION__, (uint32_t)hal_get_cycles() );
1077#endif
1078
1079    /////////////////////////////////////////////////////////////////////////////////
1080    // STEP 4 : all cores initialize their private MMU
1081    //          core[0] in cluster 0 initializes the IOPIC device.
1082    /////////////////////////////////////////////////////////////////////////////////
1083
1084    // all cores initialise their MMU
1085    hal_mmu_init( &process_zero.vmm.gpt );
1086
1087    // core[0] in cluster[0] initializes the PIC chdev,
[188]1088    if( (core_lid == 0) && (local_cxy == 0) ) iopic_init( info );
1089   
1090    ////////////////////////////////////////////////////////////////////////////////
[564]1091    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1092                                        (info->x_size * info->y_size) );
[188]1093    barrier_wait( &local_barrier , info->cores_nr );
1094    ////////////////////////////////////////////////////////////////////////////////
[127]1095
[438]1096#if DEBUG_KERNEL_INIT
1097if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1098printk("\n[%s] exit barrier 4 : MMU and IOPIC initialized / cycle %d\n",
[610]1099__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1100#endif
[1]1101
[188]1102    ////////////////////////////////////////////////////////////////////////////////
[637]1103    // STEP 5 : core[0] initialize the distibuted LAPIC descriptor.
1104    //          core[0] initialize the internal chdev descriptors
[623]1105    //          core[0] initialize the local external chdev descriptors
[188]1106    ////////////////////////////////////////////////////////////////////////////////
[5]1107
[623]1108    // all core[0]s initialize their local LAPIC extension,
[279]1109    if( core_lid == 0 ) lapic_init( info );
1110
[623]1111    // core[0] scan the internal (private) peripherals,
[188]1112    // and allocates memory for the corresponding chdev descriptors.
1113    if( core_lid == 0 ) internal_devices_init( info );
1114       
[1]1115
[623]1116    // All core[0]s contribute to initialise external peripheral chdev descriptors.
1117    // Each core[0][cxy] scan the set of external (shared) peripherals (but the TXT0),
[14]1118    // and allocates memory for the chdev descriptors that must be placed
[127]1119    // on the (cxy) cluster according to the global index value.
[188]1120
[14]1121    if( core_lid == 0 ) external_devices_init( info );
[1]1122
[14]1123    /////////////////////////////////////////////////////////////////////////////////
[564]1124    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1125                                        (info->x_size * info->y_size) );
[14]1126    barrier_wait( &local_barrier , info->cores_nr );
1127    /////////////////////////////////////////////////////////////////////////////////
[5]1128
[438]1129#if DEBUG_KERNEL_INIT
1130if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1131printk("\n[%s] exit barrier 5 : chdevs initialised / cycle %d\n",
[610]1132__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1133#endif
[1]1134
[438]1135#if( DEBUG_KERNEL_INIT & 1 )
[443]1136if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1137chdev_dir_display();
1138#endif
1139   
[188]1140    /////////////////////////////////////////////////////////////////////////////////
[624]1141    // STEP 6 : all cores enable IPI (Inter Procesor Interrupt),
1142    //          all cores unblock the idle thread, and register it in scheduler.
1143    //          core[0] in cluster[0] creates the VFS root inode.
[188]1144    //          It access the boot device to initialize the file system context.
