source: trunk/kernel/kern/process.c @ 659

Last change on this file since 659 was 657, checked in by alain, 5 years ago

Introduce remote_buf.c/.h & socket.c/.h files.
Update dev_nic.c/.h files.

File size: 87.6 KB
Line 
1/*
2 * process.c - process related functions definition.
3 *
4 * Authors  Ghassan Almaless (2008,2009,2010,2011,2012)
5 *          Mohamed Lamine Karaoui (2015)
6 *          Alain Greiner (2016,2017,2018,2019,2020)
7 *
8 * Copyright (c) UPMC Sorbonne Universites
9 *
10 * This file is part of ALMOS-MKH.
11 *
12 * ALMOS-MKH is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; version 2.0 of the License.
15 *
16 * ALMOS-MKH is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
23 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26#include <kernel_config.h>
27#include <hal_kernel_types.h>
28#include <hal_remote.h>
29#include <hal_uspace.h>
30#include <hal_irqmask.h>
31#include <hal_vmm.h>
32#include <errno.h>
33#include <printk.h>
34#include <memcpy.h>
35#include <bits.h>
36#include <kmem.h>
37#include <page.h>
38#include <vmm.h>
39#include <vfs.h>
40#include <core.h>
41#include <thread.h>
42#include <chdev.h>
43#include <list.h>
44#include <string.h>
45#include <scheduler.h>
46#include <busylock.h>
47#include <queuelock.h>
48#include <remote_queuelock.h>
49#include <rwlock.h>
50#include <remote_rwlock.h>
51#include <dqdt.h>
52#include <cluster.h>
53#include <ppm.h>
54#include <boot_info.h>
55#include <process.h>
56#include <elf.h>
57#include <syscalls.h>
58#include <shared_syscalls.h>
59
60//////////////////////////////////////////////////////////////////////////////////////////
61// Extern global variables
62//////////////////////////////////////////////////////////////////////////////////////////
63
64extern process_t           process_zero;     // allocated in kernel_init.c
65extern chdev_directory_t   chdev_dir;        // allocated in kernel_init.c
66
67//////////////////////////////////////////////////////////////////////////////////////////
68// Process initialisation related functions
69//////////////////////////////////////////////////////////////////////////////////////////
70
71/////////////////////////////////
72process_t * process_alloc( void )
73{
74        kmem_req_t req;
75
76    req.type  = KMEM_KCM;
77        req.order = bits_log2( sizeof(process_t) );
78        req.flags = AF_KERNEL;
79
80    return kmem_alloc( &req );
81}
82
83////////////////////////////////////////
84void process_free( process_t * process )
85{
86    kmem_req_t  req;
87
88        req.type = KMEM_KCM;
89        req.ptr  = process;
90        kmem_free( &req );
91}
92
93////////////////////////////////////////////////////
94error_t process_reference_init( process_t * process,
95                                pid_t       pid,
96                                xptr_t      parent_xp )
97{
98    error_t     error;
99    xptr_t      process_xp;
100    cxy_t       parent_cxy;
101    process_t * parent_ptr;
102    xptr_t      stdin_xp;
103    xptr_t      stdout_xp;
104    xptr_t      stderr_xp;
105    uint32_t    stdin_id;
106    uint32_t    stdout_id;
107    uint32_t    stderr_id;
108    uint32_t    txt_id;
109    char        rx_path[40];
110    char        tx_path[40];
111    xptr_t      file_xp;
112    xptr_t      chdev_xp;
113    chdev_t   * chdev_ptr;
114    cxy_t       chdev_cxy;
