1 | /* |
---|
2 | * kernel_init.c - kernel parallel initialization |
---|
3 | * |
---|
4 | * Authors : Mohamed Lamine Karaoui (2015) |
---|
5 | * Alain Greiner (2016,2017,2018) |
---|
6 | * |
---|
7 | * Copyright (c) Sorbonne Universites |
---|
8 | * |
---|
9 | * This file is part of ALMOS-MKH. |
---|
10 | * |
---|
11 | * ALMOS-MKH is free software; you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation; version 2.0 of the License. |
---|
14 | * |
---|
15 | * ALMOS-MKH is distributed in the hope that it will be useful, but |
---|
16 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
18 | * General Public License for more details. |
---|
19 | * |
---|
20 | * You should have received a copy of the GNU General Public License |
---|
21 | * along with ALMOS-MKH; if not, write to the Free Software Foundation, |
---|
22 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
23 | */ |
---|
24 | |
---|
25 | #include <kernel_config.h> |
---|
26 | #include <errno.h> |
---|
27 | #include <hal_kernel_types.h> |
---|
28 | #include <hal_special.h> |
---|
29 | #include <hal_context.h> |
---|
30 | #include <hal_irqmask.h> |
---|
31 | #include <hal_macros.h> |
---|
32 | #include <hal_ppm.h> |
---|
33 | #include <barrier.h> |
---|
34 | #include <xbarrier.h> |
---|
35 | #include <remote_fifo.h> |
---|
36 | #include <core.h> |
---|
37 | #include <list.h> |
---|
38 | #include <xlist.h> |
---|
39 | #include <xhtab.h> |
---|
40 | #include <thread.h> |
---|
41 | #include <scheduler.h> |
---|
42 | #include <kmem.h> |
---|
43 | #include <cluster.h> |
---|
44 | #include <string.h> |
---|
45 | #include <memcpy.h> |
---|
46 | #include <ppm.h> |
---|
47 | #include <page.h> |
---|
48 | #include <chdev.h> |
---|
49 | #include <boot_info.h> |
---|
50 | #include <dqdt.h> |
---|
51 | #include <dev_mmc.h> |
---|
52 | #include <dev_dma.h> |
---|
53 | #include <dev_iob.h> |
---|
54 | #include <dev_ioc.h> |
---|
55 | #include <dev_txt.h> |
---|
56 | #include <dev_pic.h> |
---|
57 | #include <printk.h> |
---|
58 | #include <vfs.h> |
---|
59 | #include <devfs.h> |
---|
60 | #include <mapper.h> |
---|
61 | |
---|
62 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
63 | // All the following global variables are replicated in all clusters. |
---|
64 | // They are initialised by the kernel_init() function. |
---|
65 | // |
---|
66 | // WARNING : The section names have been defined to control the base addresses of the |
---|
67 | // boot_info structure and the idle thread descriptors, through the kernel.ld script: |
---|
68 | // - the boot_info structure is built by the bootloader, and used by kernel_init. |
---|
69 | // it must be the first object in the kdata segment. |
---|
70 | // - the array of idle threads descriptors must be placed on the first page boundary after |
---|
71 | // the boot_info structure in the kdata segment. |
---|
72 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
73 | |
---|
74 | // This variable defines the local boot_info structure |
---|
75 | __attribute__((section(".kinfo"))) |
---|
76 | boot_info_t boot_info; |
---|
77 | |
---|
78 | // This variable defines the "idle" threads descriptors array |
---|
79 | __attribute__((section(".kidle"))) |
---|
80 | char idle_threads[CONFIG_THREAD_DESC_SIZE * |
---|
81 | CONFIG_MAX_LOCAL_CORES] CONFIG_PPM_PAGE_ALIGNED; |
---|
82 | |
---|
83 | // This variable defines the local cluster manager |
---|
84 | __attribute__((section(".kdata"))) |
---|
85 | cluster_t cluster_manager CONFIG_CACHE_LINE_ALIGNED; |
---|
86 | |
---|
87 | // This variable defines the TXT_TX[0] chdev |
---|
88 | __attribute__((section(".kdata"))) |
---|
89 | chdev_t txt0_tx_chdev CONFIG_CACHE_LINE_ALIGNED; |
---|
90 | |
---|
91 | // This variable defines the TXT_RX[0] chdev |
---|
92 | __attribute__((section(".kdata"))) |
---|
93 | chdev_t txt0_rx_chdev CONFIG_CACHE_LINE_ALIGNED; |
---|
94 | |
---|
95 | // This variables define the kernel process0 descriptor |
---|
96 | __attribute__((section(".kdata"))) |
---|
97 | process_t process_zero CONFIG_CACHE_LINE_ALIGNED; |
---|
98 | |
---|
99 | // This variable defines extended pointers on the distributed chdevs |
---|
100 | __attribute__((section(".kdata"))) |
---|
101 | chdev_directory_t chdev_dir CONFIG_CACHE_LINE_ALIGNED; |
---|
102 | |
---|
103 | // This variable contains the input IRQ indexes for the IOPIC controller |
---|
104 | __attribute__((section(".kdata"))) |
---|
105 | iopic_input_t iopic_input CONFIG_CACHE_LINE_ALIGNED; |
---|
106 | |
---|
107 | // This variable contains the input IRQ indexes for the LAPIC controller |
---|
108 | __attribute__((section(".kdata"))) |
---|
109 | lapic_input_t lapic_input CONFIG_CACHE_LINE_ALIGNED; |
---|
110 | |
---|
111 | // This variable defines the local cluster identifier |
---|
112 | __attribute__((section(".kdata"))) |
---|
113 | cxy_t local_cxy CONFIG_CACHE_LINE_ALIGNED; |
---|
114 | |
---|
115 | // This variable is used for CP0 cores synchronisation in kernel_init() |
---|
116 | __attribute__((section(".kdata"))) |
---|
117 | xbarrier_t global_barrier CONFIG_CACHE_LINE_ALIGNED; |
---|
118 | |
---|
119 | // This variable is used for local cores synchronisation in kernel_init() |
---|
120 | __attribute__((section(".kdata"))) |
---|
121 | barrier_t local_barrier CONFIG_CACHE_LINE_ALIGNED; |
---|
122 | |
---|
123 | // This variable defines the array of supported File System contexts |
---|
124 | __attribute__((section(".kdata"))) |
---|
125 | vfs_ctx_t fs_context[FS_TYPES_NR] CONFIG_CACHE_LINE_ALIGNED; |
---|
126 | |
---|
127 | // kernel_init is the entry point defined in hal/tsar_mips32/kernel.ld |
---|
128 | // It is used by the bootloader. |
---|
129 | extern void kernel_init( boot_info_t * info ); |
---|
130 | |
---|
131 | // This array is used for debug, and describes the kernel locks usage, |
---|
132 | // It must be kept consistent with the defines in kernel_config.h file. |
---|
133 | char * lock_type_str[] = |
---|
134 | { |
---|
135 | "unused_0", // 0 |
---|
136 | |
---|
137 | "CLUSTER_KCM", // 1 |
---|
138 | "PPM_FREE", // 2 |
---|
139 | "SCHED_STATE", // 3 |
---|
140 | "VMM_STACK", // 4 |
---|
141 | "VMM_MMAP", // 5 |
---|
142 | "VFS_CTX", // 6 |
---|
143 | "KCM_STATE", // 7 |
---|
144 | "KHM_STATE", // 8 |
---|
145 | "HTAB_STATE", // 9 |
---|
146 | |
---|
147 | "THREAD_JOIN", // 10 |
---|
148 | "XHTAB_STATE", // 11 |
---|
149 | "CHDEV_QUEUE", // 12 |
---|
150 | "CHDEV_TXT0", // 13 |
---|
151 | "CHDEV_TXTLIST", // 14 |
---|
152 | "PAGE_STATE", // 15 |
---|
153 | "MUTEX_STATE", // 16 |
---|
154 | "CONDVAR_STATE", // 17 |
---|
155 | "SEM_STATE", // 18 |
---|
156 | "RPOCESS_CWD", // 19 |
---|
157 | |
---|
158 | "unused_20", // 20 |
---|
159 | |
---|
160 | "CLUSTER_PREFTBL", // 21 |
---|
161 | |
---|
162 | "PPM_DIRTY", // 22 |
---|
163 | "CLUSTER_LOCALS", // 23 |
---|
164 | "CLUSTER_COPIES", // 24 |
---|
165 | "PROCESS_CHILDREN", // 25 |
---|
166 | "PROCESS_USERSYNC", // 26 |
---|
167 | "PROCESS_FDARRAY", // 27 |
---|
168 | "FATFS_FREE", // 28 |
---|
169 | "PROCESS_DIR", // 29 |
---|
170 | |
---|
171 | "PROCESS_THTBL", // 30 |
---|
172 | |
---|
173 | "MAPPER_STATE", // 31 |
---|
174 | "VFS_SIZE", // 32 |
---|
175 | "VFS_FILE", // 33 |
---|
176 | "VMM_VSL", // 34 |
---|
177 | "VMM_GPT", // 35 |
---|
178 | "VFS_MAIN", // 36 |
---|
179 | }; |
---|
180 | |
---|
181 | // debug variables to analyse the sys_read() and sys_write() syscalls timing |
---|
182 | |
---|
183 | #if DEBUG_SYS_READ |
---|
184 | uint32_t enter_sys_read; |
---|
185 | uint32_t exit_sys_read; |
---|
186 | |
---|
187 | uint32_t enter_devfs_read; |
---|
188 | uint32_t exit_devfs_read; |
---|
189 | |
---|
190 | uint32_t enter_txt_read; |
---|
191 | uint32_t exit_txt_read; |
---|
192 | |
---|
193 | uint32_t enter_chdev_cmd_read; |
---|
194 | uint32_t exit_chdev_cmd_read; |
---|
195 | |
---|
196 | uint32_t enter_chdev_server_read; |
---|
197 | uint32_t exit_chdev_server_read; |
---|
198 | |
---|
199 | uint32_t enter_tty_cmd_read; |
---|
200 | uint32_t exit_tty_cmd_read; |
---|
201 | |
---|
202 | uint32_t enter_tty_isr_read; |
