source: trunk/kernel/kern/kernel_init.c @ 654

Last change on this file since 654 was 651, checked in by alain, 5 years ago

1) Improve the VMM MMAP allocator: implement the "buddy" algorithm
to allocate only aligned blocks.
2) fix a bug in the pthread_join() / pthread_exit() mmechanism.

File size: 62.4 KB
RevLine 
[1]1/*
2 * kernel_init.c - kernel parallel initialization
[127]3 *
[23]4 * Authors :  Mohamed Lamine Karaoui (2015)
[623]5 *            Alain Greiner  (2016,2017,2018,2019)
[1]6 *
7 * Copyright (c) Sorbonne Universites
8 *
9 * This file is part of ALMOS-MKH.
10 *
11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
15 * ALMOS-MKH is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[1]26#include <errno.h>
[457]27#include <hal_kernel_types.h>
[1]28#include <hal_special.h>
29#include <hal_context.h>
[279]30#include <hal_irqmask.h>
[564]31#include <hal_macros.h>
[296]32#include <hal_ppm.h>
[14]33#include <barrier.h>
[564]34#include <xbarrier.h>
[407]35#include <remote_fifo.h>
[1]36#include <core.h>
37#include <list.h>
[68]38#include <xlist.h>
[204]39#include <xhtab.h>
[1]40#include <thread.h>
41#include <scheduler.h>
42#include <kmem.h>
43#include <cluster.h>
44#include <string.h>
45#include <memcpy.h>
46#include <ppm.h>
47#include <page.h>
[5]48#include <chdev.h>
[1]49#include <boot_info.h>
50#include <dqdt.h>
51#include <dev_mmc.h>
[5]52#include <dev_dma.h>
53#include <dev_iob.h>
[1]54#include <dev_ioc.h>
[5]55#include <dev_txt.h>
[1]56#include <dev_pic.h>
57#include <printk.h>
58#include <vfs.h>
[23]59#include <devfs.h>
[68]60#include <mapper.h>
[1]61
62///////////////////////////////////////////////////////////////////////////////////////////
[279]63// All the following global variables are replicated in all clusters.
[1]64// They are initialised by the kernel_init() function.
[14]65//
[127]66// WARNING : The section names have been defined to control the base addresses of the
[14]67// boot_info structure and the idle thread descriptors, through the kernel.ld script:
[127]68// - the boot_info structure is built by the bootloader, and used by kernel_init.
69//   it must be the first object in the kdata segment.
[14]70// - the array of idle threads descriptors must be placed on the first page boundary after
71//   the boot_info structure in the kdata segment.
[1]72///////////////////////////////////////////////////////////////////////////////////////////
73
[5]74// This variable defines the local boot_info structure
75__attribute__((section(".kinfo")))
[14]76boot_info_t          boot_info;
[5]77
[14]78// This variable defines the "idle" threads descriptors array
79__attribute__((section(".kidle")))
[381]80char                 idle_threads[CONFIG_THREAD_DESC_SIZE *
[14]81                                   CONFIG_MAX_LOCAL_CORES]   CONFIG_PPM_PAGE_ALIGNED;
82
[127]83// This variable defines the local cluster manager
[5]84__attribute__((section(".kdata")))
[19]85cluster_t            cluster_manager                         CONFIG_CACHE_LINE_ALIGNED;
[1]86
[564]87// This variable defines the TXT_TX[0] chdev
[188]88__attribute__((section(".kdata")))
[564]89chdev_t              txt0_tx_chdev                           CONFIG_CACHE_LINE_ALIGNED;
[188]90
[564]91// This variable defines the TXT_RX[0] chdev
[539]92__attribute__((section(".kdata")))
[564]93chdev_t              txt0_rx_chdev                           CONFIG_CACHE_LINE_ALIGNED;
[539]94
[14]95// This variables define the kernel process0 descriptor
[5]96__attribute__((section(".kdata")))
[19]97process_t            process_zero                            CONFIG_CACHE_LINE_ALIGNED;
[1]98
[624]99// This variable defines a set of extended pointers on the distributed chdevs
[5]100__attribute__((section(".kdata")))
[14]101chdev_directory_t    chdev_dir                               CONFIG_CACHE_LINE_ALIGNED;
[1]102
[188]103// This variable contains the input IRQ indexes for the IOPIC controller
[5]104__attribute__((section(".kdata")))
[246]105iopic_input_t        iopic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]106
[188]107// This variable contains the input IRQ indexes for the LAPIC controller
[5]108__attribute__((section(".kdata")))
[188]109lapic_input_t        lapic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]110
[14]111// This variable defines the local cluster identifier
[5]112__attribute__((section(".kdata")))
[14]113cxy_t                local_cxy                               CONFIG_CACHE_LINE_ALIGNED;
[5]114
[623]115// This variable is used for core[0] cores synchronisation in kernel_init()
[5]116__attribute__((section(".kdata")))
[564]117xbarrier_t           global_barrier                          CONFIG_CACHE_LINE_ALIGNED;
[1]118
[127]119// This variable is used for local cores synchronisation in kernel_init()
[14]120__attribute__((section(".kdata")))
121barrier_t            local_barrier                           CONFIG_CACHE_LINE_ALIGNED;
122
[127]123// This variable defines the array of supported File System contexts
[50]124__attribute__((section(".kdata")))
125vfs_ctx_t            fs_context[FS_TYPES_NR]                 CONFIG_CACHE_LINE_ALIGNED;
126
[564]127// This array is used for debug, and describes the kernel locks usage,
128// It must be kept consistent with the defines in kernel_config.h file.
[624]129__attribute__((section(".kdata")))
[564]130char * lock_type_str[] =
131{
132    "unused_0",              //  0
[408]133
[564]134    "CLUSTER_KCM",           //  1
[632]135    "SCHED_STATE",           //  2
136    "VMM_STACK",             //  3
137    "VMM_MMAP",              //  4
138    "VFS_CTX",               //  5
139    "KCM_STATE",             //  6
140    "KHM_STATE",             //  7
141    "HTAB_STATE",            //  8
[564]142
[632]143    "PPM_FREE",              //  9
[564]144    "THREAD_JOIN",           // 10
[610]145    "XHTAB_STATE",           // 11
[564]146    "CHDEV_QUEUE",           // 12
147    "CHDEV_TXT0",            // 13
148    "CHDEV_TXTLIST",         // 14
149    "PAGE_STATE",            // 15
150    "MUTEX_STATE",           // 16
151    "CONDVAR_STATE",         // 17
152    "SEM_STATE",             // 18
[619]153    "PROCESS_CWD",           // 19
154    "BARRIER_STATE",         // 20
[564]155
156    "CLUSTER_PREFTBL",       // 21
[601]157
[564]158    "PPM_DIRTY",             // 22
159    "CLUSTER_LOCALS",        // 23
160    "CLUSTER_COPIES",        // 24
161    "PROCESS_CHILDREN",      // 25
162    "PROCESS_USERSYNC",      // 26
163    "PROCESS_FDARRAY",       // 27
[628]164    "PROCESS_DIR",           // 28
[640]165    "VMM_VSL",               // 29
[564]166
[611]167    "PROCESS_THTBL",         // 30
[564]168
[611]169    "MAPPER_STATE",          // 31
170    "VFS_SIZE",              // 32
171    "VFS_FILE",              // 33
[640]172    "VFS_MAIN",              // 34
173    "FATFS_FAT",             // 35
[564]174};       
175
[601]176// debug variables to analyse the sys_read() and sys_write() syscalls timing
[564]177
[438]178#if DEBUG_SYS_READ
[407]179uint32_t   enter_sys_read;
180uint32_t   exit_sys_read;
181
[435]182uint32_t   enter_devfs_read;
183uint32_t   exit_devfs_read;
[407]184
185uint32_t   enter_txt_read;
186uint32_t   exit_txt_read;
187
[435]188uint32_t   enter_chdev_cmd_read;
189uint32_t   exit_chdev_cmd_read;
[407]190
[435]191uint32_t   enter_chdev_server_read;
192uint32_t   exit_chdev_server_read;
[407]193
[435]194uint32_t   enter_tty_cmd_read;
195uint32_t   exit_tty_cmd_read;
[407]196
[435]197uint32_t   enter_tty_isr_read;
198uint32_t   exit_tty_isr_read;
[407]199#endif
200
[435]201// these debug variables are used to analyse the sys_write() syscall timing
202
[438]203#if DEBUG_SYS_WRITE   
[435]204uint32_t   enter_sys_write;
205uint32_t   exit_sys_write;
206
207uint32_t   enter_devfs_write;
208uint32_t   exit_devfs_write;
209
210uint32_t   enter_txt_write;
211uint32_t   exit_txt_write;
212
213uint32_t   enter_chdev_cmd_write;
214uint32_t   exit_chdev_cmd_write;
215
216uint32_t   enter_chdev_server_write;
217uint32_t   exit_chdev_server_write;
218
219uint32_t   enter_tty_cmd_write;
220uint32_t   exit_tty_cmd_write;
221
222uint32_t   enter_tty_isr_write;
223uint32_t   exit_tty_isr_write;
224#endif
225
[564]226// intrumentation variables : cumulated costs per syscall type in cluster
[624]227
228#if CONFIG_INSTRUMENTATION_SYSCALLS
229__attribute__((section(".kdata")))
[564]230uint32_t   syscalls_cumul_cost[SYSCALLS_NR];
231
[624]232__attribute__((section(".kdata")))
[564]233uint32_t   syscalls_occurences[SYSCALLS_NR];
[624]234#endif
[564]235
[1]236///////////////////////////////////////////////////////////////////////////////////////////
[5]237// This function displays the ALMOS_MKH banner.