115    pid_t       parent_pid;
116    vmm_t     * vmm;
117
118    // build extended pointer on this reference process
119    process_xp = XPTR( local_cxy , process );
120
121    // get pointer on process vmm
122    vmm = &process->vmm;
123
124    // get parent process cluster and local pointer
125    parent_cxy = GET_CXY( parent_xp );
126    parent_ptr = GET_PTR( parent_xp );
127
128    // get parent_pid
129    parent_pid = hal_remote_l32( XPTR( parent_cxy , &parent_ptr->pid ) );
130
131#if DEBUG_PROCESS_REFERENCE_INIT
132thread_t * this = CURRENT_THREAD;
133uint32_t cycle = (uint32_t)hal_get_cycles();
134if( DEBUG_PROCESS_REFERENCE_INIT < cycle )
135printk("\n[%s] thread[%x,%x] enter to initialize process %x / cycle %d\n",
136__FUNCTION__, this->process->pid, this->trdid, pid, cycle );
137#endif
138
139    // initialize pid, ref_xp, parent_xp, owner_xp, term_state fields
140        process->pid        = pid;
141    process->ref_xp     = XPTR( local_cxy , process );
142    process->owner_xp   = XPTR( local_cxy , process );
143    process->parent_xp  = parent_xp;
144    process->term_state = 0;
145
146    // initialize VFS root inode and CWD inode
147    process->vfs_root_xp = hal_remote_l64( XPTR( parent_cxy, &parent_ptr->vfs_root_xp ) );
148    process->cwd_xp      = hal_remote_l64( XPTR( parent_cxy, &parent_ptr->cwd_xp ) );
149
150    // initialize VSL as empty
151    vmm->vsegs_nr = 0;
152        xlist_root_init( XPTR( local_cxy , &vmm->vsegs_root ) );
153
154    // create an empty GPT as required by the architecture
155    error = hal_gpt_create( &vmm->gpt );
156    if( error ) 
157    {
158        printk("\n[ERROR] in %s : cannot create empty GPT\n", __FUNCTION__ );
159        return -1;
160    }
161
162#if (DEBUG_PROCESS_REFERENCE_INIT & 1)
163if( DEBUG_PROCESS_REFERENCE_INIT < cycle )
164printk("\n[%s] thread[%x,%x] created empty GPT for process %x\n",
165__FUNCTION__, parent_pid, this->trdid, pid );
166#endif
167
168    // initialize VSL lock
169        remote_rwlock_init( XPTR( local_cxy , &vmm->vsl_lock ) , LOCK_VMM_VSL );
170
171    // register kernel vsegs in user process VMM as required by the architecture
172    error = hal_vmm_kernel_update( process );
173    if( error ) 
174    {
175        printk("\n[ERROR] in %s : cannot register kernel vsegs in VMM\n", __FUNCTION__ );
176        return -1;
177    }
178
179#if (DEBUG_PROCESS_REFERENCE_INIT & 1)
180if( DEBUG_PROCESS_REFERENCE_INIT < cycle )
181printk("\n[%s] thread[%x,%x] registered kernel vsegs in VSL for process %x\n",
182__FUNCTION__, parent_pid, this->trdid, pid );
183#endif
184
185    // create "args" and "envs" vsegs
186    // create "stacks" and "mmap" vsegs allocators
187    // initialize locks protecting GPT and VSL
188    error = vmm_user_init( process );
189    if( error ) 
190    {
191        printk("\n[ERROR] in %s : cannot register user vsegs in VMM\n", __FUNCTION__ );
192        return -1;
193    }
194 
195#if (DEBUG_PROCESS_REFERENCE_INIT & 1)
196cycle = (uint32_t)hal_get_cycles();
197if( DEBUG_PROCESS_REFERENCE_INIT < cycle )
198printk("\n[%s] thread[%x,%x] initialized vmm for process %x\n", 
199__FUNCTION__, parent_pid, this->trdid, pid );
200#endif
201
202    // initialize fd_array as empty
203    process_fd_init( process );
204
205    // define the stdin/stdout/stderr pseudo files <=> select a TXT terminal.