---|
203 | uint32_t exit_tty_isr_read; |
---|
204 | #endif |
---|
205 | |
---|
206 | // these debug variables are used to analyse the sys_write() syscall timing |
---|
207 | |
---|
208 | #if DEBUG_SYS_WRITE |
---|
209 | uint32_t enter_sys_write; |
---|
210 | uint32_t exit_sys_write; |
---|
211 | |
---|
212 | uint32_t enter_devfs_write; |
---|
213 | uint32_t exit_devfs_write; |
---|
214 | |
---|
215 | uint32_t enter_txt_write; |
---|
216 | uint32_t exit_txt_write; |
---|
217 | |
---|
218 | uint32_t enter_chdev_cmd_write; |
---|
219 | uint32_t exit_chdev_cmd_write; |
---|
220 | |
---|
221 | uint32_t enter_chdev_server_write; |
---|
222 | uint32_t exit_chdev_server_write; |
---|
223 | |
---|
224 | uint32_t enter_tty_cmd_write; |
---|
225 | uint32_t exit_tty_cmd_write; |
---|
226 | |
---|
227 | uint32_t enter_tty_isr_write; |
---|
228 | uint32_t exit_tty_isr_write; |
---|
229 | #endif |
---|
230 | |
---|
231 | // intrumentation variables : cumulated costs per syscall type in cluster |
---|
232 | uint32_t syscalls_cumul_cost[SYSCALLS_NR]; |
---|
233 | |
---|
234 | // intrumentation variables : number of syscalls per syscal type in cluster |
---|
235 | uint32_t syscalls_occurences[SYSCALLS_NR]; |
---|
236 | |
---|
237 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
238 | // This function displays the ALMOS_MKH banner. |
---|
239 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
240 | static void print_banner( uint32_t nclusters , uint32_t ncores ) |
---|
241 | { |
---|
242 | printk("\n" |
---|
243 | " _ __ __ _____ ______ __ __ _ __ _ _ \n" |
---|
244 | " /\\ | | | \\ / | / ___ \\ / _____| | \\ / | | | / / | | | | \n" |
---|
245 | " / \\ | | | \\/ | | / \\ | | / | \\/ | | |/ / | | | | \n" |
---|
246 | " / /\\ \\ | | | |\\ /| | | | | | | |_____ ___ | |\\ /| | | / | |___| | \n" |
---|
247 | " / /__\\ \\ | | | | \\/ | | | | | | \\_____ \\ |___| | | \\/ | | | \\ | ___ | \n" |
---|
248 | " / ______ \\ | | | | | | | | | | | | | | | | | |\\ \\ | | | | \n" |
---|
249 | " / / \\ \\ | |____ | | | | | \\___/ | _____/ | | | | | | | \\ \\ | | | | \n" |
---|
250 | " /_/ \\_\\ |______| |_| |_| \\_____/ |______/ |_| |_| |_| \\_\\ |_| |_| \n" |
---|
251 | "\n\n\t\t Advanced Locality Management Operating System / Multi Kernel Hybrid\n" |
---|
252 | "\n\n\t\t %s / %d cluster(s) / %d core(s) per cluster\n\n", |
---|
253 | CONFIG_ALMOS_VERSION , nclusters , ncores ); |
---|
254 | } |
---|
255 | |
---|
256 | |
---|
257 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
258 | // This function initializes the TXT_TX[0] and TXT_RX[0] chdev descriptors, implementing |
---|
259 | // the "kernel terminal", shared by all kernel instances for debug messages. |
---|
260 | // These chdev are implemented as global variables (replicated in all clusters), |
---|
261 | // because this terminal is used before the kmem allocator initialisation, but only |
---|
262 | // the chdevs in cluster 0 are registered in the "chdev_dir" directory. |
---|
263 | // As this TXT0 chdev supports only the TXT_SYNC_WRITE command, we don't create |
---|
264 | // a server thread, we don't allocate a WTI, and we don't initialize the waiting queue. |
---|
265 | // Note: The TXT_RX[0] chdev is created, but is not used by ALMOS-MKH (september 2018). |
---|
266 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
267 | // @ info : pointer on the local boot-info structure. |
---|
268 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
269 | static void __attribute__ ((noinline)) txt0_device_init( boot_info_t * info ) |
---|
270 | { |
---|
271 | boot_device_t * dev_tbl; // pointer on array of devices in boot_info |
---|
272 | uint32_t dev_nr; // actual number of devices in this cluster |
---|
273 | xptr_t base; // remote pointer on segment base |
---|
274 | uint32_t func; // device functional index |
---|
275 | uint32_t impl; // device implementation index |
---|
276 | uint32_t i; // device index in dev_tbl |
---|
277 | uint32_t x; // X cluster coordinate |
---|
278 | uint32_t y; // Y cluster coordinate |
---|
279 | uint32_t channels; // number of channels |
---|
280 | |
---|
281 | // get number of peripherals and base of devices array from boot_info |
---|
282 | dev_nr = info->ext_dev_nr; |
---|
283 | dev_tbl = info->ext_dev; |
---|
284 | |
---|
285 | // loop on external peripherals to find TXT device |
---|
286 | for( i = 0 ; i < dev_nr ; i++ ) |
---|
287 | { |
---|
288 | base = dev_tbl[i].base; |
---|
289 | func = FUNC_FROM_TYPE( dev_tbl[i].type ); |
---|
290 | impl = IMPL_FROM_TYPE( dev_tbl[i].type ); |
---|
291 | channels = dev_tbl[i].channels; |
---|
292 | |
---|
293 | if (func == DEV_FUNC_TXT ) |
---|
294 | { |
---|
295 | // initialize TXT_TX[0] chdev |
---|
296 | txt0_tx_chdev.func = func; |
---|
297 | txt0_tx_chdev.impl = impl; |
---|
298 | txt0_tx_chdev.channel = 0; |
---|
299 | txt0_tx_chdev.base = base; |
---|
300 | txt0_tx_chdev.is_rx = false; |
---|
301 | remote_busylock_init( XPTR( local_cxy , &txt0_tx_chdev.wait_lock ), |
---|
302 | LOCK_CHDEV_TXT0 ); |
---|
303 | |
---|
304 | // initialize TXT_RX[0] chdev |
---|
305 | txt0_rx_chdev.func = func; |
---|
306 | txt0_rx_chdev.impl = impl; |
---|
307 | txt0_rx_chdev.channel = 0; |
---|
308 | txt0_rx_chdev.base = base; |
---|
309 | txt0_rx_chdev.is_rx = true; |
---|
310 | remote_busylock_init( XPTR( local_cxy , &txt0_rx_chdev.wait_lock ), |
---|
311 | LOCK_CHDEV_TXT0 ); |
---|
312 | |
---|
313 | // make TXT specific initialisations |
---|
314 | dev_txt_init( &txt0_tx_chdev ); |
---|
315 | dev_txt_init( &txt0_rx_chdev ); |
---|
316 | |
---|
317 | // register TXT_TX[0] & TXT_RX[0] in chdev_dir[x][y] |
---|
318 | // for all valid clusters |
---|
319 | for( x = 0 ; x < info->x_size ; x++ ) |
---|
320 | { |
---|
321 | for( y = 0 ; y < info->y_size ; y++ ) |
---|
322 | { |
---|
323 | cxy_t cxy = HAL_CXY_FROM_XY( x , y ); |
---|
324 | |
---|
325 | if( cluster_is_active( cxy ) ) |
---|
326 | { |
---|
327 | hal_remote_s64( XPTR( cxy , &chdev_dir.txt_tx[0] ) , |
---|
328 | XPTR( local_cxy , &txt0_tx_chdev ) ); |
---|
329 | hal_remote_s64( XPTR( cxy , &chdev_dir.txt_rx[0] ) , |
---|
330 | XPTR( local_cxy , &txt0_rx_chdev ) ); |
---|
331 | } |
---|
332 | } |
---|
333 | } |
---|
334 | |
---|
335 | hal_fence(); |
---|
336 | } |
---|
337 | } // end loop on devices |
---|
338 | } // end txt0_device_init() |
---|
339 | |
---|
340 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
341 | // This function allocates memory and initializes the chdev descriptors for the internal |
---|
342 | // peripherals contained in the local cluster, other than the LAPIC, as specified by |
---|
343 | // the boot_info, including the linking with the driver for the specified implementation. |
---|
344 | // The relevant entries in all copies of the devices directory are initialised. |
---|
345 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
346 | // @ info : pointer on the local boot-info structure. |
---|
347 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
348 | static void __attribute__ ((noinline)) internal_devices_init( boot_info_t * info ) |
---|
349 | { |
---|
350 | boot_device_t * dev_tbl; // pointer on array of internaldevices in boot_info |
---|
351 | uint32_t dev_nr; // actual number of devices in this cluster |
---|
352 | xptr_t base; // remote pointer on segment base |
---|
353 | uint32_t func; // device functionnal index |
---|
354 | uint32_t impl; // device implementation index |
---|
355 | uint32_t i; // device index in dev_tbl |
---|
356 | uint32_t x; // X cluster coordinate |
---|
357 | uint32_t y; // Y cluster coordinate |
---|
358 | uint32_t channels; // number of channels |
---|
359 | uint32_t channel; // channel index |
---|
360 | chdev_t * chdev_ptr; // local pointer on created chdev |
---|
361 | |
---|
362 | // get number of internal peripherals and base from boot_info |
---|
363 | dev_nr = info->int_dev_nr; |
---|
364 | dev_tbl = info->int_dev; |
---|
365 | |
---|
366 | // loop on internal peripherals |
---|
367 | for( i = 0 ; i < dev_nr ; i++ ) |
---|
368 | { |
---|