1145    /////////////////////////////////////////////////////////////////////////////////
1146
[564]1147    // All cores enable IPI
[279]1148    dev_pic_enable_ipi();
1149    hal_enable_irq( &status );
1150
[624]1151    // all cores unblock the idle thread, and register it in scheduler
[296]1152    thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_GLOBAL );
[103]1153    core->scheduler.idle = thread;
[1]1154
[623]1155    // core[O] in cluster[0] creates the VFS root
[188]1156    if( (core_lid ==  0) && (local_cxy == 0 ) ) 
[14]1157    {
[188]1158        vfs_root_inode_xp = XPTR_NULL;
[23]1159
[614]1160        // Only FATFS is supported yet,
1161        // other File System can be introduced here
[23]1162        if( CONFIG_VFS_ROOT_IS_FATFS )
1163        {
[626]1164            // 1. allocate memory for FATFS context in cluster 0
[188]1165            fatfs_ctx_t * fatfs_ctx = fatfs_ctx_alloc();
1166
[564]1167            if( fatfs_ctx == NULL )
[580]1168            {
1169                printk("\n[PANIC] in %s : cannot create FATFS context in cluster 0\n",
1170                __FUNCTION__ );
1171                hal_core_sleep();
1172            }
[188]1173
1174            // 2. access boot device to initialize FATFS context
1175            fatfs_ctx_init( fatfs_ctx );
[626]1176
[188]1177            // 3. get various informations from FATFS context
1178            uint32_t root_dir_cluster = fatfs_ctx->root_dir_cluster;
1179            uint32_t cluster_size     = fatfs_ctx->bytes_per_sector * 
1180                                        fatfs_ctx->sectors_per_cluster;
1181            uint32_t total_clusters   = fatfs_ctx->fat_sectors_count << 7;
1182 
[601]1183            // 4. create VFS root inode in cluster 0
[610]1184            error = vfs_inode_create( FS_TYPE_FATFS,                       // fs_type
[188]1185                                      0,                                   // attr
1186                                      0,                                   // rights
1187                                      0,                                   // uid
1188                                      0,                                   // gid
1189                                      &vfs_root_inode_xp );                // return
[564]1190            if( error )
[580]1191            {
1192                printk("\n[PANIC] in %s : cannot create VFS root inode in cluster 0\n",
1193                __FUNCTION__ );
1194                hal_core_sleep();
1195            }
[188]1196
[623]1197            // 5. update FATFS root inode "type" and "extend" fields 
[601]1198            cxy_t         vfs_root_cxy = GET_CXY( vfs_root_inode_xp );
1199            vfs_inode_t * vfs_root_ptr = GET_PTR( vfs_root_inode_xp );
[624]1200            hal_remote_s32( XPTR( vfs_root_cxy , &vfs_root_ptr->type ), INODE_TYPE_DIR );
[601]1201            hal_remote_spt( XPTR( vfs_root_cxy , &vfs_root_ptr->extend ), 
1202                            (void*)(intptr_t)root_dir_cluster );
[188]1203
[601]1204            // 6. initialize the generic VFS context for FATFS
1205            vfs_ctx_init( FS_TYPE_FATFS,                               // fs type
1206                          0,                                           // attributes: unused
1207                              total_clusters,                              // number of clusters
1208                              cluster_size,                                // bytes
1209                              vfs_root_inode_xp,                           // VFS root
1210                          fatfs_ctx );                                 // extend
[23]1211        }
1212        else
1213        {
[564]1214            printk("\n[PANIC] in %s : unsupported VFS type in cluster 0\n",
1215            __FUNCTION__ );
[580]1216            hal_core_sleep();
[23]1217        }
1218
[614]1219        // create the <.> and <..> dentries in VFS root directory
1220        // the VFS root parent inode is the VFS root inode itself
1221        vfs_add_special_dentries( vfs_root_inode_xp,
1222                                  vfs_root_inode_xp );
1223
[389]1224        // register VFS root inode in process_zero descriptor of cluster 0
[188]1225        process_zero.vfs_root_xp = vfs_root_inode_xp;
[610]1226        process_zero.cwd_xp      = vfs_root_inode_xp;
[188]1227    }
1228
1229    /////////////////////////////////////////////////////////////////////////////////
[564]1230    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1231                                        (info->x_size * info->y_size) );
[188]1232    barrier_wait( &local_barrier , info->cores_nr );
1233    /////////////////////////////////////////////////////////////////////////////////
1234
[438]1235#if DEBUG_KERNEL_INIT
1236if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1237printk("\n[%s] exit barrier 6 : VFS root (%x,%x) in cluster 0 / cycle %d\n",
[610]1238__FUNCTION__, GET_CXY(process_zero.vfs_root_xp),
1239GET_PTR(process_zero.vfs_root_xp), (uint32_t)hal_get_cycles() );
[437]1240#endif
[188]1241
1242    /////////////////////////////////////////////////////////////////////////////////
[623]1243    // STEP 7 : In all other clusters than cluster[0], the core[0] allocates memory
1244    //          for the selected FS context, and initialise the local FS context and
1245    //          the local VFS context from values stored in cluster 0.
[188]1246    //          They get the VFS root inode extended pointer from cluster 0.