206    if( (pid == 1) || (parent_pid  == 1) )      // INIT or KSH  process
207    {
208        // select a TXT channel
209        if( pid == 1 )  txt_id = 0;                     // INIT
210        else            txt_id = process_txt_alloc();   // KSH
211
212        // attach process to TXT
213        process_txt_attach( process , txt_id ); 
214
215#if (DEBUG_PROCESS_REFERENCE_INIT & 1)
216cycle = (uint32_t)hal_get_cycles();
217if( DEBUG_PROCESS_REFERENCE_INIT < cycle )
218printk("\n[%s] thread[%x,%x] / process %x attached to TXT%d / cycle %d\n", 
219__FUNCTION__, parent_pid, this->trdid, pid, txt_id, cycle );
220#endif
221        // build path to TXT_RX[i] and TXT_TX[i] chdevs
222        snprintf( rx_path , 40 , "/dev/external/txt%d_rx", txt_id );
223        snprintf( tx_path , 40 , "/dev/external/txt%d_tx", txt_id );
224
225        // create stdin pseudo file         
226        error = vfs_open(  process->vfs_root_xp,
227                           rx_path,
228                           process_xp,
229                           O_RDONLY, 
230                           0,                // FIXME chmod
231                           &stdin_xp, 
232                           &stdin_id );
233        if( error )
234        {
235            printk("\n[ERROR] in %s : cannot open stdout pseudo-file\n", __FUNCTION__ );
236            return -1;
237        }
238
239assert( (stdin_id == 0) , "stdin index must be 0" );
240
241#if (DEBUG_PROCESS_REFERENCE_INIT & 1)
242cycle = (uint32_t)hal_get_cycles();
243if( DEBUG_PROCESS_REFERENCE_INIT < cycle )
244printk("\n[%s] thread[%x,%x] / stdin open for process %x / cycle %d\n", 
245__FUNCTION__, parent_pid, this->trdid, pid, cycle );
246#endif
247
248        // create stdout pseudo file         
249        error = vfs_open(  process->vfs_root_xp,
250                           tx_path,
251                           process_xp,
252                           O_WRONLY, 
253                           0,                // FIXME chmod
254                           &stdout_xp, 
255                           &stdout_id );
256        if( error )
257        {
258            printk("\n[ERROR] in %s : cannot open stdout pseudo-file\n", __FUNCTION__ );
259            return -1;
260        }
261
262assert( (stdout_id == 1) , "stdout index must be 1" );
263
264#if (DEBUG_PROCESS_REFERENCE_INIT & 1)
265cycle = (uint32_t)hal_get_cycles();
266if( DEBUG_PROCESS_REFERENCE_INIT < cycle )
267printk("\n[%s] thread[%x,%x] / stdout open for process %x / cycle %d\n", 
268__FUNCTION__, parent_pid, this->trdid, pid, cycle );
269#endif
270
271        // create stderr pseudo file         
272        error = vfs_open(  process->vfs_root_xp,
273                           tx_path,
274                           process_xp,
275                           O_WRONLY, 
276                           0,                // FIXME chmod
277                           &stderr_xp, 
278                           &stderr_id );
279        if( error )
280        {
281            printk("\n[ERROR] in %s : cannot open stderr pseudo-file\n", __FUNCTION__ );
282            return -1;
283        }
284
285assert( (stderr_id == 2) , "stderr index must be 2" );
286
287#if (DEBUG_PROCESS_REFERENCE_INIT & 1)
288cycle = (uint32_t)hal_get_cycles();
289if( DEBUG_PROCESS_REFERENCE_INIT < cycle )
290printk("\n[%s] thread[%x,%x] / stderr open for process %x / cycle %d\n", 
291__FUNCTION__, parent_pid, this->trdid, pid, cycle );
292#endif
293
294    }
295    else                                            // normal user process
296    {
297        // get extended pointer on stdin pseudo file in parent process
298        file_xp = (xptr_t)hal_remote_l64( XPTR( parent_cxy,
299                                                &parent_ptr->fd_array.array[0] ) );
300
301        // get extended pointer on parent process TXT chdev
302        chdev_xp = chdev_from_file( file_xp );
303 