369 | base = dev_tbl[i].base; |
---|
370 | channels = dev_tbl[i].channels; |
---|
371 | func = FUNC_FROM_TYPE( dev_tbl[i].type ); |
---|
372 | impl = IMPL_FROM_TYPE( dev_tbl[i].type ); |
---|
373 | |
---|
374 | ////////////////////////// |
---|
375 | if( func == DEV_FUNC_MMC ) |
---|
376 | { |
---|
377 | |
---|
378 | // check channels |
---|
379 | if( channels != 1 ) |
---|
380 | { |
---|
381 | printk("\n[PANIC] in %s : MMC device must be single channel\n", |
---|
382 | __FUNCTION__ ); |
---|
383 | hal_core_sleep(); |
---|
384 | } |
---|
385 | |
---|
386 | // create chdev in local cluster |
---|
387 | chdev_ptr = chdev_create( func, |
---|
388 | impl, |
---|
389 | 0, // channel |
---|
390 | false, // direction |
---|
391 | base ); |
---|
392 | |
---|
393 | // check memory |
---|
394 | if( chdev_ptr == NULL ) |
---|
395 | { |
---|
396 | printk("\n[PANIC] in %s : cannot create MMC chdev\n", |
---|
397 | __FUNCTION__ ); |
---|
398 | hal_core_sleep(); |
---|
399 | } |
---|
400 | |
---|
401 | // make MMC specific initialisation |
---|
402 | dev_mmc_init( chdev_ptr ); |
---|
403 | |
---|
404 | // set the MMC field in all chdev_dir[x][y] structures |
---|
405 | for( x = 0 ; x < info->x_size ; x++ ) |
---|
406 | { |
---|
407 | for( y = 0 ; y < info->y_size ; y++ ) |
---|
408 | { |
---|
409 | cxy_t cxy = HAL_CXY_FROM_XY( x , y ); |
---|
410 | |
---|
411 | if( cluster_is_active( cxy ) ) |
---|
412 | { |
---|
413 | hal_remote_s64( XPTR( cxy , &chdev_dir.mmc[local_cxy] ), |
---|
414 | XPTR( local_cxy , chdev_ptr ) ); |
---|
415 | } |
---|
416 | } |
---|
417 | } |
---|
418 | |
---|
419 | #if( DEBUG_KERNEL_INIT & 0x1 ) |
---|
420 | if( hal_time_stamp() > DEBUG_KERNEL_INIT ) |
---|
421 | printk("\n[%s] : created MMC in cluster %x / chdev = %x\n", |
---|
422 | __FUNCTION__ , local_cxy , chdev_ptr ); |
---|
423 | #endif |
---|
424 | } |
---|
425 | /////////////////////////////// |
---|
426 | else if( func == DEV_FUNC_DMA ) |
---|
427 | { |
---|
428 | // create one chdev per channel in local cluster |
---|
429 | for( channel = 0 ; channel < channels ; channel++ ) |
---|
430 | { |
---|
431 | // create chdev[channel] in local cluster |
---|
432 | chdev_ptr = chdev_create( func, |
---|
433 | impl, |
---|
434 | channel, |
---|
435 | false, // direction |
---|
436 | base ); |
---|
437 | |
---|
438 | // check memory |
---|
439 | if( chdev_ptr == NULL ) |
---|
440 | { |
---|
441 | printk("\n[PANIC] in %s : cannot create DMA chdev\n", |
---|
442 | __FUNCTION__ ); |
---|
443 | hal_core_sleep(); |
---|
444 | } |
---|
445 | |
---|
446 | // make DMA specific initialisation |
---|
447 | dev_dma_init( chdev_ptr ); |
---|
448 | |
---|
449 | // initialize only the DMA[channel] field in the local chdev_dir[x][y] |
---|
450 | // structure because the DMA device is not remotely accessible. |
---|
451 | chdev_dir.dma[channel] = XPTR( local_cxy , chdev_ptr ); |
---|
452 | |
---|
453 | #if( DEBUG_KERNEL_INIT & 0x1 ) |
---|
454 | if( hal_time_stamp() > DEBUG_KERNEL_INIT ) |
---|
455 | printk("\n[%s] : created DMA[%d] in cluster %x / chdev = %x\n", |
---|
456 | __FUNCTION__ , channel , local_cxy , chdev_ptr ); |
---|
457 | #endif |
---|
458 | } |
---|
459 | } |
---|
460 | } |
---|
461 | } // end internal_devices_init() |
---|
462 | |
---|
463 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
464 | // This function allocates memory and initializes the chdev descriptors for the |
---|
465 | // external (shared) peripherals other than the IOPIC, as specified by the boot_info. |
---|
466 | // This includes the dynamic linking with the driver for the specified implementation. |
---|
467 | // These chdev descriptors are distributed on all clusters, using a modulo on a global |
---|
468 | // index, identically computed in all clusters. |
---|
469 | // This function is executed in all clusters by the CP0 core, that computes a global index |
---|
470 | // for all external chdevs. Each CP0 core creates only the chdevs that must be placed in |
---|
471 | // the local cluster, because the global index matches the local index. |
---|
472 | // The relevant entries in all copies of the devices directory are initialised. |
---|
473 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
474 | // @ info : pointer on the local boot-info structure. |
---|
475 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
476 | static void external_devices_init( boot_info_t * info ) |
---|
477 | { |
---|
478 | boot_device_t * dev_tbl; // pointer on array of external devices in boot_info |
---|
479 | uint32_t dev_nr; // actual number of external devices |
---|
480 | xptr_t base; // remote pointer on segment base |
---|
481 | uint32_t func; // device functionnal index |
---|
482 | uint32_t impl; // device implementation index |
---|
483 | uint32_t i; // device index in dev_tbl |
---|
484 | uint32_t x; // X cluster coordinate |
---|
485 | uint32_t y; // Y cluster coordinate |
---|
486 | uint32_t channels; // number of channels |
---|
487 | uint32_t channel; // channel index |
---|
488 | uint32_t directions; // number of directions (1 or 2) |
---|
489 | uint32_t rx; // direction index (0 or 1) |
---|
490 | chdev_t * chdev; // local pointer on one channel_device descriptor |
---|
491 | uint32_t ext_chdev_gid; // global index of external chdev |
---|
492 | |
---|
493 | // get number of peripherals and base of devices array from boot_info |
---|
494 | dev_nr = info->ext_dev_nr; |
---|
495 | dev_tbl = info->ext_dev; |
---|
496 | |
---|
497 | // initializes global index (PIC is already placed in cluster 0 |
---|
498 | ext_chdev_gid = 1; |
---|
499 | |
---|
500 | // loop on external peripherals |
---|
501 | for( i = 0 ; i < dev_nr ; i++ ) |
---|
502 | { |
---|
503 | base = dev_tbl[i].base; |
---|
504 | channels = dev_tbl[i].channels; |
---|
505 | func = FUNC_FROM_TYPE( dev_tbl[i].type ); |
---|
506 | impl = IMPL_FROM_TYPE( dev_tbl[i].type ); |
---|
507 | |
---|
508 | // There is one chdev per direction for NIC and for TXT |
---|
509 | if((func == DEV_FUNC_NIC) || (func == DEV_FUNC_TXT)) directions = 2; |
---|
510 | else directions = 1; |
---|
511 | |
---|
512 | // do nothing for ROM, that does not require a device descriptor. |
---|
513 | if( func == DEV_FUNC_ROM ) continue; |
---|
514 | |
---|
515 | // do nothing for PIC, that is already initialized |
---|
516 | if( func == DEV_FUNC_PIC ) continue; |
---|
517 | |
---|
518 | // check PIC device initialized |
---|
519 | if( chdev_dir.pic == XPTR_NULL ) |
---|
520 | { |
---|
521 | printk("\n[PANIC] in %s : PIC device must be initialized first\n", |
---|
522 | __FUNCTION__ ); |
---|
523 | hal_core_sleep(); |
---|
524 | } |
---|
525 | |
---|
526 | // check external device functionnal type |
---|
527 | if( (func != DEV_FUNC_IOB) && (func != DEV_FUNC_IOC) && (func != DEV_FUNC_TXT) && |
---|
528 | (func != DEV_FUNC_NIC) && (func != DEV_FUNC_FBF) ) |
---|
529 | { |
---|
530 | printk("\n[PANIC] in %s : undefined peripheral type\n", |
---|
531 | __FUNCTION__ ); |
---|
532 | hal_core_sleep(); |
---|
533 | } |
---|
534 | |
---|
535 | // loops on channels |
---|
536 | for( channel = 0 ; channel < channels ; channel++ ) |
---|
537 | { |
---|
538 | // loop on directions |
---|
539 | for( rx = 0 ; rx < directions ; rx++ ) |
---|
540 | { |
---|
541 | // skip TXT0 that has already been initialized |
---|
542 | if( (func == DEV_FUNC_TXT) && (channel == 0) ) continue; |
---|
543 | |
---|
544 | // all kernel instances compute the target cluster for all chdevs, |
---|
545 | // computing the global index ext_chdev_gid[func,channel,direction] |
---|
546 | cxy_t target_cxy; |
---|
547 | while( 1 ) |
---|
548 | { |
---|
549 | uint32_t offset = ext_chdev_gid % ( info->x_size * info->y_size ); |
---|
550 | uint32_t x = offset / info->y_size; |
---|
551 | uint32_t y = offset % info->y_size; |
---|
552 | |
---|
553 | target_cxy = HAL_CXY_FROM_XY( x , y ); |
---|
554 | |
---|
555 | // exit loop if target cluster is active |
---|
556 | if( cluster_is_active( target_cxy ) ) break; |
---|
557 | |
---|
558 | // increment global index otherwise |
---|