[1]238///////////////////////////////////////////////////////////////////////////////////////////
[5]239static void print_banner( uint32_t nclusters , uint32_t ncores )
[127]240{
[5]241    printk("\n"
242           "                    _        __    __     _____     ______         __    __    _   __   _     _   \n"
243           "          /\\       | |      |  \\  /  |   / ___ \\   / _____|       |  \\  /  |  | | / /  | |   | |  \n"
244           "         /  \\      | |      |   \\/   |  | /   \\ | | /             |   \\/   |  | |/ /   | |   | |  \n"
245           "        / /\\ \\     | |      | |\\  /| |  | |   | | | |_____   ___  | |\\  /| |  |   /    | |___| |  \n"
246           "       / /__\\ \\    | |      | | \\/ | |  | |   | | \\_____  \\ |___| | | \\/ | |  |   \\    |  ___  |  \n"
247           "      / ______ \\   | |      | |    | |  | |   | |       | |       | |    | |  | |\\ \\   | |   | |  \n"
248           "     / /      \\ \\  | |____  | |    | |  | \\___/ |  _____/ |       | |    | |  | | \\ \\  | |   | |  \n"
249           "    /_/        \\_\\ |______| |_|    |_|   \\_____/  |______/        |_|    |_|  |_|  \\_\\ |_|   |_|  \n"
250           "\n\n\t\t Advanced Locality Management Operating System / Multi Kernel Hybrid\n"
[457]251           "\n\n\t\t %s / %d cluster(s) / %d core(s) per cluster\n\n",
[635]252           CONFIG_VERSION , nclusters , ncores );
[5]253}
[1]254
255
[5]256///////////////////////////////////////////////////////////////////////////////////////////
[564]257// This function initializes the TXT_TX[0] and TXT_RX[0] chdev descriptors, implementing
258// the "kernel terminal", shared by all kernel instances for debug messages.
259// These chdev are implemented as global variables (replicated in all clusters),
260// because this terminal is used before the kmem allocator initialisation, but only
261// the chdevs in cluster 0 are registered in the "chdev_dir" directory.
[127]262// As this TXT0 chdev supports only the TXT_SYNC_WRITE command, we don't create
263// a server thread, we don't allocate a WTI, and we don't initialize the waiting queue.
[564]264// Note: The TXT_RX[0] chdev is created, but is not used by ALMOS-MKH (september 2018).
[5]265///////////////////////////////////////////////////////////////////////////////////////////
266// @ info    : pointer on the local boot-info structure.
267///////////////////////////////////////////////////////////////////////////////////////////
[564]268static void __attribute__ ((noinline)) txt0_device_init( boot_info_t * info )
[5]269{
270    boot_device_t * dev_tbl;         // pointer on array of devices in boot_info
[127]271    uint32_t        dev_nr;          // actual number of devices in this cluster
272    xptr_t          base;            // remote pointer on segment base
273    uint32_t        func;            // device functional index
[5]274    uint32_t        impl;            // device implementation index
[127]275    uint32_t        i;               // device index in dev_tbl
276    uint32_t        x;               // X cluster coordinate
277    uint32_t        y;               // Y cluster coordinate
[1]278
[5]279    // get number of peripherals and base of devices array from boot_info
[127]280    dev_nr      = info->ext_dev_nr;
[5]281    dev_tbl     = info->ext_dev;
[1]282
[14]283    // loop on external peripherals to find TXT device
[127]284    for( i = 0 ; i < dev_nr ; i++ )
285    {
[5]286        base        = dev_tbl[i].base;
[188]287        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
288        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
[5]289
[127]290        if (func == DEV_FUNC_TXT )
[5]291        {
[564]292            // initialize TXT_TX[0] chdev
293            txt0_tx_chdev.func    = func;
294            txt0_tx_chdev.impl    = impl;
295            txt0_tx_chdev.channel = 0;
296            txt0_tx_chdev.base    = base;
297            txt0_tx_chdev.is_rx   = false;
298            remote_busylock_init( XPTR( local_cxy , &txt0_tx_chdev.wait_lock ),
299                                  LOCK_CHDEV_TXT0 );
[188]300           
[564]301            // initialize TXT_RX[0] chdev
302            txt0_rx_chdev.func    = func;
303            txt0_rx_chdev.impl    = impl;
304            txt0_rx_chdev.channel = 0;
305            txt0_rx_chdev.base    = base;
306            txt0_rx_chdev.is_rx   = true;
307            remote_busylock_init( XPTR( local_cxy , &txt0_rx_chdev.wait_lock ),
308                                  LOCK_CHDEV_TXT0 );
309           
310            // make TXT specific initialisations
311            dev_txt_init( &txt0_tx_chdev );                 
312            dev_txt_init( &txt0_rx_chdev );
[14]313
[564]314            // register TXT_TX[0] & TXT_RX[0] in chdev_dir[x][y]
315            // for all valid clusters             
[5]316            for( x = 0 ; x < info->x_size ; x++ )
317            {
[564]318                for( y = 0 ; y < info->y_size ; y++ )
[5]319                {
[564]320                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
321
322                    if( cluster_is_active( cxy ) )
323                    {
324                        hal_remote_s64( XPTR( cxy , &chdev_dir.txt_tx[0] ) ,
325                                        XPTR( local_cxy , &txt0_tx_chdev ) );
326                        hal_remote_s64( XPTR( cxy , &chdev_dir.txt_rx[0] ) ,
327                                        XPTR( local_cxy , &txt0_rx_chdev ) );
[559]328                    }
[5]329                }
330            }
[564]331
332            hal_fence();
[5]333        }
[188]334        } // end loop on devices
335}  // end txt0_device_init()
[5]336
[1]337///////////////////////////////////////////////////////////////////////////////////////////
[188]338// This function allocates memory and initializes the chdev descriptors for the internal
339// peripherals contained in the local cluster, other than the LAPIC, as specified by
340// the boot_info, including the linking with the driver for the specified implementation.
341// The relevant entries in all copies of the devices directory are initialised.
[1]342///////////////////////////////////////////////////////////////////////////////////////////
343// @ info    : pointer on the local boot-info structure.