304        // get cluster and local pointer on chdev
305        chdev_cxy = GET_CXY( chdev_xp );
306        chdev_ptr = GET_PTR( chdev_xp );
307 
308        // get parent process TXT terminal index
309        txt_id = hal_remote_l32( XPTR( chdev_cxy , &chdev_ptr->channel ) );
310
311        // attach child process to parent process TXT terminal
312        process_txt_attach( process , txt_id ); 
313
314        // copy all open files from parent process fd_array to this process
315        process_fd_remote_copy( XPTR( local_cxy , &process->fd_array ),
316                                XPTR( parent_cxy , &parent_ptr->fd_array ) );
317    }
318
319    // initialize lock protecting CWD changes
320    remote_busylock_init( XPTR( local_cxy , 
321                                &process->cwd_lock ), LOCK_PROCESS_CWD );
322
323#if (DEBUG_PROCESS_REFERENCE_INIT & 1)
324cycle = (uint32_t)hal_get_cycles();
325if( DEBUG_PROCESS_REFERENCE_INIT < cycle )
326printk("\n[%s] thread[%x,%x] / set fd_array for process %x / cycle %d\n", 
327__FUNCTION__, parent_pid, this->trdid, pid , cycle );
328#endif
329
330    // reset children list root
331    xlist_root_init( XPTR( local_cxy , &process->children_root ) );
332    process->children_nr     = 0;
333    remote_queuelock_init( XPTR( local_cxy,
334                                 &process->children_lock ), LOCK_PROCESS_CHILDREN );
335
336    // reset semaphore / mutex / barrier / condvar list roots and lock
337    xlist_root_init( XPTR( local_cxy , &process->sem_root ) );
338    xlist_root_init( XPTR( local_cxy , &process->mutex_root ) );
339    xlist_root_init( XPTR( local_cxy , &process->barrier_root ) );
340    xlist_root_init( XPTR( local_cxy , &process->condvar_root ) );
341    remote_queuelock_init( XPTR( local_cxy , 
342                                 &process->sync_lock ), LOCK_PROCESS_USERSYNC );
343
344    // reset open directories root and lock
345    xlist_root_init( XPTR( local_cxy , &process->dir_root ) );
346    remote_queuelock_init( XPTR( local_cxy , 
347                                 &process->dir_lock ), LOCK_PROCESS_DIR );
348
349    // register new process in the local cluster manager pref_tbl[]
350    lpid_t lpid = LPID_FROM_PID( pid );
351    LOCAL_CLUSTER->pmgr.pref_tbl[lpid] = XPTR( local_cxy , process );
352
353    // register new process descriptor in local cluster manager local_list
354    cluster_process_local_link( process );
355
356    // register new process descriptor in local cluster manager copies_list
357    cluster_process_copies_link( process );
358
359    // initialize th_tbl[] array and associated threads
360    uint32_t i;
361
362    for( i = 0 ; i < CONFIG_THREADS_MAX_PER_CLUSTER ; i++ )
363        {
364        process->th_tbl[i] = NULL;
365    }
366    process->th_nr  = 0;
367    rwlock_init( &process->th_lock , LOCK_PROCESS_THTBL );
368
369        hal_fence();
370
371#if (DEBUG_PROCESS_REFERENCE_INIT & 1)
372cycle = (uint32_t)hal_get_cycles();
373if( DEBUG_PROCESS_REFERENCE_INIT < cycle )
374printk("\n[%s] thread[%x,%x] exit for process %x / cycle %d\n", 
375__FUNCTION__, parent_pid, this->trdid, pid, cycle );
376#endif
377
378#if (DEBUG_PROCESS_REFERENCE_INIT & 1)
379hal_vmm_display( parent_xp , false );
380hal_vmm_display( XPTR( local_cxy , process ) , false );
381#endif
382
383    return 0;
384
385}  // process_reference_init()
386
387/////////////////////////////////////////////////////
388error_t process_copy_init( process_t * local_process,
389                           xptr_t      reference_process_xp )
390{
391    error_t   error;
392    vmm_t   * vmm;
393
394    // get reference process cluster and local pointer
395    cxy_t       ref_cxy = GET_CXY( reference_process_xp );
396    process_t * ref_ptr = GET_PTR( reference_process_xp );
397
398    // get pointer on process vmm
399    vmm = &local_process->vmm;
400
401    // initialize PID, REF_XP, PARENT_XP, and STATE