559 | ext_chdev_gid++; |
---|
560 | } |
---|
561 | |
---|
562 | // allocate and initialize a local chdev |
---|
563 | // when local cluster matches target cluster |
---|
564 | if( target_cxy == local_cxy ) |
---|
565 | { |
---|
566 | chdev = chdev_create( func, |
---|
567 | impl, |
---|
568 | channel, |
---|
569 | rx, // direction |
---|
570 | base ); |
---|
571 | |
---|
572 | if( chdev == NULL ) |
---|
573 | { |
---|
574 | printk("\n[PANIC] in %s : cannot allocate chdev\n", |
---|
575 | __FUNCTION__ ); |
---|
576 | hal_core_sleep(); |
---|
577 | } |
---|
578 | |
---|
579 | // make device type specific initialisation |
---|
580 | if ( func == DEV_FUNC_IOB ) dev_iob_init( chdev ); |
---|
581 | else if( func == DEV_FUNC_IOC ) dev_ioc_init( chdev ); |
---|
582 | else if( func == DEV_FUNC_TXT ) dev_txt_init( chdev ); |
---|
583 | else if( func == DEV_FUNC_NIC ) dev_nic_init( chdev ); |
---|
584 | else if( func == DEV_FUNC_FBF ) dev_fbf_init( chdev ); |
---|
585 | |
---|
586 | // all external (shared) devices are remotely accessible |
---|
587 | // initialize the replicated chdev_dir[x][y] structures |
---|
588 | // defining the extended pointers on chdev descriptors |
---|
589 | xptr_t * entry; |
---|
590 | |
---|
591 | if(func==DEV_FUNC_IOB ) entry = &chdev_dir.iob; |
---|
592 | if(func==DEV_FUNC_IOC ) entry = &chdev_dir.ioc[channel]; |
---|
593 | if(func==DEV_FUNC_FBF ) entry = &chdev_dir.fbf[channel]; |
---|
594 | if((func==DEV_FUNC_TXT) && (rx==0)) entry = &chdev_dir.txt_tx[channel]; |
---|
595 | if((func==DEV_FUNC_TXT) && (rx==1)) entry = &chdev_dir.txt_rx[channel]; |
---|
596 | if((func==DEV_FUNC_NIC) && (rx==0)) entry = &chdev_dir.nic_tx[channel]; |
---|
597 | if((func==DEV_FUNC_NIC) && (rx==1)) entry = &chdev_dir.nic_rx[channel]; |
---|
598 | |
---|
599 | for( x = 0 ; x < info->x_size ; x++ ) |
---|
600 | { |
---|
601 | for( y = 0 ; y < info->y_size ; y++ ) |
---|
602 | { |
---|
603 | cxy_t cxy = HAL_CXY_FROM_XY( x , y ); |
---|
604 | |
---|
605 | if( cluster_is_active( cxy ) ) |
---|
606 | { |
---|
607 | hal_remote_s64( XPTR( cxy , entry ), |
---|
608 | XPTR( local_cxy , chdev ) ); |
---|
609 | } |
---|
610 | } |
---|
611 | } |
---|
612 | |
---|
613 | #if( DEBUG_KERNEL_INIT & 0x1 ) |
---|
614 | if( hal_time_stamp() > DEBUG_KERNEL_INIT ) |
---|
615 | printk("\n[%s] : create chdev %s / channel = %d / rx = %d / cluster %x / chdev = %x\n", |
---|
616 | __FUNCTION__ , chdev_func_str( func ), channel , rx , local_cxy , chdev ); |
---|
617 | #endif |
---|
618 | } // end if match |
---|
619 | |
---|
620 | // increment chdev global index (matching or not) |
---|
621 | ext_chdev_gid++; |
---|
622 | |
---|
623 | } // end loop on directions |
---|
624 | } // end loop on channels |
---|
625 | } // end loop on devices |
---|
626 | } // end external_devices_init() |
---|
627 | |
---|
628 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
629 | // This function is called by CP0 in cluster 0 to allocate memory and initialize the PIC |
---|
630 | // device, namely the informations attached to the external IOPIC controller, that |
---|
631 | // must be replicated in all clusters (struct iopic_input). |
---|
632 | // This initialisation must be done before other devices initialisation because the IRQ |
---|
633 | // routing infrastructure is required for both internal and external devices init. |
---|
634 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
635 | // @ info : pointer on the local boot-info structure. |
---|
636 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
637 | static void __attribute__ ((noinline)) iopic_init( boot_info_t * info ) |
---|
638 | { |
---|
639 | boot_device_t * dev_tbl; // pointer on boot_info external devices array |
---|
640 | uint32_t dev_nr; // actual number of external devices |
---|
641 | xptr_t base; // remote pointer on segment base |
---|
642 | uint32_t func; // device functionnal index |
---|
643 | uint32_t impl; // device implementation index |
---|
644 | uint32_t i; // device index in dev_tbl |
---|
645 | uint32_t x; // cluster X coordinate |
---|
646 | uint32_t y; // cluster Y coordinate |
---|
647 | bool_t found; // IOPIC found |
---|
648 | chdev_t * chdev; // pointer on PIC chdev descriptor |
---|
649 | |
---|
650 | // get number of external peripherals and base of array from boot_info |
---|
651 | dev_nr = info->ext_dev_nr; |
---|
652 | dev_tbl = info->ext_dev; |
---|
653 | |
---|
654 | // avoid GCC warning |
---|
655 | base = XPTR_NULL; |
---|
656 | impl = 0; |
---|
657 | |
---|
658 | // loop on external peripherals to get the IOPIC |
---|
659 | for( i = 0 , found = false ; i < dev_nr ; i++ ) |
---|
660 | { |
---|
661 | func = FUNC_FROM_TYPE( dev_tbl[i].type ); |
---|
662 | |
---|
663 | if( func == DEV_FUNC_PIC ) |
---|
664 | { |
---|
665 | base = dev_tbl[i].base; |
---|
666 | impl = IMPL_FROM_TYPE( dev_tbl[i].type ); |
---|
667 | found = true; |
---|
668 | break; |
---|
669 | } |
---|
670 | } |
---|
671 | |
---|
672 | // check PIC existence |
---|
673 | if( found == false ) |
---|
674 | { |
---|
675 | printk("\n[PANIC] in %s : PIC device not found\n", |
---|
676 | __FUNCTION__ ); |
---|
677 | hal_core_sleep(); |
---|
678 | } |
---|
679 | |
---|
680 | // allocate and initialize the PIC chdev in cluster 0 |
---|
681 | chdev = chdev_create( DEV_FUNC_PIC, |
---|
682 | impl, |
---|
683 | 0, // channel |
---|
684 | 0, // direction, |
---|
685 | base ); |
---|
686 | |
---|
687 | // check memory |
---|
688 | if( chdev == NULL ) |
---|
689 | { |
---|
690 | printk("\n[PANIC] in %s : no memory for PIC chdev\n", |
---|
691 | __FUNCTION__ ); |
---|
692 | hal_core_sleep(); |
---|
693 | } |
---|
694 | |
---|
695 | // make PIC device type specific initialisation |
---|
696 | dev_pic_init( chdev ); |
---|
697 | |
---|
698 | // register, in all clusters, the extended pointer |
---|
699 | // on PIC chdev in "chdev_dir" array |
---|
700 | xptr_t * entry = &chdev_dir.pic; |
---|
701 | |
---|
702 | for( x = 0 ; x < info->x_size ; x++ ) |
---|
703 | { |
---|
704 | for( y = 0 ; y < info->y_size ; y++ ) |
---|
705 | { |
---|
706 | cxy_t cxy = HAL_CXY_FROM_XY( x , y ); |
---|
707 | |
---|
708 | if( cluster_is_active( cxy ) ) |
---|
709 | { |
---|
710 | hal_remote_s64( XPTR( cxy , entry ) , |
---|
711 | XPTR( local_cxy , chdev ) ); |
---|
712 | } |
---|
713 | } |
---|
714 | } |
---|
715 | |
---|
716 | // initialize, in all clusters, the "iopic_input" structure |
---|
717 | // defining how external IRQs are connected to IOPIC |
---|
718 | |
---|
719 | // register default value for unused inputs |
---|
720 | for( x = 0 ; x < info->x_size ; x++ ) |
---|
721 | { |
---|
722 | for( y = 0 ; y < info->y_size ; y++ ) |
---|
723 | { |
---|
724 | cxy_t cxy = HAL_CXY_FROM_XY( x , y ); |
---|
725 | |
---|
726 | if( cluster_is_active( cxy ) ) |
---|
727 | { |
---|
728 | hal_remote_memset( XPTR( cxy , &iopic_input ), |
---|
729 | 0xFF , sizeof(iopic_input_t) ); |
---|
730 | } |
---|
731 | } |
---|
732 | } |
---|
733 | |
---|
734 | // register input IRQ index for valid inputs |
---|
735 | uint32_t id; // input IRQ index |
---|
736 | uint8_t valid; // input IRQ is connected |
---|
737 | uint32_t type; // source device type |
---|
738 | uint8_t channel; // source device channel |
---|
739 | uint8_t is_rx; // source device direction |
---|
740 | uint32_t * ptr = NULL; // local pointer on one field in iopic_input stucture |
---|
741 | |
---|
742 | for( id = 0 ; id < CONFIG_MAX_EXTERNAL_IRQS ; id++ ) |
---|
743 | { |
---|
744 | valid = dev_tbl[i].irq[id].valid; |
---|
745 | type = dev_tbl[i].irq[id].dev_type; |
---|
746 | channel = dev_tbl[i].irq[id].channel; |
---|
747 | is_rx = dev_tbl[i].irq[id].is_rx; |
---|
748 | func = FUNC_FROM_TYPE( type ); |
---|
749 | |
---|
750 | // get pointer on relevant field in iopic_input |
---|
751 | if( valid ) |
---|
752 | { |
---|
753 | if ( func == DEV_FUNC_IOC ) ptr = &iopic_input.ioc[channel]; |
---|
754 | else if((func == DEV_FUNC_TXT) && (is_rx == 0)) ptr = &iopic_input.txt_tx[channel]; |
---|
755 | else if((func == DEV_FUNC_TXT) && (is_rx != 0)) ptr = &iopic_input.txt_rx[channel]; |