1247    /////////////////////////////////////////////////////////////////////////////////
1248
1249    if( (core_lid ==  0) && (local_cxy != 0) ) 
1250    {
1251        // File System must be FATFS in this implementation,
1252        // but other File System can be introduced here
1253        if( CONFIG_VFS_ROOT_IS_FATFS )
[23]1254        {
[389]1255            // 1. allocate memory for local FATFS context
1256            fatfs_ctx_t * local_fatfs_ctx = fatfs_ctx_alloc();
[188]1257
[564]1258            // check memory
1259            if( local_fatfs_ctx == NULL )
[580]1260            {
1261                printk("\n[PANIC] in %s : cannot create FATFS context in cluster %x\n",
1262                __FUNCTION__ , local_cxy );
1263                hal_core_sleep();
1264            }
[188]1265
[389]1266            // 2. get local pointer on VFS context for FATFS
[188]1267            vfs_ctx_t   * vfs_ctx = &fs_context[FS_TYPE_FATFS];
1268
[389]1269            // 3. get local pointer on FATFS context in cluster 0
1270            fatfs_ctx_t * remote_fatfs_ctx = hal_remote_lpt( XPTR( 0 , &vfs_ctx->extend ) );
1271
1272            // 4. copy FATFS context from cluster 0 to local cluster
1273            hal_remote_memcpy( XPTR( local_cxy , local_fatfs_ctx ), 
1274                               XPTR( 0 ,         remote_fatfs_ctx ), sizeof(fatfs_ctx_t) );
1275
1276            // 5. copy VFS context from cluster 0 to local cluster
[188]1277            hal_remote_memcpy( XPTR( local_cxy , vfs_ctx ), 
[389]1278                               XPTR( 0 ,         vfs_ctx ), sizeof(vfs_ctx_t) );
[188]1279
[389]1280            // 6. update extend field in local copy of VFS context
1281            vfs_ctx->extend = local_fatfs_ctx;
[188]1282
[564]1283            if( ((fatfs_ctx_t *)vfs_ctx->extend)->sectors_per_cluster != 8 )
[580]1284            {
1285                printk("\n[PANIC] in %s : illegal FATFS context in cluster %x\n",
1286                __FUNCTION__ , local_cxy );
1287                hal_core_sleep();
1288            }
[23]1289        }
1290
[188]1291        // get extended pointer on VFS root inode from cluster 0
[564]1292        vfs_root_inode_xp = hal_remote_l64( XPTR( 0 , &process_zero.vfs_root_xp ) );
[101]1293
[188]1294        // update local process_zero descriptor
1295        process_zero.vfs_root_xp = vfs_root_inode_xp;
[610]1296        process_zero.cwd_xp      = vfs_root_inode_xp;
[14]1297    }
1298
[188]1299    /////////////////////////////////////////////////////////////////////////////////
[564]1300    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1301                                        (info->x_size * info->y_size) );
[188]1302    barrier_wait( &local_barrier , info->cores_nr );
[204]1303    /////////////////////////////////////////////////////////////////////////////////
[101]1304
[438]1305#if DEBUG_KERNEL_INIT
[564]1306if( (core_lid ==  0) & (local_cxy == 1) ) 
[624]1307printk("\n[%s] exit barrier 7 : VFS root (%x,%x) in cluster 1 / cycle %d\n",
[610]1308__FUNCTION__, GET_CXY(process_zero.vfs_root_xp),
1309GET_PTR(process_zero.vfs_root_xp), (uint32_t)hal_get_cycles() );
[437]1310#endif
[188]1311
1312    /////////////////////////////////////////////////////////////////////////////////
[623]1313    // STEP 8 : core[0] in cluster 0 makes the global DEVFS initialisation:
[564]1314    //          It initializes the DEVFS context, and creates the DEVFS
1315    //          "dev" and "external" inodes in cluster 0.