344///////////////////////////////////////////////////////////////////////////////////////////
[564]345static void __attribute__ ((noinline)) internal_devices_init( boot_info_t * info )
[1]346{
[188]347    boot_device_t * dev_tbl;         // pointer on array of internaldevices in boot_info
348        uint32_t        dev_nr;          // actual number of devices in this cluster
349        xptr_t          base;            // remote pointer on segment base
350    uint32_t        func;            // device functionnal index
351    uint32_t        impl;            // device implementation index
352        uint32_t        i;               // device index in dev_tbl
353        uint32_t        x;               // X cluster coordinate
354        uint32_t        y;               // Y cluster coordinate
355        uint32_t        channels;        // number of channels
356        uint32_t        channel;         // channel index
357        chdev_t       * chdev_ptr;       // local pointer on created chdev
[1]358
[188]359    // get number of internal peripherals and base from boot_info
360        dev_nr  = info->int_dev_nr;
361    dev_tbl = info->int_dev;
[1]362
[188]363    // loop on internal peripherals
364        for( i = 0 ; i < dev_nr ; i++ )
365        {
366        base        = dev_tbl[i].base;
367        channels    = dev_tbl[i].channels;
368        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
369        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
[204]370 
[188]371        //////////////////////////
372        if( func == DEV_FUNC_MMC ) 
[5]373        {
[1]374
[564]375            // check channels
376            if( channels != 1 )
[580]377            {
378                printk("\n[PANIC] in %s : MMC device must be single channel\n",
379                __FUNCTION__ );
380                hal_core_sleep();
381            }
[564]382
[188]383            // create chdev in local cluster
384            chdev_ptr = chdev_create( func,
385                                      impl,
386                                      0,          // channel
387                                      false,      // direction
388                                      base );
[14]389
[564]390            // check memory
391            if( chdev_ptr == NULL )
[580]392            {
393                printk("\n[PANIC] in %s : cannot create MMC chdev\n",
394                __FUNCTION__ );
395                hal_core_sleep();
396            }
[188]397           
398            // make MMC specific initialisation
399            dev_mmc_init( chdev_ptr );
[1]400
[188]401            // set the MMC field in all chdev_dir[x][y] structures
402            for( x = 0 ; x < info->x_size ; x++ )
[1]403            {
[564]404                for( y = 0 ; y < info->y_size ; y++ )
[188]405                {
[564]406                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
407
408                    if( cluster_is_active( cxy ) )
409                    {
410                        hal_remote_s64( XPTR( cxy , &chdev_dir.mmc[local_cxy] ), 
[559]411                                        XPTR( local_cxy , chdev_ptr ) );
412                    }
[188]413                }
[1]414            }
[188]415
[438]416#if( DEBUG_KERNEL_INIT & 0x1 )
417if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[601]418printk("\n[%s] : created MMC in cluster %x / chdev = %x\n",
[407]419__FUNCTION__ , local_cxy , chdev_ptr );
[389]420#endif
[14]421        }
[188]422        ///////////////////////////////
423        else if( func == DEV_FUNC_DMA )
[127]424        {
[188]425            // create one chdev per channel in local cluster
426            for( channel = 0 ; channel < channels ; channel++ )
427            {   
428                // create chdev[channel] in local cluster
429                chdev_ptr = chdev_create( func,
430                                          impl,
431                                          channel,
432                                          false,     // direction
433                                          base );
[5]434
[564]435                // check memory
436                if( chdev_ptr == NULL )
[580]437                {
438                    printk("\n[PANIC] in %s : cannot create DMA chdev\n",
439                    __FUNCTION__ );
440                    hal_core_sleep();
441                }
[564]442           
[188]443                // make DMA specific initialisation
444                dev_dma_init( chdev_ptr );     
[127]445
[188]446                // initialize only the DMA[channel] field in the local chdev_dir[x][y]
447                // structure because the DMA device is not remotely accessible.
448                chdev_dir.dma[channel] = XPTR( local_cxy , chdev_ptr );
[5]449
[438]450#if( DEBUG_KERNEL_INIT & 0x1 )
451if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[601]452printk("\n[%s] : created DMA[%d] in cluster %x / chdev = %x\n",
[389]453__FUNCTION__ , channel , local_cxy , chdev_ptr );
454#endif
[188]455            }
[14]456        }
[127]457    }
[5]458}  // end internal_devices_init()
459
460///////////////////////////////////////////////////////////////////////////////////////////
[188]461// This function allocates memory and initializes the chdev descriptors for the 
[408]462// external (shared) peripherals other than the IOPIC, as specified by the boot_info.
463// This includes the dynamic linking with the driver for the specified implementation.
[188]464// These chdev descriptors are distributed on all clusters, using a modulo on a global
[408]465// index, identically computed in all clusters.
[623]466// This function is executed in all clusters by the core[0] core, that computes a global index
467// for all external chdevs. Each core[0] core creates only the chdevs that must be placed in
[408]468// the local cluster, because the global index matches the local index.
[188]469// The relevant entries in all copies of the devices directory are initialised.
[5]470///////////////////////////////////////////////////////////////////////////////////////////
471// @ info    : pointer on the local boot-info structure.
472///////////////////////////////////////////////////////////////////////////////////////////
473static void external_devices_init( boot_info_t * info )
474{
[188]475    boot_device_t * dev_tbl;         // pointer on array of external devices in boot_info
476        uint32_t        dev_nr;          // actual number of external devices
477        xptr_t          base;            // remote pointer on segment base
[5]478    uint32_t        func;            // device functionnal index
479    uint32_t        impl;            // device implementation index
[188]480        uint32_t        i;               // device index in dev_tbl
481        uint32_t        x;               // X cluster coordinate
482        uint32_t        y;               // Y cluster coordinate
483        uint32_t        channels;        // number of channels
484        uint32_t        channel;         // channel index
485        uint32_t        directions;      // number of directions (1 or 2)
486        uint32_t        rx;              // direction index (0 or 1)
[127]487    chdev_t       * chdev;           // local pointer on one channel_device descriptor
[188]488    uint32_t        ext_chdev_gid;   // global index of external chdev
[5]489
490    // get number of peripherals and base of devices array from boot_info
[127]491    dev_nr      = info->ext_dev_nr;
[5]492    dev_tbl     = info->ext_dev;
493
[188]494    // initializes global index (PIC is already placed in cluster 0
495    ext_chdev_gid = 1;
496
[5]497    // loop on external peripherals
[127]498    for( i = 0 ; i < dev_nr ; i++ )
499    {
[188]500        base     = dev_tbl[i].base;
501        channels = dev_tbl[i].channels;
502        func     = FUNC_FROM_TYPE( dev_tbl[i].type );
503        impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
[5]504
[407]505        // There is one chdev per direction for NIC and for TXT
506        if((func == DEV_FUNC_NIC) || (func == DEV_FUNC_TXT)) directions = 2;
507        else                                                 directions = 1;
[5]508
[407]509        // do nothing for ROM, that does not require a device descriptor.
[5]510        if( func == DEV_FUNC_ROM ) continue;
511
[188]512        // do nothing for PIC, that is already initialized
513        if( func == DEV_FUNC_PIC ) continue;
[5]514
[188]515        // check PIC device initialized
[564]516        if( chdev_dir.pic == XPTR_NULL )
[580]517        {
518            printk("\n[PANIC] in %s : PIC device must be initialized first\n",
519            __FUNCTION__ );
520            hal_core_sleep();
521        }
[188]522
523        // check external device functionnal type
[564]524        if( (func != DEV_FUNC_IOB) && (func != DEV_FUNC_IOC) && (func != DEV_FUNC_TXT) &&
525            (func != DEV_FUNC_NIC) && (func != DEV_FUNC_FBF) )
[580]526        {
527            printk("\n[PANIC] in %s : undefined peripheral type\n",
528            __FUNCTION__ );
529            hal_core_sleep();
530        }
[188]531
[127]532        // loops on channels
[428]533        for( channel = 0 ; channel < channels ; channel++ )
[127]534        {
[5]535            // loop on directions
[188]536            for( rx = 0 ; rx < directions ; rx++ )
[1]537            {
[564]538                // skip TXT0 that has already been initialized
539                if( (func == DEV_FUNC_TXT) && (channel == 0) ) continue;
[428]540
[564]541                // all kernel instances compute the target cluster for all chdevs,
542                // computing the global index ext_chdev_gid[func,channel,direction]
543                cxy_t target_cxy;
544                while( 1 )
[536]545                {
[564]546                    uint32_t offset     = ext_chdev_gid % ( info->x_size * info->y_size );
547                    uint32_t x          = offset / info->y_size;
548                    uint32_t y          = offset % info->y_size;
[536]549
[564]550                    target_cxy = HAL_CXY_FROM_XY( x , y );
551
552                    // exit loop if target cluster is active
553                    if( cluster_is_active( target_cxy ) ) break;
554               
555                    // increment global index otherwise
556                    ext_chdev_gid++;
[550]557                }
558
[5]559                // allocate and initialize a local chdev
[407]560                // when local cluster matches target cluster
[5]561                if( target_cxy == local_cxy )
[1]562                {
[647]563
564#if( DEBUG_KERNEL_INIT & 0x3 )
565if( hal_time_stamp() > DEBUG_KERNEL_INIT )