402    local_process->pid        = hal_remote_l32(  XPTR( ref_cxy , &ref_ptr->pid ) );
403    local_process->parent_xp  = hal_remote_l64( XPTR( ref_cxy , &ref_ptr->parent_xp ) );
404    local_process->ref_xp     = reference_process_xp;
405    local_process->owner_xp   = reference_process_xp;
406    local_process->term_state = 0;
407
408#if DEBUG_PROCESS_COPY_INIT
409thread_t * this = CURRENT_THREAD; 
410uint32_t cycle = (uint32_t)hal_get_cycles();
411if( DEBUG_PROCESS_COPY_INIT < cycle )
412printk("\n[%s] thread[%x,%x] enter for process %x / cycle %d\n",
413__FUNCTION__, this->process->pid, this->trdid, local_process->pid, cycle );
414#endif
415
416// check user process
417assert( (local_process->pid != 0), "LPID cannot be 0" );
418
419    // initialize VSL as empty
420    vmm->vsegs_nr = 0;
421        xlist_root_init( XPTR( local_cxy , &vmm->vsegs_root ) );
422
423    // create an empty GPT as required by the architecture
424    error = hal_gpt_create( &vmm->gpt );
425    if( error ) 
426    {
427        printk("\n[ERROR] in %s : cannot create empty GPT\n", __FUNCTION__ );
428        return -1;
429    }
430
431    // initialize GPT and VSL locks
432        remote_rwlock_init( XPTR( local_cxy , &vmm->vsl_lock ) , LOCK_VMM_VSL );
433
434    // register kernel vsegs in VMM as required by the architecture
435    error = hal_vmm_kernel_update( local_process );
436    if( error ) 
437    {
438        printk("\n[ERROR] in %s : cannot register kernel vsegs in VMM\n", __FUNCTION__ );
439        return -1;
440    }
441
442    // create "args" and "envs" vsegs
443    // create "stacks" and "mmap" vsegs allocators
444    // initialize locks protecting GPT and VSL
445    error = vmm_user_init( local_process );
446    if( error ) 
447    {
448        printk("\n[ERROR] in %s : cannot register user vsegs in VMM\n", __FUNCTION__ );
449        return -1;
450    }
451 
452#if (DEBUG_PROCESS_COPY_INIT & 1)
453cycle = (uint32_t)hal_get_cycles();
454if( DEBUG_PROCESS_COPY_INIT < cycle )
455printk("\n[%s] thread[%x,%x] initialized vmm for process %x / cycle %d\n", 
456__FUNCTION__, parent_pid, this->trdid, pid, cycle );
457#endif
458
459    // set process file descriptors array
460        process_fd_init( local_process );
461
462    // set vfs_root_xp / vfs_bin_xp / cwd_xp fields
463    local_process->vfs_root_xp = hal_remote_l64( XPTR( ref_cxy , &ref_ptr->vfs_root_xp ) );
464    local_process->vfs_bin_xp  = hal_remote_l64( XPTR( ref_cxy , &ref_ptr->vfs_bin_xp ) );
465    local_process->cwd_xp      = XPTR_NULL;
466
467    // reset children list root (not used in a process descriptor copy)
468    xlist_root_init( XPTR( local_cxy , &local_process->children_root ) );
469    local_process->children_nr   = 0;
470    remote_queuelock_init( XPTR( local_cxy , &local_process->children_lock ),
471                           LOCK_PROCESS_CHILDREN );
472
473    // reset children_list (not used in a process descriptor copy)
474    xlist_entry_init( XPTR( local_cxy , &local_process->children_list ) );
475
476    // reset semaphores list root (not used in a process descriptor copy)
477    xlist_root_init( XPTR( local_cxy , &local_process->sem_root ) );
478    xlist_root_init( XPTR( local_cxy , &local_process->mutex_root ) );
479    xlist_root_init( XPTR( local_cxy , &local_process->barrier_root ) );
480    xlist_root_init( XPTR( local_cxy , &local_process->condvar_root ) );
481
482    // initialize th_tbl[] array and associated fields
483    uint32_t i;
484    for( i = 0 ; i < CONFIG_THREADS_MAX_PER_CLUSTER ; i++ )
485        {
486        local_process->th_tbl[i] = NULL;
487    }
488    local_process->th_nr  = 0;
489    rwlock_init( &local_process->th_lock , LOCK_PROCESS_THTBL );
490
491    // register new process descriptor in local cluster manager local_list
492    cluster_process_local_link( local_process );
493
494    // register new process descriptor in owner cluster manager copies_list