---|
756 | else if((func == DEV_FUNC_NIC) && (is_rx == 0)) ptr = &iopic_input.nic_tx[channel]; |
---|
757 | else if((func == DEV_FUNC_NIC) && (is_rx != 0)) ptr = &iopic_input.nic_rx[channel]; |
---|
758 | else if( func == DEV_FUNC_IOB ) ptr = &iopic_input.iob; |
---|
759 | else |
---|
760 | { |
---|
761 | printk("\n[PANIC] in %s : illegal source device for IOPIC input\n", |
---|
762 | __FUNCTION__ ); |
---|
763 | hal_core_sleep(); |
---|
764 | } |
---|
765 | |
---|
766 | // set one entry in all "iopic_input" structures |
---|
767 | for( x = 0 ; x < info->x_size ; x++ ) |
---|
768 | { |
---|
769 | for( y = 0 ; y < info->y_size ; y++ ) |
---|
770 | { |
---|
771 | cxy_t cxy = HAL_CXY_FROM_XY( x , y ); |
---|
772 | |
---|
773 | if( cluster_is_active( cxy ) ) |
---|
774 | { |
---|
775 | hal_remote_s64( XPTR( cxy , ptr ) , id ); |
---|
776 | } |
---|
777 | } |
---|
778 | } |
---|
779 | } |
---|
780 | } |
---|
781 | |
---|
782 | #if( DEBUG_KERNEL_INIT & 0x1 ) |
---|
783 | if( hal_time_stamp() > DEBUG_KERNEL_INIT ) |
---|
784 | { |
---|
785 | printk("\n[%s] created PIC chdev in cluster %x at cycle %d\n", |
---|
786 | __FUNCTION__ , local_cxy , (uint32_t)hal_time_stamp() ); |
---|
787 | dev_pic_inputs_display(); |
---|
788 | } |
---|
789 | #endif |
---|
790 | |
---|
791 | } // end iopic_init() |
---|
792 | |
---|
793 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
794 | // This function is called by all CP0s in all cluster to complete the PIC device |
---|
795 | // initialisation, namely the informations attached to the LAPIC controller. |
---|
796 | // This initialisation must be done after the IOPIC initialisation, but before other |
---|
797 | // devices initialisation because the IRQ routing infrastructure is required for both |
---|
798 | // internal and external devices initialisation. |
---|
799 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
800 | // @ info : pointer on the local boot-info structure. |
---|
801 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
802 | static void __attribute__ ((noinline)) lapic_init( boot_info_t * info ) |
---|
803 | { |
---|
804 | boot_device_t * dev_tbl; // pointer on boot_info internal devices array |
---|
805 | uint32_t dev_nr; // number of internal devices |
---|
806 | uint32_t i; // device index in dev_tbl |
---|
807 | xptr_t base; // remote pointer on segment base |
---|
808 | uint32_t func; // device functionnal type in boot_info |
---|
809 | bool_t found; // LAPIC found |
---|
810 | |
---|
811 | // get number of internal peripherals and base |
---|
812 | dev_nr = info->int_dev_nr; |
---|
813 | dev_tbl = info->int_dev; |
---|
814 | |
---|
815 | // loop on internal peripherals to get the lapic device |
---|
816 | for( i = 0 , found = false ; i < dev_nr ; i++ ) |
---|
817 | { |
---|
818 | func = FUNC_FROM_TYPE( dev_tbl[i].type ); |
---|
819 | |
---|
820 | if( func == DEV_FUNC_ICU ) |
---|
821 | { |
---|
822 | base = dev_tbl[i].base; |
---|
823 | found = true; |
---|
824 | break; |
---|
825 | } |
---|
826 | } |
---|
827 | |
---|
828 | // if the LAPIC controller is not defined in the boot_info, |
---|
829 | // we simply don't initialize the PIC extensions in the kernel, |
---|
830 | // making the assumption that the LAPIC related informations |
---|
831 | // are hidden in the hardware specific PIC driver. |
---|
832 | if( found ) |
---|
833 | { |
---|
834 | // initialise the PIC extensions for |
---|
835 | // the core descriptor and core manager extensions |
---|
836 | dev_pic_extend_init( (uint32_t *)GET_PTR( base ) ); |
---|
837 | |
---|
838 | // initialize the "lapic_input" structure |
---|
839 | // defining how internal IRQs are connected to LAPIC |
---|
840 | uint32_t id; |
---|
841 | uint8_t valid; |
---|
842 | uint8_t channel; |
---|
843 | uint32_t func; |
---|
844 | |
---|
845 | for( id = 0 ; id < CONFIG_MAX_INTERNAL_IRQS ; id++ ) |
---|
846 | { |
---|
847 | valid = dev_tbl[i].irq[id].valid; |
---|
848 | func = FUNC_FROM_TYPE( dev_tbl[i].irq[id].dev_type ); |
---|
849 | channel = dev_tbl[i].irq[id].channel; |
---|
850 | |
---|
851 | if( valid ) // only valid local IRQs are registered |
---|
852 | { |
---|
853 | if ( func == DEV_FUNC_MMC ) lapic_input.mmc = id; |
---|
854 | else if( func == DEV_FUNC_DMA ) lapic_input.dma[channel] = id; |
---|
855 | else |
---|
856 | { |
---|
857 | printk("\n[PANIC] in %s : illegal source device for LAPIC input\n", |
---|
858 | __FUNCTION__ ); |
---|
859 | hal_core_sleep(); |
---|
860 | } |
---|
861 | } |
---|
862 | } |
---|
863 | } |
---|
864 | } // end lapic_init() |
---|
865 | |
---|
866 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
867 | // This static function returns the identifiers of the calling core. |
---|
868 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
869 | // @ info : pointer on boot_info structure. |
---|
870 | // @ lid : [out] core local index in cluster. |
---|
871 | // @ cxy : [out] cluster identifier. |
---|
872 | // @ lid : [out] core global identifier (hardware). |
---|
873 | // @ return 0 if success / return EINVAL if not found. |
---|
874 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
875 | static error_t __attribute__ ((noinline)) get_core_identifiers( boot_info_t * info, |
---|
876 | lid_t * lid, |
---|
877 | cxy_t * cxy, |
---|
878 | gid_t * gid ) |
---|
879 | { |
---|
880 | uint32_t i; |
---|
881 | gid_t global_id; |
---|
882 | |
---|
883 | // get global identifier from hardware register |
---|
884 | global_id = hal_get_gid(); |
---|
885 | |
---|
886 | // makes an associative search in boot_info to get (cxy,lid) from global_id |
---|
887 | for( i = 0 ; i < info->cores_nr ; i++ ) |
---|
888 | { |
---|
889 | if( global_id == info->core[i].gid ) |
---|
890 | { |
---|
891 | *lid = info->core[i].lid; |
---|
892 | *cxy = info->core[i].cxy; |
---|
893 | *gid = global_id; |
---|
894 | return 0; |
---|
895 | } |
---|
896 | } |
---|
897 | return EINVAL; |
---|
898 | } |
---|
899 | |
---|
900 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
901 | // This function is the entry point for the kernel initialisation. |
---|
902 | // It is executed by all cores in all clusters, but only core[0], called CP0, |
---|
903 | // initializes the shared resources such as the cluster manager, or the local peripherals. |
---|
904 | // To comply with the multi-kernels paradigm, it accesses only local cluster memory, using |
---|
905 | // only information contained in the local boot_info_t structure, set by the bootloader. |
---|
906 | // Only CP0 in cluster 0 print the log messages. |
---|
907 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
908 | // @ info : pointer on the local boot-info structure. |
---|
909 | /////////////////////////////////////////////////////////////////////////////////////////// |
---|
910 | void kernel_init( boot_info_t * info ) |
---|
911 | { |
---|
912 | lid_t core_lid = -1; // running core local index |
---|
913 | cxy_t core_cxy = -1; // running core cluster identifier |
---|
914 | gid_t core_gid; // running core hardware identifier |
---|
915 | cluster_t * cluster; // pointer on local cluster manager |
---|
916 | core_t * core; // pointer on running core descriptor |
---|
917 | thread_t * thread; // pointer on idle thread descriptor |
---|
918 | |
---|
919 | xptr_t vfs_root_inode_xp; // extended pointer on VFS root inode |
---|
920 | xptr_t devfs_dev_inode_xp; // extended pointer on DEVFS dev inode |
---|
921 | xptr_t devfs_external_inode_xp; // extended pointer on DEVFS external inode |
---|
922 | xptr_t devfs_internal_inode_xp; // extended pointer on DEVFS internal inode |
---|
923 | |
---|
924 | error_t error; |
---|
925 | reg_t status; // running core status register |
---|
926 | |
---|
927 | ///////////////////////////////////////////////////////////////////////////////// |
---|
928 | // STEP 0 : Each core get its core identifier from boot_info, and makes |
---|
929 | // a partial initialisation of its private idle thread descriptor. |
---|
930 | // CP0 initializes the "local_cxy" global variable. |