566printk("\n[%s] : found chdev %s / channel = %d / rx = %d / cluster %x\n",
567__FUNCTION__ , chdev_func_str( func ), channel , rx , local_cxy );
568#endif
[5]569                    chdev = chdev_create( func,
570                                          impl,
571                                          channel,
[188]572                                          rx,          // direction
[5]573                                          base );
574
[564]575                    if( chdev == NULL )
[580]576                    {
577                        printk("\n[PANIC] in %s : cannot allocate chdev\n",
578                        __FUNCTION__ );
579                        hal_core_sleep();
580                    }
[5]581
582                    // make device type specific initialisation
583                    if     ( func == DEV_FUNC_IOB ) dev_iob_init( chdev );
584                    else if( func == DEV_FUNC_IOC ) dev_ioc_init( chdev );
585                    else if( func == DEV_FUNC_TXT ) dev_txt_init( chdev );
586                    else if( func == DEV_FUNC_NIC ) dev_nic_init( chdev );
[188]587                    else if( func == DEV_FUNC_FBF ) dev_fbf_init( chdev );
[5]588
[127]589                    // all external (shared) devices are remotely accessible
[5]590                    // initialize the replicated chdev_dir[x][y] structures
[127]591                    // defining the extended pointers on chdev descriptors
[633]592                    xptr_t * entry = NULL;
[127]593
[188]594                    if(func==DEV_FUNC_IOB             ) entry  = &chdev_dir.iob;
595                    if(func==DEV_FUNC_IOC             ) entry  = &chdev_dir.ioc[channel];
596                    if(func==DEV_FUNC_FBF             ) entry  = &chdev_dir.fbf[channel];
[407]597                    if((func==DEV_FUNC_TXT) && (rx==0)) entry  = &chdev_dir.txt_tx[channel];
598                    if((func==DEV_FUNC_TXT) && (rx==1)) entry  = &chdev_dir.txt_rx[channel];
[188]599                    if((func==DEV_FUNC_NIC) && (rx==0)) entry  = &chdev_dir.nic_tx[channel];
600                    if((func==DEV_FUNC_NIC) && (rx==1)) entry  = &chdev_dir.nic_rx[channel];
[127]601
[1]602                    for( x = 0 ; x < info->x_size ; x++ )
603                    {
[564]604                        for( y = 0 ; y < info->y_size ; y++ )
[1]605                        {
[564]606                            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
607
[633]608                            if( cluster_is_active( cxy ) && ( entry != NULL ) )
[564]609                            {
610                                hal_remote_s64( XPTR( cxy , entry ),
[559]611                                                XPTR( local_cxy , chdev ) );
612                            }
[5]613                        }
[1]614                    }
615
[647]616#if( DEBUG_KERNEL_INIT & 0x3 )
[438]617if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[647]618printk("\n[%s] : created chdev %s / channel = %d / rx = %d / cluster %x / chdev = %x\n",
[407]619__FUNCTION__ , chdev_func_str( func ), channel , rx , local_cxy , chdev );
[389]620#endif
[5]621                }  // end if match
622
[19]623                // increment chdev global index (matching or not)
[188]624                ext_chdev_gid++;
[5]625
626            } // end loop on directions
627        }  // end loop on channels
[188]628        } // end loop on devices
629}  // end external_devices_init()
[5]630
[188]631///////////////////////////////////////////////////////////////////////////////////////////
[623]632// This function is called by core[0] in cluster 0 to allocate memory and initialize the PIC
[407]633// device, namely the informations attached to the external IOPIC controller, that
634// must be replicated in all clusters (struct iopic_input).
[188]635// This initialisation must be done before other devices initialisation because the IRQ
[407]636// routing infrastructure is required for both internal and external devices init.
[188]637///////////////////////////////////////////////////////////////////////////////////////////
638// @ info    : pointer on the local boot-info structure.
639///////////////////////////////////////////////////////////////////////////////////////////
[564]640static void __attribute__ ((noinline)) iopic_init( boot_info_t * info )
[188]641{
642    boot_device_t * dev_tbl;         // pointer on boot_info external devices array
643        uint32_t        dev_nr;          // actual number of external devices
644        xptr_t          base;            // remote pointer on segment base
645    uint32_t        func;            // device functionnal index
646    uint32_t        impl;            // device implementation index
647        uint32_t        i;               // device index in dev_tbl
648    uint32_t        x;               // cluster X coordinate
649    uint32_t        y;               // cluster Y coordinate
650    bool_t          found;           // IOPIC found
651        chdev_t       * chdev;           // pointer on PIC chdev descriptor
652
653    // get number of external peripherals and base of array from boot_info
654        dev_nr      = info->ext_dev_nr;
655    dev_tbl     = info->ext_dev;
656
[564]657    // avoid GCC warning
658    base        = XPTR_NULL;
659    impl        = 0;
660
[188]661    // loop on external peripherals to get the IOPIC 
662        for( i = 0 , found = false ; i < dev_nr ; i++ )
663        {
664        func = FUNC_FROM_TYPE( dev_tbl[i].type );
665
[127]666        if( func == DEV_FUNC_PIC )
[1]667        {
[188]668            base     = dev_tbl[i].base;
669            impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
670            found    = true;
671            break;
672        }
673    }
[5]674
[564]675    // check PIC existence
676    if( found == false )
[580]677    {
678        printk("\n[PANIC] in %s : PIC device not found\n",
679        __FUNCTION__ );
680        hal_core_sleep();
681    }
[1]682
[407]683    // allocate and initialize the PIC chdev in cluster 0
684    chdev = chdev_create( DEV_FUNC_PIC,
[188]685                          impl,
686                          0,      // channel
687                          0,      // direction,
688                          base );
[5]689
[564]690    // check memory
691    if( chdev == NULL )
[580]692    {
693        printk("\n[PANIC] in %s : no memory for PIC chdev\n",
694        __FUNCTION__ );
695        hal_core_sleep();
696    }
[5]697
[188]698    // make PIC device type specific initialisation
699    dev_pic_init( chdev );
[1]700
[407]701    // register, in all clusters, the extended pointer
702    // on PIC chdev in "chdev_dir" array
[188]703    xptr_t * entry = &chdev_dir.pic;   
704               
705    for( x = 0 ; x < info->x_size ; x++ )
706    {
[564]707        for( y = 0 ; y < info->y_size ; y++ )
[188]708        {
[564]709            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
710
711            if( cluster_is_active( cxy ) )
712            {
713                hal_remote_s64( XPTR( cxy , entry ) , 
[559]714                                XPTR( local_cxy , chdev ) );
715            }
[188]716        }
717    }
[1]718
[407]719    // initialize, in all clusters, the "iopic_input" structure
[188]720    // defining how external IRQs are connected to IOPIC
721
[407]722    // register default value for unused inputs
723    for( x = 0 ; x < info->x_size ; x++ )
724    {
[564]725        for( y = 0 ; y < info->y_size ; y++ )
[407]726        {
[564]727            cxy_t cxy = HAL_CXY_FROM_XY( x , y );
728
729            if( cluster_is_active( cxy ) )
730            {
731                hal_remote_memset( XPTR( cxy , &iopic_input ), 
732                                   0xFF , sizeof(iopic_input_t) );
[559]733            }
[407]734        }
735    }
736
737    // register input IRQ index for valid inputs
[577]738    uint32_t   id;             // input IRQ index
739    uint8_t    valid;          // input IRQ is connected
740    uint32_t   type;           // source device type
741    uint8_t    channel;        // source device channel
742    uint8_t    is_rx;          // source device direction
743    uint32_t * ptr = NULL;     // local pointer on one field in iopic_input stucture
[407]744
[188]745    for( id = 0 ; id < CONFIG_MAX_EXTERNAL_IRQS ; id++ )
746    {
747        valid   = dev_tbl[i].irq[id].valid;
748        type    = dev_tbl[i].irq[id].dev_type;
749        channel = dev_tbl[i].irq[id].channel;
750        is_rx   = dev_tbl[i].irq[id].is_rx;
[407]751        func    = FUNC_FROM_TYPE( type );
[188]752
[407]753        // get pointer on relevant field in iopic_input
754        if( valid )
[188]755        {
[407]756            if     ( func == DEV_FUNC_IOC )                 ptr = &iopic_input.ioc[channel]; 
757            else if((func == DEV_FUNC_TXT) && (is_rx == 0)) ptr = &iopic_input.txt_tx[channel];
758            else if((func == DEV_FUNC_TXT) && (is_rx != 0)) ptr = &iopic_input.txt_rx[channel];
[492]759            else if((func == DEV_FUNC_NIC) && (is_rx == 0)) ptr = &iopic_input.nic_tx[channel];
760            else if((func == DEV_FUNC_NIC) && (is_rx != 0)) ptr = &iopic_input.nic_rx[channel];
761            else if( func == DEV_FUNC_IOB )                 ptr = &iopic_input.iob;
[580]762            else
763            {
764                printk("\n[PANIC] in %s : illegal source device for IOPIC input\n",
765                __FUNCTION__ );
766                hal_core_sleep();
767            }
[188]768
[407]769            // set one entry in all "iopic_input" structures
770            for( x = 0 ; x < info->x_size ; x++ )
771            {
[564]772                for( y = 0 ; y < info->y_size ; y++ )
[407]773                {
[564]774                    cxy_t cxy = HAL_CXY_FROM_XY( x , y );
775
776                    if( cluster_is_active( cxy ) )
777                    {
778                        hal_remote_s64( XPTR( cxy , ptr ) , id ); 
[559]779                    }
[407]780                }
781            }
[188]782        }
783    } 
784
[438]785#if( DEBUG_KERNEL_INIT & 0x1 )
[601]786if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[407]787{
[601]788    printk("\n[%s] created PIC chdev in cluster %x at cycle %d\n",
[407]789    __FUNCTION__ , local_cxy , (uint32_t)hal_time_stamp() );
790    dev_pic_inputs_display();
791}
[389]792#endif
[188]793   
794}  // end iopic_init()
795
[1]796///////////////////////////////////////////////////////////////////////////////////////////
[623]797// This function is called by all core[0]s in all cluster to complete the PIC device
[188]798// initialisation, namely the informations attached to the LAPIC controller.