495    cluster_process_copies_link( local_process );
496
497        hal_fence();
498
499#if DEBUG_PROCESS_COPY_INIT
500cycle = (uint32_t)hal_get_cycles();
501if( DEBUG_PROCESS_COPY_INIT < cycle )
502printk("\n[%s] thread[%x,%x] exit for process %x / cycle %d\n",
503__FUNCTION__, this->process->pid, this->trdid, local_process->pid, cycle );
504#endif
505
506    return 0;
507
508} // end process_copy_init()
509
510///////////////////////////////////////////
511void process_destroy( process_t * process )
512{
513    xptr_t      parent_xp;
514    process_t * parent_ptr;
515    cxy_t       parent_cxy;
516    xptr_t      children_lock_xp;
517    xptr_t      children_nr_xp;
518
519    pid_t       pid = process->pid;
520
521// check no more threads
522assert( (process->th_nr == 0),
523"process %x in cluster %x contains threads", pid , local_cxy );
524
525#if DEBUG_PROCESS_DESTROY
526thread_t * this = CURRENT_THREAD;
527uint32_t cycle = (uint32_t)hal_get_cycles();
528if( DEBUG_PROCESS_DESTROY < cycle )
529printk("\n[%s] thread[%x,%x] enter for process %x in cluster %x / cycle %d\n",
530__FUNCTION__, this->process->pid, this->trdid, pid, local_cxy, cycle );
531#endif
532
533    // Destroy VMM
534    vmm_destroy( process );
535
536#if (DEBUG_PROCESS_DESTROY & 1)
537if( DEBUG_PROCESS_DESTROY < cycle )
538printk("\n[%s] thread[%x,%x] destroyed VMM for process %x in cluster %x\n",
539__FUNCTION__, this->process->pid, this->trdid, pid, local_cxy );
540#endif
541
542    // remove process from local_list in local cluster manager
543    cluster_process_local_unlink( process );
544
545#if (DEBUG_PROCESS_DESTROY & 1)
546if( DEBUG_PROCESS_DESTROY < cycle )
547printk("\n[%s] thread[%x,%x] removed process %x in cluster %x from local list\n",
548__FUNCTION__, this->process->pid, this->trdid, pid, local_cxy );
549#endif
550
551    // remove process from copies_list in owner cluster manager
552    cluster_process_copies_unlink( process );
553
554#if (DEBUG_PROCESS_DESTROY & 1)
555if( DEBUG_PROCESS_DESTROY < cycle )
556printk("\n[%s] thread[%x,%x] removed process %x in cluster %x from copies list\n",
557__FUNCTION__, this->process->pid, this->trdid, pid, local_cxy );
558#endif
559
560    // when target process cluster is the owner cluster
561    // - remove process from TXT list and transfer ownership
562    // - remove process from children_list
563    // - release PID
564    if( CXY_FROM_PID( pid ) == local_cxy )
565    {
566        process_txt_detach( XPTR( local_cxy , process ) );
567
568#if (DEBUG_PROCESS_DESTROY & 1)
569if( DEBUG_PROCESS_DESTROY < cycle )
570printk("\n[%s] thread[%x,%x] removed process %x from TXT list\n",
571__FUNCTION__, this->process->pid, this->trdid, pid );
572#endif
573
574        // get pointers on parent process
575        parent_xp  = process->parent_xp;
576        parent_cxy = GET_CXY( parent_xp );
577        parent_ptr = GET_PTR( parent_xp );
578
579        // get extended pointer on children_lock in parent process
580        children_lock_xp = XPTR( parent_cxy , &parent_ptr->children_lock );
581        children_nr_xp   = XPTR( parent_cxy , &parent_ptr->children_nr );
582
583        // remove process from children_list
584        remote_queuelock_acquire( children_lock_xp );
585        xlist_unlink( XPTR( local_cxy , &process->children_list ) );
586            hal_remote_atomic_add( children_nr_xp , -1 );
587        remote_queuelock_release( children_lock_xp );
588
589#if (DEBUG_PROCESS_DESTROY & 1)
590if( DEBUG_PROCESS_DESTROY < cycle )
591printk("\n[%s] thread[%x,%x] removed process %x from parent process children list\n",
592__FUNCTION__, this->process->pid, this->trdid, pid );
593#endif
594
595        // release the process PID to cluster manager
596        cluster_pid_release( pid );
597
598#if (DEBUG_PROCESS_DESTROY & 1)
599if( DEBUG_PROCESS_DESTROY < cycle )
600printk("\n[%s] thread[%x,%x] released process PID %x to pmgr in cluster %x\n",