---|
931 | // CP0 in cluster IO initializes the TXT0 chdev to print log messages. |
---|
932 | ///////////////////////////////////////////////////////////////////////////////// |
---|
933 | |
---|
934 | error = get_core_identifiers( info, |
---|
935 | &core_lid, |
---|
936 | &core_cxy, |
---|
937 | &core_gid ); |
---|
938 | |
---|
939 | // all CP0s initialize cluster identifier |
---|
940 | if( core_lid == 0 ) local_cxy = info->cxy; |
---|
941 | |
---|
942 | // each core gets a pointer on its private idle thread descriptor |
---|
943 | thread = (thread_t *)( idle_threads + (core_lid * CONFIG_THREAD_DESC_SIZE) ); |
---|
944 | |
---|
945 | // each core registers this thread pointer in hardware register |
---|
946 | hal_set_current_thread( thread ); |
---|
947 | |
---|
948 | // each core register core descriptor pointer in idle thread descriptor |
---|
949 | thread->core = &LOCAL_CLUSTER->core_tbl[core_lid]; |
---|
950 | |
---|
951 | // each core initializes the idle thread locks counters |
---|
952 | thread->busylocks = 0; |
---|
953 | |
---|
954 | #if DEBUG_BUSYLOCK |
---|
955 | // each core initialise the idle thread list of busylocks |
---|
956 | xlist_root_init( XPTR( local_cxy , &thread->busylocks_root ) ); |
---|
957 | #endif |
---|
958 | |
---|
959 | // all CP0s initialize cluster info |
---|
960 | if( core_lid == 0 ) cluster_info_init( info ); |
---|
961 | |
---|
962 | // CP0 in cluster 0 initialises TXT0 chdev descriptor |
---|
963 | if( (core_lid == 0) && (core_cxy == 0) ) txt0_device_init( info ); |
---|
964 | |
---|
965 | ///////////////////////////////////////////////////////////////////////////////// |
---|
966 | if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), |
---|
967 | (info->x_size * info->y_size) ); |
---|
968 | barrier_wait( &local_barrier , info->cores_nr ); |
---|
969 | ///////////////////////////////////////////////////////////////////////////////// |
---|
970 | |
---|
971 | #if DEBUG_KERNEL_INIT |
---|
972 | if( (core_lid == 0) & (local_cxy == 0) ) |
---|
973 | printk("\n[%s] : exit barrier 0 : TXT0 initialized / cycle %d\n", |
---|
974 | __FUNCTION__, (uint32_t)hal_get_cycles() ); |
---|
975 | #endif |
---|
976 | |
---|
977 | ///////////////////////////////////////////////////////////////////////////// |
---|
978 | // STEP 1 : all cores check core identifier. |
---|
979 | // CP0 initializes the local cluster manager. |
---|
980 | // This includes the memory allocators. |
---|
981 | ///////////////////////////////////////////////////////////////////////////// |
---|
982 | |
---|
983 | // all cores check identifiers |
---|
984 | if( error ) |
---|
985 | { |
---|
986 | printk("\n[PANIC] in %s : illegal core : gid %x / cxy %x / lid %d", |
---|
987 | __FUNCTION__, core_lid, core_cxy, core_lid ); |
---|
988 | hal_core_sleep(); |
---|
989 | } |
---|
990 | |
---|
991 | // all CP0s initialise DQDT (only CPO in cluster 0 build the quad-tree) |
---|
992 | if( core_lid == 0 ) dqdt_init(); |
---|
993 | |
---|
994 | // all CP0s initialize other cluster manager complex structures |
---|
995 | if( core_lid == 0 ) |
---|
996 | { |
---|
997 | error = cluster_manager_init( info ); |
---|
998 | |
---|
999 | if( error ) |
---|
1000 | { |
---|
1001 | printk("\n[PANIC] in %s : cannot initialize cluster manager in cluster %x\n", |
---|
1002 | __FUNCTION__, local_cxy ); |
---|
1003 | hal_core_sleep(); |
---|
1004 | } |
---|
1005 | } |
---|
1006 | |
---|
1007 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1008 | if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), |
---|
1009 | (info->x_size * info->y_size) ); |
---|
1010 | barrier_wait( &local_barrier , info->cores_nr ); |
---|
1011 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1012 | |
---|
1013 | #if DEBUG_KERNEL_INIT |
---|
1014 | if( (core_lid == 0) & (local_cxy == 0) ) |
---|
1015 | printk("\n[%s] : exit barrier 1 : clusters initialised / cycle %d\n", |
---|
1016 | __FUNCTION__, (uint32_t)hal_get_cycles() ); |
---|
1017 | #endif |
---|
1018 | |
---|
1019 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1020 | // STEP 2 : CP0 initializes the process_zero descriptor. |
---|
1021 | // CP0 in cluster 0 initializes the IOPIC device. |
---|
1022 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1023 | |
---|
1024 | // all cores get pointer on local cluster manager & core descriptor |
---|
1025 | cluster = &cluster_manager; |
---|
1026 | core = &cluster->core_tbl[core_lid]; |
---|
1027 | |
---|
1028 | // all CP0s initialize the process_zero descriptor |
---|
1029 | if( core_lid == 0 ) process_zero_create( &process_zero ); |
---|
1030 | |
---|
1031 | // CP0 in cluster 0 initializes the PIC chdev, |
---|
1032 | if( (core_lid == 0) && (local_cxy == 0) ) iopic_init( info ); |
---|
1033 | |
---|
1034 | //////////////////////////////////////////////////////////////////////////////// |
---|
1035 | if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), |
---|
1036 | (info->x_size * info->y_size) ); |
---|
1037 | barrier_wait( &local_barrier , info->cores_nr ); |
---|
1038 | //////////////////////////////////////////////////////////////////////////////// |
---|
1039 | |
---|
1040 | #if DEBUG_KERNEL_INIT |
---|
1041 | if( (core_lid == 0) & (local_cxy == 0) ) |
---|
1042 | printk("\n[%s] : exit barrier 2 : PIC initialised / cycle %d\n", |
---|
1043 | __FUNCTION__, (uint32_t)hal_get_cycles() ); |
---|
1044 | #endif |
---|
1045 | |
---|
1046 | //////////////////////////////////////////////////////////////////////////////// |
---|
1047 | // STEP 3 : CP0 initializes the distibuted LAPIC descriptor. |
---|
1048 | // CP0 initializes the internal chdev descriptors |
---|
1049 | // CP0 initialize the local external chdev descriptors |
---|
1050 | //////////////////////////////////////////////////////////////////////////////// |
---|
1051 | |
---|
1052 | // all CP0s initialize their local LAPIC extension, |
---|
1053 | if( core_lid == 0 ) lapic_init( info ); |
---|
1054 | |
---|
1055 | // CP0 scan the internal (private) peripherals, |
---|
1056 | // and allocates memory for the corresponding chdev descriptors. |
---|
1057 | if( core_lid == 0 ) internal_devices_init( info ); |
---|
1058 | |
---|
1059 | |
---|
1060 | // All CP0s contribute to initialise external peripheral chdev descriptors. |
---|
1061 | // Each CP0[cxy] scan the set of external (shared) peripherals (but the TXT0), |
---|
1062 | // and allocates memory for the chdev descriptors that must be placed |
---|
1063 | // on the (cxy) cluster according to the global index value. |
---|
1064 | |
---|
1065 | if( core_lid == 0 ) external_devices_init( info ); |
---|
1066 | |
---|
1067 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1068 | if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), |
---|
1069 | (info->x_size * info->y_size) ); |
---|
1070 | barrier_wait( &local_barrier , info->cores_nr ); |
---|
1071 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1072 | |
---|
1073 | #if DEBUG_KERNEL_INIT |
---|
1074 | if( (core_lid == 0) & (local_cxy == 0) ) |
---|
1075 | printk("\n[%s] : exit barrier 3 : all chdevs initialised / cycle %d\n", |
---|
1076 | __FUNCTION__, (uint32_t)hal_get_cycles() ); |
---|
1077 | #endif |
---|
1078 | |
---|
1079 | #if( DEBUG_KERNEL_INIT & 1 ) |
---|
1080 | if( (core_lid == 0) & (local_cxy == 0) ) |
---|
1081 | chdev_dir_display(); |
---|
1082 | #endif |
---|
1083 | |
---|
1084 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1085 | // STEP 4 : All cores enable IPI (Inter Procesor Interrupt), |
---|
1086 | // Alh cores initialize IDLE thread. |
---|
1087 | // Only CP0 in cluster 0 creates the VFS root inode. |
---|
1088 | // It access the boot device to initialize the file system context. |
---|
1089 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1090 | |
---|
1091 | // All cores enable IPI |
---|
1092 | dev_pic_enable_ipi(); |
---|
1093 | hal_enable_irq( &status ); |
---|
1094 | |
---|
1095 | // all cores initialize the idle thread descriptor |
---|
1096 | thread_idle_init( thread, |
---|
1097 | THREAD_IDLE, |