799// This initialisation must be done after the IOPIC initialisation, but before other
800// devices initialisation because the IRQ routing infrastructure is required for both
801// internal and external devices initialisation.
802///////////////////////////////////////////////////////////////////////////////////////////
803// @ info    : pointer on the local boot-info structure.
804///////////////////////////////////////////////////////////////////////////////////////////
[564]805static void __attribute__ ((noinline)) lapic_init( boot_info_t * info )
[188]806{
807    boot_device_t * dev_tbl;      // pointer on boot_info internal devices array
808    uint32_t        dev_nr;       // number of internal devices
809    uint32_t        i;            // device index in dev_tbl
810        xptr_t          base;         // remote pointer on segment base
811    uint32_t        func;         // device functionnal type in boot_info
812    bool_t          found;        // LAPIC found
813
814    // get number of internal peripherals and base
815        dev_nr      = info->int_dev_nr;
816    dev_tbl     = info->int_dev;
817
818    // loop on internal peripherals to get the lapic device
819        for( i = 0 , found = false ; i < dev_nr ; i++ )
820        {
821        func = FUNC_FROM_TYPE( dev_tbl[i].type );
822
823        if( func == DEV_FUNC_ICU )
824        {
825            base     = dev_tbl[i].base;
826            found    = true;
827            break;
828        }
829    }
830
831    // if the LAPIC controller is not defined in the boot_info,
832    // we simply don't initialize the PIC extensions in the kernel,
833    // making the assumption that the LAPIC related informations
834    // are hidden in the hardware specific PIC driver.
835    if( found )
836    {
837        // initialise the PIC extensions for
838        // the core descriptor and core manager extensions
839        dev_pic_extend_init( (uint32_t *)GET_PTR( base ) );
840
841        // initialize the "lapic_input" structure
842        // defining how internal IRQs are connected to LAPIC
843        uint32_t        id;
844        uint8_t         valid;
845        uint8_t         channel;
846        uint32_t        func;
847
848        for( id = 0 ; id < CONFIG_MAX_INTERNAL_IRQS ; id++ )
849        {
850            valid    = dev_tbl[i].irq[id].valid;
851            func     = FUNC_FROM_TYPE( dev_tbl[i].irq[id].dev_type );
852            channel  = dev_tbl[i].irq[id].channel;
853
854            if( valid ) // only valid local IRQs are registered
855            {
856                if     ( func == DEV_FUNC_MMC ) lapic_input.mmc = id;
857                else if( func == DEV_FUNC_DMA ) lapic_input.dma[channel] = id;
[580]858                else
859                {
860                    printk("\n[PANIC] in %s : illegal source device for LAPIC input\n",
861                    __FUNCTION__ );
862                    hal_core_sleep();
863                }
[188]864            }
865        }
866    }
867}  // end lapic_init()
868
869///////////////////////////////////////////////////////////////////////////////////////////
[14]870// This static function returns the identifiers of the calling core.
871///////////////////////////////////////////////////////////////////////////////////////////
872// @ info    : pointer on boot_info structure.
873// @ lid     : [out] core local index in cluster.
874// @ cxy     : [out] cluster identifier.
875// @ lid     : [out] core global identifier (hardware).
876// @ return 0 if success / return EINVAL if not found.
877///////////////////////////////////////////////////////////////////////////////////////////
[564]878static error_t __attribute__ ((noinline)) get_core_identifiers( boot_info_t * info,
879                                                                lid_t       * lid,
880                                                                cxy_t       * cxy,
881                                                                gid_t       * gid )
[14]882{
[127]883    uint32_t   i;
[14]884    gid_t      global_id;
[19]885
[14]886    // get global identifier from hardware register
[127]887    global_id = hal_get_gid();
[14]888
889    // makes an associative search in boot_info to get (cxy,lid) from global_id
890    for( i = 0 ; i < info->cores_nr ; i++ )
891    {
892        if( global_id == info->core[i].gid )
893        {
894            *lid = info->core[i].lid;
895            *cxy = info->core[i].cxy;
896            *gid = global_id;
897            return 0;
898        }
899    }
900    return EINVAL;
[19]901}
[14]902
[626]903
904
905
906
907/////////////////////////////////
908// kleenex debug function
909/////////////////////////////////
910void display_fat( uint32_t step )
911{
912    fatfs_ctx_t * fatfs_ctx = fs_context[FS_TYPE_FATFS].extend;
913    if( fatfs_ctx != NULL ) 
914    {
915        printk("\n[%s] step %d at cycle %d\n", __FUNCTION__, step, (uint32_t)hal_get_cycles() );
916        xptr_t     mapper_xp = fatfs_ctx->fat_mapper_xp;
917        mapper_display_page( mapper_xp , 0 , 128 );
918    }
919    else
920    {
921        printk("\n[%s] step %d : fatfs context not initialized\n", __FUNCTION__, step );
922    }
923}
924
925
926
927
928
[14]929///////////////////////////////////////////////////////////////////////////////////////////
[1]930// This function is the entry point for the kernel initialisation.
[651]931// It is executed by all cores in all clusters, but only core[cxy][0] initializes
[623]932// the shared resources such as the cluster manager, or the local peripherals.
[19]933// To comply with the multi-kernels paradigm, it accesses only local cluster memory, using
934// only information contained in the local boot_info_t structure, set by the bootloader.
[623]935// Only core[0] in cluster 0 print the log messages.
[1]936///////////////////////////////////////////////////////////////////////////////////////////
937// @ info    : pointer on the local boot-info structure.
938///////////////////////////////////////////////////////////////////////////////////////////
939void kernel_init( boot_info_t * info )
940{
[204]941    lid_t        core_lid = -1;             // running core local index
942    cxy_t        core_cxy = -1;             // running core cluster identifier
943    gid_t        core_gid;                  // running core hardware identifier
944    cluster_t  * cluster;                   // pointer on local cluster manager
945    core_t     * core;                      // pointer on running core descriptor
946    thread_t   * thread;                    // pointer on idle thread descriptor
947
948    xptr_t       vfs_root_inode_xp;         // extended pointer on VFS root inode
949    xptr_t       devfs_dev_inode_xp;        // extended pointer on DEVFS dev inode   
950    xptr_t       devfs_external_inode_xp;   // extended pointer on DEVFS external inode       
951    xptr_t       devfs_internal_inode_xp;   // extended pointer on DEVFS internal inode       
952
[1]953    error_t      error;
[285]954    reg_t        status;                    // running core status register
[1]955
[188]956    /////////////////////////////////////////////////////////////////////////////////
[623]957    // STEP 1 : Each core get its core identifier from boot_info, and makes
[188]958    //          a partial initialisation of its private idle thread descriptor.
[623]959    //          core[0] initializes the "local_cxy" global variable.
960    //          core[0] in cluster[0] initializes the TXT0 chdev for log messages.