601__FUNCTION__, this->process->pid, this->trdid, pid, local_cxy );
602#endif
603
604    }
605
606    // FIXME decrement the refcount on file pointer for vfs_bin_xp [AG]
607
608    // FIXME close all open files [AG]
609
610    // FIXME synchronize dirty files [AG]
611
612    // release memory allocated to process descriptor
613    process_free( process );
614
615#if DEBUG_PROCESS_DESTROY
616cycle = (uint32_t)hal_get_cycles();
617if( DEBUG_PROCESS_DESTROY < cycle )
618printk("\n[%s] thread[%x,%x] exit / process %x in cluster %x / cycle %d\n",
619__FUNCTION__, this->process->pid, this->trdid, pid, local_cxy, cycle );
620#endif
621
622}  // end process_destroy()
623
624///////////////////////////////////////////////////////////////////
625const char * process_action_str( process_sigactions_t action_type )
626{
627    switch ( action_type )
628    {
629        case BLOCK_ALL_THREADS:   return "BLOCK";
630        case UNBLOCK_ALL_THREADS: return "UNBLOCK";
631        case DELETE_ALL_THREADS:  return "DELETE";
632        default:                  return "undefined";
633    }
634}
635
636////////////////////////////////////////
637void process_sigaction( pid_t       pid,
638                        uint32_t    type )
639{
640    cxy_t              owner_cxy;         // owner cluster identifier
641    lpid_t             lpid;              // process index in owner cluster
642    cluster_t        * cluster;           // pointer on cluster manager
643    xptr_t             root_xp;           // extended pointer on root of copies
644    xptr_t             lock_xp;           // extended pointer on lock protecting copies
645    xptr_t             iter_xp;           // iterator on copies list
646    xptr_t             process_xp;        // extended pointer on process copy
647    cxy_t              process_cxy;       // process copy cluster identifier
648    process_t        * process_ptr;       // local pointer on process copy
649    reg_t              save_sr;           // for critical section
650    thread_t         * client;            // pointer on client thread
651    xptr_t             client_xp;         // extended pointer on client thread
652    process_t        * local;             // pointer on process copy in local cluster
653    uint32_t           remote_nr;         // number of remote process copies
654    rpc_desc_t         rpc;               // shared RPC descriptor
655    uint32_t           responses;         // shared RPC responses counter
656
657    client    = CURRENT_THREAD;
658    client_xp = XPTR( local_cxy , client );
659    local     = NULL;
660    remote_nr = 0;
661
662    // check calling thread can yield
663    thread_assert_can_yield( client , __FUNCTION__ );
664
665#if DEBUG_PROCESS_SIGACTION
666uint32_t cycle = (uint32_t)hal_get_cycles();
667if( DEBUG_PROCESS_SIGACTION < cycle )
668printk("\n[%s] thread[%x,%x] enter to %s process %x / cycle %d\n",
669__FUNCTION__ , client->process->pid, client->trdid,
670process_action_str( type ) , pid , cycle );
671#endif
672
673    // get pointer on local cluster manager
674    cluster = LOCAL_CLUSTER;
675
676    // get owner cluster identifier and process lpid
677    owner_cxy = CXY_FROM_PID( pid );
678    lpid      = LPID_FROM_PID( pid );
679
680    // get root of list of copies and lock from owner cluster
681    root_xp   = XPTR( owner_cxy , &cluster->pmgr.copies_root[lpid] );
682    lock_xp   = XPTR( owner_cxy , &cluster->pmgr.copies_lock[lpid] );
683
684// check action type
685assert( ((type == DELETE_ALL_THREADS ) ||
686         (type == BLOCK_ALL_THREADS )  ||
687         (type == UNBLOCK_ALL_THREADS )), "illegal action type" );
688             
689    // This client thread send parallel RPCs to all remote clusters containing
690    // target process copies, wait all responses, and then handles directly
691    // the threads in local cluster, when required.