[188]1316    /////////////////////////////////////////////////////////////////////////////////
1317
[564]1318    if( (core_lid ==  0) && (local_cxy == 0) ) 
[1]1319    {
[564]1320        // 1. allocate memory for DEVFS context extension in cluster 0
1321        devfs_ctx_t * devfs_ctx = devfs_ctx_alloc();
1322
1323        if( devfs_ctx == NULL )
[580]1324        {
1325            printk("\n[PANIC] in %s : cannot create DEVFS context in cluster 0\n",
1326            __FUNCTION__ , local_cxy );
1327            hal_core_sleep();
1328        }
[564]1329
1330        // 2. initialize the DEVFS entry in the vfs_context[] array
1331        vfs_ctx_init( FS_TYPE_DEVFS,                                // fs type
1332                      0,                                            // attributes: unused
1333                          0,                                            // total_clusters: unused
1334                          0,                                            // cluster_size: unused
1335                          vfs_root_inode_xp,                            // VFS root
1336                      devfs_ctx );                                  // extend
1337
1338        // 3. create "dev" and "external" inodes (directories)
[188]1339        devfs_global_init( process_zero.vfs_root_xp,
[204]1340                           &devfs_dev_inode_xp,
[188]1341                           &devfs_external_inode_xp );
1342
[564]1343        // 4. initializes DEVFS context extension
1344        devfs_ctx_init( devfs_ctx,
1345                        devfs_dev_inode_xp,
1346                        devfs_external_inode_xp );
[188]1347    }   
1348
1349    /////////////////////////////////////////////////////////////////////////////////
[564]1350    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1351                                        (info->x_size * info->y_size) );
[188]1352    barrier_wait( &local_barrier , info->cores_nr );
[204]1353    /////////////////////////////////////////////////////////////////////////////////
[188]1354
[438]1355#if DEBUG_KERNEL_INIT
1356if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1357printk("\n[%s] exit barrier 8 : DEVFS root initialized in cluster 0 / cycle %d\n",
[610]1358__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1359#endif
[188]1360
1361    /////////////////////////////////////////////////////////////////////////////////
[624]1362    // STEP 9 : In all clusters in parallel, core[0] completes DEVFS initialization.
[623]1363    //          Each core[0] get the "dev" and "external" extended pointers from
[624]1364    //          values stored in cluster(0), creates the DEVFS "internal" directory,
1365    //          and creates the pseudo-files for all chdevs in local cluster.
[188]1366    /////////////////////////////////////////////////////////////////////////////////
1367
1368    if( core_lid == 0 )
1369    {
[564]1370        // get extended pointer on "extend" field of VFS context for DEVFS in cluster 0
1371        xptr_t  extend_xp = XPTR( 0 , &fs_context[FS_TYPE_DEVFS].extend );
[188]1372
[457]1373        // get pointer on DEVFS context in cluster 0
[188]1374        devfs_ctx_t * devfs_ctx = hal_remote_lpt( extend_xp );
1375       
[564]1376        devfs_dev_inode_xp      = hal_remote_l64( XPTR( 0 , &devfs_ctx->dev_inode_xp ) );
1377        devfs_external_inode_xp = hal_remote_l64( XPTR( 0 , &devfs_ctx->external_inode_xp ) );
[188]1378
[204]1379        // populate DEVFS in all clusters
1380        devfs_local_init( devfs_dev_inode_xp,
1381                          devfs_external_inode_xp,
1382                          &devfs_internal_inode_xp );
[188]1383    }
1384
1385    /////////////////////////////////////////////////////////////////////////////////
[564]1386    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1387                                        (info->x_size * info->y_size) );
[188]1388    barrier_wait( &local_barrier , info->cores_nr );
[204]1389    /////////////////////////////////////////////////////////////////////////////////
[188]1390
[438]1391#if DEBUG_KERNEL_INIT
1392if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1393printk("\n[%s] exit barrier 9 : DEVFS initialized in cluster 0 / cycle %d\n",
[610]1394__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1395#endif
[188]1396
[623]1397#if( DEBUG_KERNEL_INIT & 1 )
1398if( (core_lid ==  0) & (local_cxy == 0) ) 
1399vfs_display( vfs_root_inode_xp );
1400#endif
1401
[188]1402    /////////////////////////////////////////////////////////////////////////////////
[623]1403    // STEP 10 : core[0] in cluster 0 creates the first user process (process_init).
1404    //           This include the first user process VMM (GPT and VSL) creation.
1405    //           Finally, it prints the ALMOS-MKH banner.