[188]961    /////////////////////////////////////////////////////////////////////////////////
962
[23]963    error = get_core_identifiers( info,
[14]964                                  &core_lid,
965                                  &core_cxy,
966                                  &core_gid );
[1]967
[623]968    // core[0] initialize cluster identifier
[14]969    if( core_lid == 0 ) local_cxy = info->cxy;
[1]970
[127]971    // each core gets a pointer on its private idle thread descriptor
972    thread = (thread_t *)( idle_threads + (core_lid * CONFIG_THREAD_DESC_SIZE) );
[68]973
[127]974    // each core registers this thread pointer in hardware register
[68]975    hal_set_current_thread( thread );
[71]976
[407]977    // each core register core descriptor pointer in idle thread descriptor
978    thread->core = &LOCAL_CLUSTER->core_tbl[core_lid];
979
[564]980    // each core initializes the idle thread locks counters
981    thread->busylocks = 0;
[124]982
[564]983#if DEBUG_BUSYLOCK
984    // each core initialise the idle thread list of busylocks
985    xlist_root_init( XPTR( local_cxy , &thread->busylocks_root ) );
986#endif
[14]987
[623]988    // core[0] initializes cluster info
[564]989    if( core_lid == 0 ) cluster_info_init( info );
990
[623]991    // core[0] in cluster[0] initialises TXT0 chdev descriptor
[564]992    if( (core_lid == 0) && (core_cxy == 0) ) txt0_device_init( info );
993
[623]994    // all cores check identifiers
995    if( error )
996    {
997        printk("\n[PANIC] in %s : illegal core : gid %x / cxy %x / lid %d",
998        __FUNCTION__, core_lid, core_cxy, core_lid );
999        hal_core_sleep();
1000    }
1001
[14]1002    /////////////////////////////////////////////////////////////////////////////////
[564]1003    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1004                                        (info->x_size * info->y_size) );
[14]1005    barrier_wait( &local_barrier , info->cores_nr );
[437]1006    /////////////////////////////////////////////////////////////////////////////////
[14]1007
[438]1008#if DEBUG_KERNEL_INIT
[583]1009if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1010printk("\n[%s] exit barrier 1 : TXT0 initialized / cycle %d\n",
[610]1011__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1012#endif
[14]1013
[623]1014    /////////////////////////////////////////////////////////////////////////////////
[637]1015    // STEP 2 : core[0] initializes the cluster manager,
1016    //          including the physical memory allocators.
[623]1017    /////////////////////////////////////////////////////////////////////////////////
[188]1018
[651]1019    // core[0] initialises DQDT (only core[0][0] build the quad-tree)
[582]1020    if( core_lid == 0 ) dqdt_init();
1021   
[623]1022    // core[0] initialize other cluster manager complex structures
[14]1023    if( core_lid == 0 )
[1]1024    {
[564]1025        error = cluster_manager_init( info );
[1]1026
[14]1027        if( error )
[580]1028        {
1029             printk("\n[PANIC] in %s : cannot initialize cluster manager in cluster %x\n",
1030             __FUNCTION__, local_cxy );
1031             hal_core_sleep();
1032        }
[14]1033    }
[5]1034
[14]1035    /////////////////////////////////////////////////////////////////////////////////
[564]1036    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1037                                        (info->x_size * info->y_size) );
[14]1038    barrier_wait( &local_barrier , info->cores_nr );
1039    /////////////////////////////////////////////////////////////////////////////////
[1]1040
[438]1041#if DEBUG_KERNEL_INIT
1042if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1043printk("\n[%s] exit barrier 2 : cluster manager initialized / cycle %d\n",
[610]1044__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1045#endif
[1]1046
[188]1047    /////////////////////////////////////////////////////////////////////////////////
[624]1048    // STEP 3 : all cores initialize the idle thread descriptor.
1049    //          core[0] initializes the process_zero descriptor,
[623]1050    //          including the kernel VMM (both GPT and VSL)
[188]1051    /////////////////////////////////////////////////////////////////////////////////
1052
1053    // all cores get pointer on local cluster manager & core descriptor
[14]1054    cluster = &cluster_manager;
[127]1055    core    = &cluster->core_tbl[core_lid];
[1]1056
[624]1057    // all cores update the register(s) defining the kernel
1058    // entry points for interrupts, exceptions and syscalls,
1059    // this must be done before VFS initialisation, because
1060    // kernel_init() uses RPCs requiring IPIs...
1061    hal_set_kentry();
1062
1063    // all cores initialize the idle thread descriptor
1064    thread_idle_init( thread,
1065                      THREAD_IDLE,
1066                      &thread_idle_func,
1067                      NULL,
1068                      core_lid );
1069
[623]1070    // core[0] initializes the process_zero descriptor,
1071    if( core_lid == 0 ) process_zero_create( &process_zero , info );
[5]1072
[623]1073    /////////////////////////////////////////////////////////////////////////////////
1074    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1075                                        (info->x_size * info->y_size) );
1076    barrier_wait( &local_barrier , info->cores_nr );
1077    /////////////////////////////////////////////////////////////////////////////////
1078
1079#if DEBUG_KERNEL_INIT
1080if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1081printk("\n[%s] exit barrier 3 : kernel processs initialized / cycle %d\n",
[623]1082__FUNCTION__, (uint32_t)hal_get_cycles() );
1083#endif
1084
1085    /////////////////////////////////////////////////////////////////////////////////
1086    // STEP 4 : all cores initialize their private MMU
1087    //          core[0] in cluster 0 initializes the IOPIC device.
1088    /////////////////////////////////////////////////////////////////////////////////
1089
1090    // all cores initialise their MMU
1091    hal_mmu_init( &process_zero.vmm.gpt );
1092
1093    // core[0] in cluster[0] initializes the PIC chdev,
[188]1094    if( (core_lid == 0) && (local_cxy == 0) ) iopic_init( info );
1095   
1096    ////////////////////////////////////////////////////////////////////////////////
[564]1097    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1098                                        (info->x_size * info->y_size) );
[188]1099    barrier_wait( &local_barrier , info->cores_nr );
1100    ////////////////////////////////////////////////////////////////////////////////
[127]1101
[438]1102#if DEBUG_KERNEL_INIT
1103if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1104printk("\n[%s] exit barrier 4 : MMU and IOPIC initialized / cycle %d\n",
[610]1105__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1106#endif
[1]1107
[188]1108    ////////////////////////////////////////////////////////////////////////////////
[637]1109    // STEP 5 : core[0] initialize the distibuted LAPIC descriptor.
1110    //          core[0] initialize the internal chdev descriptors
[623]1111    //          core[0] initialize the local external chdev descriptors
[188]1112    ////////////////////////////////////////////////////////////////////////////////
[5]1113
[623]1114    // all core[0]s initialize their local LAPIC extension,
[279]1115    if( core_lid == 0 ) lapic_init( info );
1116
[623]1117    // core[0] scan the internal (private) peripherals,
[188]1118    // and allocates memory for the corresponding chdev descriptors.
1119    if( core_lid == 0 ) internal_devices_init( info );
1120       
[1]1121
[623]1122    // All core[0]s contribute to initialise external peripheral chdev descriptors.
1123    // Each core[0][cxy] scan the set of external (shared) peripherals (but the TXT0),
[14]1124    // and allocates memory for the chdev descriptors that must be placed
[127]1125    // on the (cxy) cluster according to the global index value.
[188]1126
[14]1127    if( core_lid == 0 ) external_devices_init( info );
[1]1128
[14]1129    /////////////////////////////////////////////////////////////////////////////////
[564]1130    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1131                                        (info->x_size * info->y_size) );
[14]1132    barrier_wait( &local_barrier , info->cores_nr );
1133    /////////////////////////////////////////////////////////////////////////////////
[5]1134
[438]1135#if DEBUG_KERNEL_INIT
1136if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1137printk("\n[%s] exit barrier 5 : chdevs initialised / cycle %d\n",
[610]1138__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1139#endif
[1]1140
[438]1141#if( DEBUG_KERNEL_INIT & 1 )
[443]1142if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1143chdev_dir_display();
1144#endif
1145   
[188]1146    /////////////////////////////////////////////////////////////////////////////////
[624]1147    // STEP 6 : all cores enable IPI (Inter Procesor Interrupt),
1148    //          all cores unblock the idle thread, and register it in scheduler.
1149    //          core[0] in cluster[0] creates the VFS root inode.
[188]1150    //          It access the boot device to initialize the file system context.