---|
1098 | &thread_idle_func, |
---|
1099 | NULL, |
---|
1100 | core_lid ); |
---|
1101 | |
---|
1102 | // all cores unblock idle thread, and register it in scheduler |
---|
1103 | thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_GLOBAL ); |
---|
1104 | core->scheduler.idle = thread; |
---|
1105 | |
---|
1106 | #if( DEBUG_KERNEL_INIT & 1 ) |
---|
1107 | sched_display( core_lid ); |
---|
1108 | #endif |
---|
1109 | |
---|
1110 | // CPO in cluster 0 creates the VFS root |
---|
1111 | if( (core_lid == 0) && (local_cxy == 0 ) ) |
---|
1112 | { |
---|
1113 | vfs_root_inode_xp = XPTR_NULL; |
---|
1114 | |
---|
1115 | // Only FATFS is supported yet, |
---|
1116 | // other File System can be introduced here |
---|
1117 | if( CONFIG_VFS_ROOT_IS_FATFS ) |
---|
1118 | { |
---|
1119 | // 1. allocate memory for FATFS context extension in cluster 0 |
---|
1120 | fatfs_ctx_t * fatfs_ctx = fatfs_ctx_alloc(); |
---|
1121 | |
---|
1122 | if( fatfs_ctx == NULL ) |
---|
1123 | { |
---|
1124 | printk("\n[PANIC] in %s : cannot create FATFS context in cluster 0\n", |
---|
1125 | __FUNCTION__ ); |
---|
1126 | hal_core_sleep(); |
---|
1127 | } |
---|
1128 | |
---|
1129 | // 2. access boot device to initialize FATFS context |
---|
1130 | fatfs_ctx_init( fatfs_ctx ); |
---|
1131 | |
---|
1132 | // 3. get various informations from FATFS context |
---|
1133 | uint32_t root_dir_cluster = fatfs_ctx->root_dir_cluster; |
---|
1134 | uint32_t cluster_size = fatfs_ctx->bytes_per_sector * |
---|
1135 | fatfs_ctx->sectors_per_cluster; |
---|
1136 | uint32_t total_clusters = fatfs_ctx->fat_sectors_count << 7; |
---|
1137 | |
---|
1138 | // 4. create VFS root inode in cluster 0 |
---|
1139 | error = vfs_inode_create( FS_TYPE_FATFS, // fs_type |
---|
1140 | INODE_TYPE_DIR, // inode_type |
---|
1141 | 0, // attr |
---|
1142 | 0, // rights |
---|
1143 | 0, // uid |
---|
1144 | 0, // gid |
---|
1145 | &vfs_root_inode_xp ); // return |
---|
1146 | if( error ) |
---|
1147 | { |
---|
1148 | printk("\n[PANIC] in %s : cannot create VFS root inode in cluster 0\n", |
---|
1149 | __FUNCTION__ ); |
---|
1150 | hal_core_sleep(); |
---|
1151 | } |
---|
1152 | |
---|
1153 | // 5. update FATFS root inode extension |
---|
1154 | cxy_t vfs_root_cxy = GET_CXY( vfs_root_inode_xp ); |
---|
1155 | vfs_inode_t * vfs_root_ptr = GET_PTR( vfs_root_inode_xp ); |
---|
1156 | hal_remote_spt( XPTR( vfs_root_cxy , &vfs_root_ptr->extend ), |
---|
1157 | (void*)(intptr_t)root_dir_cluster ); |
---|
1158 | |
---|
1159 | // 6. initialize the generic VFS context for FATFS |
---|
1160 | vfs_ctx_init( FS_TYPE_FATFS, // fs type |
---|
1161 | 0, // attributes: unused |
---|
1162 | total_clusters, // number of clusters |
---|
1163 | cluster_size, // bytes |
---|
1164 | vfs_root_inode_xp, // VFS root |
---|
1165 | fatfs_ctx ); // extend |
---|
1166 | } |
---|
1167 | else |
---|
1168 | { |
---|
1169 | printk("\n[PANIC] in %s : unsupported VFS type in cluster 0\n", |
---|
1170 | __FUNCTION__ ); |
---|
1171 | hal_core_sleep(); |
---|
1172 | } |
---|
1173 | |
---|
1174 | // create the <.> and <..> dentries in VFS root directory |
---|
1175 | // the VFS root parent inode is the VFS root inode itself |
---|
1176 | vfs_add_special_dentries( vfs_root_inode_xp, |
---|
1177 | vfs_root_inode_xp ); |
---|
1178 | |
---|
1179 | // register VFS root inode in process_zero descriptor of cluster 0 |
---|
1180 | process_zero.vfs_root_xp = vfs_root_inode_xp; |
---|
1181 | process_zero.cwd_xp = vfs_root_inode_xp; |
---|
1182 | } |
---|
1183 | |
---|
1184 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1185 | if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), |
---|
1186 | (info->x_size * info->y_size) ); |
---|
1187 | barrier_wait( &local_barrier , info->cores_nr ); |
---|
1188 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1189 | |
---|
1190 | #if DEBUG_KERNEL_INIT |
---|
1191 | if( (core_lid == 0) & (local_cxy == 0) ) |
---|
1192 | printk("\n[%s] : exit barrier 4 : VFS root (%x,%x) in cluster 0 / cycle %d\n", |
---|
1193 | __FUNCTION__, GET_CXY(process_zero.vfs_root_xp), |
---|
1194 | GET_PTR(process_zero.vfs_root_xp), (uint32_t)hal_get_cycles() ); |
---|
1195 | #endif |
---|
1196 | |
---|
1197 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1198 | // STEP 5 : Other CP0s allocate memory for the selected FS context, |
---|
1199 | // and initialise both the local FS context and the local VFS context |
---|
1200 | // from values stored in cluster 0. |
---|
1201 | // They get the VFS root inode extended pointer from cluster 0. |
---|
1202 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1203 | |
---|
1204 | if( (core_lid == 0) && (local_cxy != 0) ) |
---|
1205 | { |
---|
1206 | // File System must be FATFS in this implementation, |
---|
1207 | // but other File System can be introduced here |
---|
1208 | if( CONFIG_VFS_ROOT_IS_FATFS ) |
---|
1209 | { |
---|
1210 | // 1. allocate memory for local FATFS context |
---|
1211 | fatfs_ctx_t * local_fatfs_ctx = fatfs_ctx_alloc(); |
---|
1212 | |
---|
1213 | // check memory |
---|
1214 | if( local_fatfs_ctx == NULL ) |
---|
1215 | { |
---|
1216 | printk("\n[PANIC] in %s : cannot create FATFS context in cluster %x\n", |
---|
1217 | __FUNCTION__ , local_cxy ); |
---|
1218 | hal_core_sleep(); |
---|
1219 | } |
---|
1220 | |
---|
1221 | // 2. get local pointer on VFS context for FATFS |
---|
1222 | vfs_ctx_t * vfs_ctx = &fs_context[FS_TYPE_FATFS]; |
---|
1223 | |
---|
1224 | // 3. get local pointer on FATFS context in cluster 0 |
---|
1225 | fatfs_ctx_t * remote_fatfs_ctx = hal_remote_lpt( XPTR( 0 , &vfs_ctx->extend ) ); |
---|
1226 | |
---|
1227 | // 4. copy FATFS context from cluster 0 to local cluster |
---|
1228 | hal_remote_memcpy( XPTR( local_cxy , local_fatfs_ctx ), |
---|
1229 | XPTR( 0 , remote_fatfs_ctx ), sizeof(fatfs_ctx_t) ); |
---|
1230 | |
---|
1231 | // 5. copy VFS context from cluster 0 to local cluster |
---|
1232 | hal_remote_memcpy( XPTR( local_cxy , vfs_ctx ), |
---|
1233 | XPTR( 0 , vfs_ctx ), sizeof(vfs_ctx_t) ); |
---|
1234 | |
---|
1235 | // 6. update extend field in local copy of VFS context |
---|
1236 | vfs_ctx->extend = local_fatfs_ctx; |
---|
1237 | |
---|
1238 | if( ((fatfs_ctx_t *)vfs_ctx->extend)->sectors_per_cluster != 8 ) |
---|
1239 | { |
---|
1240 | printk("\n[PANIC] in %s : illegal FATFS context in cluster %x\n", |
---|
1241 | __FUNCTION__ , local_cxy ); |
---|
1242 | hal_core_sleep(); |
---|
1243 | } |
---|
1244 | } |
---|
1245 | |
---|
1246 | // get extended pointer on VFS root inode from cluster 0 |
---|
1247 | vfs_root_inode_xp = hal_remote_l64( XPTR( 0 , &process_zero.vfs_root_xp ) ); |
---|
1248 | |
---|
1249 | // update local process_zero descriptor |
---|
1250 | process_zero.vfs_root_xp = vfs_root_inode_xp; |
---|
1251 | process_zero.cwd_xp = vfs_root_inode_xp; |
---|
1252 | } |
---|
1253 | |
---|
1254 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1255 | if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), |
---|
1256 | (info->x_size * info->y_size) ); |
---|
1257 | barrier_wait( &local_barrier , info->cores_nr ); |
---|
1258 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1259 | |
---|
1260 | #if DEBUG_KERNEL_INIT |
---|
1261 | if( (core_lid == 0) & (local_cxy == 1) ) |
---|
1262 | printk("\n[%s] : exit barrier 5 : VFS root (%x,%x) in cluster 1 / cycle %d\n", |
---|
1263 | __FUNCTION__, GET_CXY(process_zero.vfs_root_xp), |
---|
1264 | GET_PTR(process_zero.vfs_root_xp), (uint32_t)hal_get_cycles() ); |
---|
1265 | #endif |
---|
1266 | |
---|
1267 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1268 | // STEP 6 : CP0 in cluster 0 makes the global DEVFS tree initialisation: |
---|
1269 | // It initializes the DEVFS context, and creates the DEVFS |
---|
1270 | // "dev" and "external" inodes in cluster 0. |
---|
1271 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1272 | |
---|
1273 | if( (core_lid == 0) && (local_cxy == 0) ) |
---|
1274 | { |
---|
1275 | // 1. allocate memory for DEVFS context extension in cluster 0 |
---|
1276 | devfs_ctx_t * devfs_ctx = devfs_ctx_alloc(); |