[188]1406    /////////////////////////////////////////////////////////////////////////////////
1407
[457]1408    if( (core_lid == 0) && (local_cxy == 0) ) 
[188]1409    {
[428]1410       process_init_create();
[188]1411    }
[101]1412
[624]1413#if DEBUG_KERNEL_INIT
1414if( (core_lid ==  0) & (local_cxy == 0) ) 
1415printk("\n[%s] exit barrier 10 : process_init created in cluster 0 / cycle %d\n",
1416__FUNCTION__, (uint32_t)hal_get_cycles() );
1417#endif
1418
[564]1419    if( (core_lid == 0) && (local_cxy == 0) ) 
[188]1420    {
[5]1421        print_banner( (info->x_size * info->y_size) , info->cores_nr );
[623]1422    }
[68]1423
[635]1424#if CONFIG_INSTRUMENTATION_FOOTPRINT
[623]1425if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1426printk("\n\n***** memory fooprint for main kernel objects\n\n"
[68]1427                   " - thread descriptor  : %d bytes\n"
1428                   " - process descriptor : %d bytes\n"
1429                   " - cluster manager    : %d bytes\n"
1430                   " - chdev descriptor   : %d bytes\n"
1431                   " - core descriptor    : %d bytes\n"
1432                   " - scheduler          : %d bytes\n"
1433                   " - rpc fifo           : %d bytes\n"
1434                   " - page descriptor    : %d bytes\n"
[635]1435                   " - mapper descriptor  : %d bytes\n"
1436                   " - vseg descriptor    : %d bytes\n"
[68]1437                   " - ppm manager        : %d bytes\n"
1438                   " - kcm manager        : %d bytes\n"
1439                   " - khm manager        : %d bytes\n"
1440                   " - vmm manager        : %d bytes\n"
[635]1441                   " - vfs inode          : %d bytes\n"
1442                   " - vfs dentry         : %d bytes\n"
1443                   " - vfs file           : %d bytes\n"
1444                   " - vfs context        : %d bytes\n"
1445                   " - xhtab root         : %d bytes\n"
[68]1446                   " - list item          : %d bytes\n"
1447                   " - xlist item         : %d bytes\n"
[564]1448                   " - busylock           : %d bytes\n"
1449                   " - remote busylock    : %d bytes\n"
1450                   " - queuelock          : %d bytes\n"
1451                   " - remote queuelock   : %d bytes\n"
[68]1452                   " - rwlock             : %d bytes\n"
1453                   " - remote rwlock      : %d bytes\n",
[564]1454                   sizeof( thread_t           ),
1455                   sizeof( process_t          ),
1456                   sizeof( cluster_t          ),
1457                   sizeof( chdev_t            ),
1458                   sizeof( core_t             ),
1459                   sizeof( scheduler_t        ),
1460                   sizeof( remote_fifo_t      ),
1461                   sizeof( page_t             ),
1462                   sizeof( mapper_t           ),
[635]1463                   sizeof( vseg_t             ),
[564]1464                   sizeof( ppm_t              ),
1465                   sizeof( kcm_t              ),
1466                   sizeof( khm_t              ),
1467                   sizeof( vmm_t              ),
[635]1468                   sizeof( vfs_inode_t        ),
1469                   sizeof( vfs_dentry_t       ),
1470                   sizeof( vfs_file_t         ),
1471                   sizeof( vfs_ctx_t          ),
1472                   sizeof( xhtab_t            ),
[564]1473                   sizeof( list_entry_t       ),
1474                   sizeof( xlist_entry_t      ),
1475                   sizeof( busylock_t         ),
1476                   sizeof( remote_busylock_t  ),
1477                   sizeof( queuelock_t        ),
1478                   sizeof( remote_queuelock_t ),
1479                   sizeof( rwlock_t           ),
1480                   sizeof( remote_rwlock_t    ));
[406]1481#endif
1482
[398]1483    // each core activates its private TICK IRQ
1484    dev_pic_enable_timer( CONFIG_SCHED_TICK_MS_PERIOD );
[14]1485
[610]1486    /////////////////////////////////////////////////////////////////////////////////
1487    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ),
1488                                        (info->x_size * info->y_size) );
1489    barrier_wait( &local_barrier , info->cores_nr );
1490    /////////////////////////////////////////////////////////////////////////////////
1491
[635]1492#if DEBUG_KERNEL_INIT
[610]1493thread_t * this = CURRENT_THREAD;
1494printk("\n[%s] : thread[%x,%x] on core[%x,%d] jumps to thread_idle_func() / cycle %d\n",
1495__FUNCTION__ , this->process->pid, this->trdid,
1496local_cxy, core_lid, (uint32_t)hal_get_cycles() );
[440]1497#endif
1498
[407]1499    // each core jump to thread_idle_func
[50]1500    thread_idle_func();
[14]1501
[610]1502}  // end kernel_init()
1503
Note: See TracBrowser for help on using the repository browser.