1151    /////////////////////////////////////////////////////////////////////////////////
1152
[564]1153    // All cores enable IPI
[279]1154    dev_pic_enable_ipi();
1155    hal_enable_irq( &status );
1156
[624]1157    // all cores unblock the idle thread, and register it in scheduler
[296]1158    thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_GLOBAL );
[103]1159    core->scheduler.idle = thread;
[1]1160
[623]1161    // core[O] in cluster[0] creates the VFS root
[188]1162    if( (core_lid ==  0) && (local_cxy == 0 ) ) 
[14]1163    {
[188]1164        vfs_root_inode_xp = XPTR_NULL;
[23]1165
[614]1166        // Only FATFS is supported yet,
1167        // other File System can be introduced here
[23]1168        if( CONFIG_VFS_ROOT_IS_FATFS )
1169        {
[626]1170            // 1. allocate memory for FATFS context in cluster 0
[188]1171            fatfs_ctx_t * fatfs_ctx = fatfs_ctx_alloc();
1172
[564]1173            if( fatfs_ctx == NULL )
[580]1174            {
1175                printk("\n[PANIC] in %s : cannot create FATFS context in cluster 0\n",
1176                __FUNCTION__ );
1177                hal_core_sleep();
1178            }
[188]1179
1180            // 2. access boot device to initialize FATFS context
1181            fatfs_ctx_init( fatfs_ctx );
[626]1182
[188]1183            // 3. get various informations from FATFS context
1184            uint32_t root_dir_cluster = fatfs_ctx->root_dir_cluster;
1185            uint32_t cluster_size     = fatfs_ctx->bytes_per_sector * 
1186                                        fatfs_ctx->sectors_per_cluster;
1187            uint32_t total_clusters   = fatfs_ctx->fat_sectors_count << 7;
1188 
[601]1189            // 4. create VFS root inode in cluster 0
[610]1190            error = vfs_inode_create( FS_TYPE_FATFS,                       // fs_type
[188]1191                                      0,                                   // attr
1192                                      0,                                   // rights
1193                                      0,                                   // uid
1194                                      0,                                   // gid
1195                                      &vfs_root_inode_xp );                // return
[564]1196            if( error )
[580]1197            {
1198                printk("\n[PANIC] in %s : cannot create VFS root inode in cluster 0\n",
1199                __FUNCTION__ );
1200                hal_core_sleep();
1201            }
[188]1202
[623]1203            // 5. update FATFS root inode "type" and "extend" fields 
[601]1204            cxy_t         vfs_root_cxy = GET_CXY( vfs_root_inode_xp );
1205            vfs_inode_t * vfs_root_ptr = GET_PTR( vfs_root_inode_xp );
[624]1206            hal_remote_s32( XPTR( vfs_root_cxy , &vfs_root_ptr->type ), INODE_TYPE_DIR );
[601]1207            hal_remote_spt( XPTR( vfs_root_cxy , &vfs_root_ptr->extend ), 
1208                            (void*)(intptr_t)root_dir_cluster );
[188]1209
[601]1210            // 6. initialize the generic VFS context for FATFS
1211            vfs_ctx_init( FS_TYPE_FATFS,                               // fs type
1212                          0,                                           // attributes: unused
1213                              total_clusters,                              // number of clusters
1214                              cluster_size,                                // bytes
1215                              vfs_root_inode_xp,                           // VFS root
1216                          fatfs_ctx );                                 // extend
[23]1217        }
1218        else
1219        {
[564]1220            printk("\n[PANIC] in %s : unsupported VFS type in cluster 0\n",
1221            __FUNCTION__ );
[580]1222            hal_core_sleep();
[23]1223        }
1224
[614]1225        // create the <.> and <..> dentries in VFS root directory
1226        // the VFS root parent inode is the VFS root inode itself
1227        vfs_add_special_dentries( vfs_root_inode_xp,
1228                                  vfs_root_inode_xp );
1229
[389]1230        // register VFS root inode in process_zero descriptor of cluster 0
[188]1231        process_zero.vfs_root_xp = vfs_root_inode_xp;
[610]1232        process_zero.cwd_xp      = vfs_root_inode_xp;
[188]1233    }
1234
1235    /////////////////////////////////////////////////////////////////////////////////
[564]1236    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1237                                        (info->x_size * info->y_size) );
[188]1238    barrier_wait( &local_barrier , info->cores_nr );
1239    /////////////////////////////////////////////////////////////////////////////////
1240
[438]1241#if DEBUG_KERNEL_INIT
1242if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1243printk("\n[%s] exit barrier 6 : VFS root (%x,%x) in cluster 0 / cycle %d\n",
[610]1244__FUNCTION__, GET_CXY(process_zero.vfs_root_xp),
1245GET_PTR(process_zero.vfs_root_xp), (uint32_t)hal_get_cycles() );
[437]1246#endif
[188]1247
1248    /////////////////////////////////////////////////////////////////////////////////
[623]1249    // STEP 7 : In all other clusters than cluster[0], the core[0] allocates memory
1250    //          for the selected FS context, and initialise the local FS context and
1251    //          the local VFS context from values stored in cluster 0.
[188]1252    //          They get the VFS root inode extended pointer from cluster 0.
1253    /////////////////////////////////////////////////////////////////////////////////
1254
1255    if( (core_lid ==  0) && (local_cxy != 0) ) 
1256    {
1257        // File System must be FATFS in this implementation,
1258        // but other File System can be introduced here
1259        if( CONFIG_VFS_ROOT_IS_FATFS )
[23]1260        {
[389]1261            // 1. allocate memory for local FATFS context
1262            fatfs_ctx_t * local_fatfs_ctx = fatfs_ctx_alloc();
[188]1263
[564]1264            // check memory
1265            if( local_fatfs_ctx == NULL )
[580]1266            {
1267                printk("\n[PANIC] in %s : cannot create FATFS context in cluster %x\n",
1268                __FUNCTION__ , local_cxy );
1269                hal_core_sleep();
1270            }
[188]1271
[389]1272            // 2. get local pointer on VFS context for FATFS
[188]1273            vfs_ctx_t   * vfs_ctx = &fs_context[FS_TYPE_FATFS];
1274
[389]1275            // 3. get local pointer on FATFS context in cluster 0
1276            fatfs_ctx_t * remote_fatfs_ctx = hal_remote_lpt( XPTR( 0 , &vfs_ctx->extend ) );
1277
1278            // 4. copy FATFS context from cluster 0 to local cluster
1279            hal_remote_memcpy( XPTR( local_cxy , local_fatfs_ctx ), 
1280                               XPTR( 0 ,         remote_fatfs_ctx ), sizeof(fatfs_ctx_t) );
1281
1282            // 5. copy VFS context from cluster 0 to local cluster
[188]1283            hal_remote_memcpy( XPTR( local_cxy , vfs_ctx ), 
[389]1284                               XPTR( 0 ,         vfs_ctx ), sizeof(vfs_ctx_t) );
[188]1285
[389]1286            // 6. update extend field in local copy of VFS context
1287            vfs_ctx->extend = local_fatfs_ctx;
[188]1288
[564]1289            if( ((fatfs_ctx_t *)vfs_ctx->extend)->sectors_per_cluster != 8 )
[580]1290            {
1291                printk("\n[PANIC] in %s : illegal FATFS context in cluster %x\n",
1292                __FUNCTION__ , local_cxy );
1293                hal_core_sleep();
1294            }
[23]1295        }
1296
[188]1297        // get extended pointer on VFS root inode from cluster 0
[564]1298        vfs_root_inode_xp = hal_remote_l64( XPTR( 0 , &process_zero.vfs_root_xp ) );
[101]1299
[188]1300        // update local process_zero descriptor
1301        process_zero.vfs_root_xp = vfs_root_inode_xp;
[610]1302        process_zero.cwd_xp      = vfs_root_inode_xp;
[14]1303    }
1304
[188]1305    /////////////////////////////////////////////////////////////////////////////////
[564]1306    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1307                                        (info->x_size * info->y_size) );
[188]1308    barrier_wait( &local_barrier , info->cores_nr );
[204]1309    /////////////////////////////////////////////////////////////////////////////////
[101]1310
[438]1311#if DEBUG_KERNEL_INIT
[564]1312if( (core_lid ==  0) & (local_cxy == 1) ) 
[624]1313printk("\n[%s] exit barrier 7 : VFS root (%x,%x) in cluster 1 / cycle %d\n",
[610]1314__FUNCTION__, GET_CXY(process_zero.vfs_root_xp),
1315GET_PTR(process_zero.vfs_root_xp), (uint32_t)hal_get_cycles() );
[437]1316#endif
[188]1317
1318    /////////////////////////////////////////////////////////////////////////////////
[623]1319    // STEP 8 : core[0] in cluster 0 makes the global DEVFS initialisation:
[564]1320    //          It initializes the DEVFS context, and creates the DEVFS
1321    //          "dev" and "external" inodes in cluster 0.