---|
1277 | |
---|
1278 | if( devfs_ctx == NULL ) |
---|
1279 | { |
---|
1280 | printk("\n[PANIC] in %s : cannot create DEVFS context in cluster 0\n", |
---|
1281 | __FUNCTION__ , local_cxy ); |
---|
1282 | hal_core_sleep(); |
---|
1283 | } |
---|
1284 | |
---|
1285 | // 2. initialize the DEVFS entry in the vfs_context[] array |
---|
1286 | vfs_ctx_init( FS_TYPE_DEVFS, // fs type |
---|
1287 | 0, // attributes: unused |
---|
1288 | 0, // total_clusters: unused |
---|
1289 | 0, // cluster_size: unused |
---|
1290 | vfs_root_inode_xp, // VFS root |
---|
1291 | devfs_ctx ); // extend |
---|
1292 | |
---|
1293 | // 3. create "dev" and "external" inodes (directories) |
---|
1294 | devfs_global_init( process_zero.vfs_root_xp, |
---|
1295 | &devfs_dev_inode_xp, |
---|
1296 | &devfs_external_inode_xp ); |
---|
1297 | |
---|
1298 | // 4. initializes DEVFS context extension |
---|
1299 | devfs_ctx_init( devfs_ctx, |
---|
1300 | devfs_dev_inode_xp, |
---|
1301 | devfs_external_inode_xp ); |
---|
1302 | } |
---|
1303 | |
---|
1304 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1305 | if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), |
---|
1306 | (info->x_size * info->y_size) ); |
---|
1307 | barrier_wait( &local_barrier , info->cores_nr ); |
---|
1308 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1309 | |
---|
1310 | #if DEBUG_KERNEL_INIT |
---|
1311 | if( (core_lid == 0) & (local_cxy == 0) ) |
---|
1312 | printk("\n[%s] : exit barrier 6 : DEVFS root initialized in cluster 0 / cycle %d\n", |
---|
1313 | __FUNCTION__, (uint32_t)hal_get_cycles() ); |
---|
1314 | #endif |
---|
1315 | |
---|
1316 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1317 | // STEP 7 : All CP0s complete in parallel the DEVFS tree initialization. |
---|
1318 | // Each CP0 get the "dev" and "external" extended pointers from |
---|
1319 | // values stored in cluster 0. |
---|
1320 | // Then each CP0 in cluster(i) creates the DEVFS "internal" directory, |
---|
1321 | // and creates the pseudo-files for all chdevs in cluster (i). |
---|
1322 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1323 | |
---|
1324 | if( core_lid == 0 ) |
---|
1325 | { |
---|
1326 | // get extended pointer on "extend" field of VFS context for DEVFS in cluster 0 |
---|
1327 | xptr_t extend_xp = XPTR( 0 , &fs_context[FS_TYPE_DEVFS].extend ); |
---|
1328 | |
---|
1329 | // get pointer on DEVFS context in cluster 0 |
---|
1330 | devfs_ctx_t * devfs_ctx = hal_remote_lpt( extend_xp ); |
---|
1331 | |
---|
1332 | devfs_dev_inode_xp = hal_remote_l64( XPTR( 0 , &devfs_ctx->dev_inode_xp ) ); |
---|
1333 | devfs_external_inode_xp = hal_remote_l64( XPTR( 0 , &devfs_ctx->external_inode_xp ) ); |
---|
1334 | |
---|
1335 | // populate DEVFS in all clusters |
---|
1336 | devfs_local_init( devfs_dev_inode_xp, |
---|
1337 | devfs_external_inode_xp, |
---|
1338 | &devfs_internal_inode_xp ); |
---|
1339 | } |
---|
1340 | |
---|
1341 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1342 | if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), |
---|
1343 | (info->x_size * info->y_size) ); |
---|
1344 | barrier_wait( &local_barrier , info->cores_nr ); |
---|
1345 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1346 | |
---|
1347 | #if DEBUG_KERNEL_INIT |
---|
1348 | if( (core_lid == 0) & (local_cxy == 0) ) |
---|
1349 | printk("\n[%s] : exit barrier 7 : DEV initialized in cluster 0 / cycle %d\n", |
---|
1350 | __FUNCTION__, (uint32_t)hal_get_cycles() ); |
---|
1351 | #endif |
---|
1352 | |
---|
1353 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1354 | // STEP 8 : CP0 in cluster 0 creates the first user process (process_init) |
---|
1355 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1356 | |
---|
1357 | if( (core_lid == 0) && (local_cxy == 0) ) |
---|
1358 | { |
---|
1359 | |
---|
1360 | #if( DEBUG_KERNEL_INIT & 1 ) |
---|
1361 | vfs_display( vfs_root_inode_xp ); |
---|
1362 | #endif |
---|
1363 | |
---|
1364 | process_init_create(); |
---|
1365 | } |
---|
1366 | |
---|
1367 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1368 | if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), |
---|
1369 | (info->x_size * info->y_size) ); |
---|
1370 | barrier_wait( &local_barrier , info->cores_nr ); |
---|
1371 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1372 | |
---|
1373 | #if DEBUG_KERNEL_INIT |
---|
1374 | if( (core_lid == 0) & (local_cxy == 0) ) |
---|
1375 | printk("\n[%s] : exit barrier 8 : process init created / cycle %d\n", |
---|
1376 | __FUNCTION__, (uint32_t)hal_get_cycles() ); |
---|
1377 | #endif |
---|
1378 | |
---|
1379 | #if (DEBUG_KERNEL_INIT & 1) |
---|
1380 | if( (core_lid == 0) & (local_cxy == 0) ) |
---|
1381 | sched_display( 0 ); |
---|
1382 | #endif |
---|
1383 | |
---|
1384 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1385 | // STEP 9 : CP0 in cluster 0 print banner |
---|
1386 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1387 | |
---|
1388 | if( (core_lid == 0) && (local_cxy == 0) ) |
---|
1389 | { |
---|
1390 | print_banner( (info->x_size * info->y_size) , info->cores_nr ); |
---|
1391 | |
---|
1392 | #if( DEBUG_KERNEL_INIT & 1 ) |
---|
1393 | printk("\n\n***** memory fooprint for main kernel objects\n\n" |
---|
1394 | " - thread descriptor : %d bytes\n" |
---|
1395 | " - process descriptor : %d bytes\n" |
---|
1396 | " - cluster manager : %d bytes\n" |
---|
1397 | " - chdev descriptor : %d bytes\n" |
---|
1398 | " - core descriptor : %d bytes\n" |
---|
1399 | " - scheduler : %d bytes\n" |
---|
1400 | " - rpc fifo : %d bytes\n" |
---|
1401 | " - page descriptor : %d bytes\n" |
---|
1402 | " - mapper root : %d bytes\n" |
---|
1403 | " - ppm manager : %d bytes\n" |
---|
1404 | " - kcm manager : %d bytes\n" |
---|
1405 | " - khm manager : %d bytes\n" |
---|
1406 | " - vmm manager : %d bytes\n" |
---|
1407 | " - gpt root : %d bytes\n" |
---|
1408 | " - list item : %d bytes\n" |
---|
1409 | " - xlist item : %d bytes\n" |
---|
1410 | " - busylock : %d bytes\n" |
---|
1411 | " - remote busylock : %d bytes\n" |
---|
1412 | " - queuelock : %d bytes\n" |
---|
1413 | " - remote queuelock : %d bytes\n" |
---|
1414 | " - rwlock : %d bytes\n" |
---|
1415 | " - remote rwlock : %d bytes\n", |
---|
1416 | sizeof( thread_t ), |
---|
1417 | sizeof( process_t ), |
---|
1418 | sizeof( cluster_t ), |
---|
1419 | sizeof( chdev_t ), |
---|
1420 | sizeof( core_t ), |
---|
1421 | sizeof( scheduler_t ), |
---|
1422 | sizeof( remote_fifo_t ), |
---|
1423 | sizeof( page_t ), |
---|
1424 | sizeof( mapper_t ), |
---|
1425 | sizeof( ppm_t ), |
---|
1426 | sizeof( kcm_t ), |
---|
1427 | sizeof( khm_t ), |
---|
1428 | sizeof( vmm_t ), |
---|
1429 | sizeof( gpt_t ), |
---|
1430 | sizeof( list_entry_t ), |
---|
1431 | sizeof( xlist_entry_t ), |
---|
1432 | sizeof( busylock_t ), |
---|
1433 | sizeof( remote_busylock_t ), |
---|
1434 | sizeof( queuelock_t ), |
---|
1435 | sizeof( remote_queuelock_t ), |
---|
1436 | sizeof( rwlock_t ), |
---|
1437 | sizeof( remote_rwlock_t )); |
---|
1438 | #endif |
---|
1439 | |
---|
1440 | } |
---|
1441 | |
---|
1442 | // each core activates its private TICK IRQ |
---|
1443 | dev_pic_enable_timer( CONFIG_SCHED_TICK_MS_PERIOD ); |
---|
1444 | |
---|
1445 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1446 | if( core_lid == 0 ) xbarrier_wait( XPTR( 0 , &global_barrier ), |
---|
1447 | (info->x_size * info->y_size) ); |
---|
1448 | barrier_wait( &local_barrier , info->cores_nr ); |
---|
1449 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1450 | |
---|
1451 | #if DEBUG_KERNEL_INIT |
---|
1452 | thread_t * this = CURRENT_THREAD; |
---|
1453 | printk("\n[%s] : thread[%x,%x] on core[%x,%d] jumps to thread_idle_func() / cycle %d\n", |
---|
1454 | __FUNCTION__ , this->process->pid, this->trdid, |
---|
1455 | local_cxy, core_lid, (uint32_t)hal_get_cycles() ); |
---|
1456 | #endif |
---|
1457 | |
---|
1458 | // each core jump to thread_idle_func |
---|
1459 | thread_idle_func(); |
---|
1460 | |
---|
1461 | } // end kernel_init() |
---|
1462 | |
---|