[188]1322    /////////////////////////////////////////////////////////////////////////////////
1323
[564]1324    if( (core_lid ==  0) && (local_cxy == 0) ) 
[1]1325    {
[564]1326        // 1. allocate memory for DEVFS context extension in cluster 0
1327        devfs_ctx_t * devfs_ctx = devfs_ctx_alloc();
1328
1329        if( devfs_ctx == NULL )
[580]1330        {
1331            printk("\n[PANIC] in %s : cannot create DEVFS context in cluster 0\n",
1332            __FUNCTION__ , local_cxy );
1333            hal_core_sleep();
1334        }
[564]1335
1336        // 2. initialize the DEVFS entry in the vfs_context[] array
1337        vfs_ctx_init( FS_TYPE_DEVFS,                                // fs type
1338                      0,                                            // attributes: unused
1339                          0,                                            // total_clusters: unused
1340                          0,                                            // cluster_size: unused
1341                          vfs_root_inode_xp,                            // VFS root
1342                      devfs_ctx );                                  // extend
1343
1344        // 3. create "dev" and "external" inodes (directories)
[188]1345        devfs_global_init( process_zero.vfs_root_xp,
[204]1346                           &devfs_dev_inode_xp,
[188]1347                           &devfs_external_inode_xp );
1348
[564]1349        // 4. initializes DEVFS context extension
1350        devfs_ctx_init( devfs_ctx,
1351                        devfs_dev_inode_xp,
1352                        devfs_external_inode_xp );
[188]1353    }   
1354
1355    /////////////////////////////////////////////////////////////////////////////////
[564]1356    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1357                                        (info->x_size * info->y_size) );
[188]1358    barrier_wait( &local_barrier , info->cores_nr );
[204]1359    /////////////////////////////////////////////////////////////////////////////////
[188]1360
[438]1361#if DEBUG_KERNEL_INIT
1362if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1363printk("\n[%s] exit barrier 8 : DEVFS root initialized in cluster 0 / cycle %d\n",
[610]1364__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1365#endif
[188]1366
1367    /////////////////////////////////////////////////////////////////////////////////
[624]1368    // STEP 9 : In all clusters in parallel, core[0] completes DEVFS initialization.
[623]1369    //          Each core[0] get the "dev" and "external" extended pointers from
[624]1370    //          values stored in cluster(0), creates the DEVFS "internal" directory,
1371    //          and creates the pseudo-files for all chdevs in local cluster.
[188]1372    /////////////////////////////////////////////////////////////////////////////////
1373
1374    if( core_lid == 0 )
1375    {
[564]1376        // get extended pointer on "extend" field of VFS context for DEVFS in cluster 0
1377        xptr_t  extend_xp = XPTR( 0 , &fs_context[FS_TYPE_DEVFS].extend );
[188]1378
[457]1379        // get pointer on DEVFS context in cluster 0
[188]1380        devfs_ctx_t * devfs_ctx = hal_remote_lpt( extend_xp );
1381       
[564]1382        devfs_dev_inode_xp      = hal_remote_l64( XPTR( 0 , &devfs_ctx->dev_inode_xp ) );
1383        devfs_external_inode_xp = hal_remote_l64( XPTR( 0 , &devfs_ctx->external_inode_xp ) );
[188]1384
[204]1385        // populate DEVFS in all clusters
1386        devfs_local_init( devfs_dev_inode_xp,
1387                          devfs_external_inode_xp,
1388                          &devfs_internal_inode_xp );
[188]1389    }
1390
1391    /////////////////////////////////////////////////////////////////////////////////
[564]1392    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), 
1393                                        (info->x_size * info->y_size) );
[188]1394    barrier_wait( &local_barrier , info->cores_nr );
[204]1395    /////////////////////////////////////////////////////////////////////////////////
[188]1396
[438]1397#if DEBUG_KERNEL_INIT
1398if( (core_lid ==  0) & (local_cxy == 0) ) 
[624]1399printk("\n[%s] exit barrier 9 : DEVFS initialized in cluster 0 / cycle %d\n",
[610]1400__FUNCTION__, (uint32_t)hal_get_cycles() );
[437]1401#endif
[188]1402
[623]1403#if( DEBUG_KERNEL_INIT & 1 )
1404if( (core_lid ==  0) & (local_cxy == 0) ) 
1405vfs_display( vfs_root_inode_xp );
1406#endif
1407
[188]1408    /////////////////////////////////////////////////////////////////////////////////
[623]1409    // STEP 10 : core[0] in cluster 0 creates the first user process (process_init).
1410    //           This include the first user process VMM (GPT and VSL) creation.
1411    //           Finally, it prints the ALMOS-MKH banner.
[188]1412    /////////////////////////////////////////////////////////////////////////////////
1413
[457]1414    if( (core_lid == 0) && (local_cxy == 0) ) 
[188]1415    {
[428]1416       process_init_create();
[188]1417    }
[101]1418
[624]1419#if DEBUG_KERNEL_INIT
1420if( (core_lid ==  0) & (local_cxy == 0) ) 
1421printk("\n[%s] exit barrier 10 : process_init created in cluster 0 / cycle %d\n",
1422__FUNCTION__, (uint32_t)hal_get_cycles() );
1423#endif
1424
[564]1425    if( (core_lid == 0) && (local_cxy == 0) ) 
[188]1426    {
[5]1427        print_banner( (info->x_size * info->y_size) , info->cores_nr );
[623]1428    }
[68]1429
[635]1430#if CONFIG_INSTRUMENTATION_FOOTPRINT
[623]1431if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1432printk("\n\n***** memory fooprint for main kernel objects\n\n"
[68]1433                   " - thread descriptor  : %d bytes\n"
1434                   " - process descriptor : %d bytes\n"
1435                   " - cluster manager    : %d bytes\n"
1436                   " - chdev descriptor   : %d bytes\n"
1437                   " - core descriptor    : %d bytes\n"
1438                   " - scheduler          : %d bytes\n"
1439                   " - rpc fifo           : %d bytes\n"
1440                   " - page descriptor    : %d bytes\n"
[635]1441                   " - mapper descriptor  : %d bytes\n"
1442                   " - vseg descriptor    : %d bytes\n"
[68]1443                   " - ppm manager        : %d bytes\n"
1444                   " - kcm manager        : %d bytes\n"
1445                   " - khm manager        : %d bytes\n"
1446                   " - vmm manager        : %d bytes\n"
[635]1447                   " - vfs inode          : %d bytes\n"
1448                   " - vfs dentry         : %d bytes\n"
1449                   " - vfs file           : %d bytes\n"
1450                   " - vfs context        : %d bytes\n"
1451                   " - xhtab root         : %d bytes\n"
[68]1452                   " - list item          : %d bytes\n"
1453                   " - xlist item         : %d bytes\n"
[564]1454                   " - busylock           : %d bytes\n"
1455                   " - remote busylock    : %d bytes\n"
1456                   " - queuelock          : %d bytes\n"
1457                   " - remote queuelock   : %d bytes\n"
[68]1458                   " - rwlock             : %d bytes\n"
1459                   " - remote rwlock      : %d bytes\n",
[564]1460                   sizeof( thread_t           ),
1461                   sizeof( process_t          ),
1462                   sizeof( cluster_t          ),
1463                   sizeof( chdev_t            ),
1464                   sizeof( core_t             ),
1465                   sizeof( scheduler_t        ),
1466                   sizeof( remote_fifo_t      ),
1467                   sizeof( page_t             ),
1468                   sizeof( mapper_t           ),
[635]1469                   sizeof( vseg_t             ),
[564]1470                   sizeof( ppm_t              ),
1471                   sizeof( kcm_t              ),
1472                   sizeof( khm_t              ),
1473                   sizeof( vmm_t              ),
[635]1474                   sizeof( vfs_inode_t        ),
1475                   sizeof( vfs_dentry_t       ),
1476                   sizeof( vfs_file_t         ),
1477                   sizeof( vfs_ctx_t          ),
1478                   sizeof( xhtab_t            ),
[564]1479                   sizeof( list_entry_t       ),
1480                   sizeof( xlist_entry_t      ),
1481                   sizeof( busylock_t         ),
1482                   sizeof( remote_busylock_t  ),
1483                   sizeof( queuelock_t        ),
1484                   sizeof( remote_queuelock_t ),
1485                   sizeof( rwlock_t           ),
1486                   sizeof( remote_rwlock_t    ));
[406]1487#endif
1488
[398]1489    // each core activates its private TICK IRQ
1490    dev_pic_enable_timer( CONFIG_SCHED_TICK_MS_PERIOD );
[14]1491
[610]1492    /////////////////////////////////////////////////////////////////////////////////
1493    if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ),
1494                                        (info->x_size * info->y_size) );
1495    barrier_wait( &local_barrier , info->cores_nr );
1496    /////////////////////////////////////////////////////////////////////////////////
1497
[635]1498#if DEBUG_KERNEL_INIT
[610]1499thread_t * this = CURRENT_THREAD;
1500printk("\n[%s] : thread[%x,%x] on core[%x,%d] jumps to thread_idle_func() / cycle %d\n",
1501__FUNCTION__ , this->process->pid, this->trdid,
1502local_cxy, core_lid, (uint32_t)hal_get_cycles() );
[440]1503#endif
1504
[407]1505    // each core jump to thread_idle_func
[50]1506    thread_idle_func();
[14]1507
[610]1508}  // end kernel_init()
1509
Note: See TracBrowser for help on using the repository browser.