692    // The client thread allocates a - shared - RPC descriptor in the stack,
693    // because all parallel, non-blocking, server threads use the same input
694    // arguments, and use the shared RPC response field
695
696    // mask IRQs
697    hal_disable_irq( &save_sr);
698
699    // client thread blocks itself
700    thread_block( client_xp , THREAD_BLOCKED_RPC );
701
702    // initialize RPC responses counter
703    responses = 0;
704
705    // initialize shared RPC descriptor
706    // can be shared, because no out arguments
707    rpc.rsp       = &responses;
708    rpc.blocking  = false;
709    rpc.index     = RPC_PROCESS_SIGACTION;
710    rpc.thread    = client;
711    rpc.lid       = client->core->lid;
712    rpc.args[0]   = pid;
713    rpc.args[1]   = type;
714
715    // take the lock protecting process copies
716    remote_queuelock_acquire( lock_xp );
717
718    // scan list of process copies
719    XLIST_FOREACH( root_xp , iter_xp )
720    {
721        // get extended pointers and cluster on process
722        process_xp  = XLIST_ELEMENT( iter_xp , process_t , copies_list );
723        process_cxy = GET_CXY( process_xp );
724        process_ptr = GET_PTR( process_xp );
725
726        if( process_cxy == local_cxy )    // process copy is local
727        { 
728            local = process_ptr;
729        }
730        else                              // process copy is remote
731        {
732            // update number of remote process copies
733            remote_nr++;
734
735            // atomically increment RPC responses counter
736            hal_atomic_add( &responses , 1 );
737
738#if DEBUG_PROCESS_SIGACTION
739if( DEBUG_PROCESS_SIGACTION < cycle )
740printk("\n[%s] thread[%x,%x] send RPC to cluster %x for process %x\n",
741__FUNCTION__, client->process->pid, client->trdid, process_cxy, pid );
742#endif
743            // call RPC in target cluster
744            rpc_send( process_cxy , &rpc );
745        }
746    }  // end list of copies
747
748    // release the lock protecting process copies
749    remote_queuelock_release( lock_xp );
750
751    // restore IRQs
752    hal_restore_irq( save_sr);
753
754    // - if there is remote process copies, the client thread deschedules,
755    //   (it will be unblocked by the last RPC server thread).
756    // - if there is no remote copies, the client thread unblock itself.
757    if( remote_nr )
758    {
759        sched_yield("blocked on rpc_process_sigaction");
760    } 
761    else
762    {
763        thread_unblock( client_xp , THREAD_BLOCKED_RPC );
764    }
765
766    // handle the local process copy if required
767    if( local != NULL )
768    {
769
770#if DEBUG_PROCESS_SIGACTION
771if( DEBUG_PROCESS_SIGACTION < cycle )
772printk("\n[%s] thread[%x,%x] handles local process %x in cluster %x\n",
773__FUNCTION__, client->process->pid, client->trdid, pid , local_cxy );
774#endif
775        if     (type == DELETE_ALL_THREADS  ) process_delete_threads ( local , client_xp ); 
776        else if(type == BLOCK_ALL_THREADS   ) process_block_threads  ( local ); 
777        else if(type == UNBLOCK_ALL_THREADS ) process_unblock_threads( local );
778    }
779
780#if DEBUG_PROCESS_SIGACTION
781cycle = (uint32_t)hal_get_cycles();
782if( DEBUG_PROCESS_SIGACTION < cycle )
783printk("\n[%s] thread[%x,%x] exit after %s process %x / cycle %d\n",
784__FUNCTION__, client->process->pid, client->trdid,
785process_action_str( type ), pid, cycle );
786#endif
787
788}  // end process_sigaction()
789
790/////////////////////////////////////////////////
791void process_block_threads( process_t * process )
792{
793    thread_t          * target;         // pointer on target thread
794    thread_t          * this;           // pointer on calling thread
795    uint32_t            ltid;           // index in process th_tbl[]
796    uint32_t            count;          // requests counter
797    volatile uint32_t   ack_count;      // acknowledges counter
798
799    // get calling thread pointer
800    this = CURRENT_THREAD;
801
802#if DEBUG_PROCESS_SIGACTION
803pid_t pid = process->pid;
804uint32_t cycle = (uint32_t)hal_get_cycles();
805if( DEBUG_PROCESS_SIGACTION < cycle )
806printk("\n[%s] thread[%x,%x] enter for process %x in cluster %x / cycle %d\n",
807__FUNCTION__, this->process->pid, this->trdid, pid, local_cxy , cycle );
808#endif
809
810// check target process is an user process
811assert( (LPID_FROM_PID( process->pid ) != 0 ),
812"process %x is not an user process\n", process->pid );
813
814    // get lock protecting process th_tbl[]
815    rwlock_rd_acquire( &process->th_lock );
816
817    // loop on target process local threads
818    // we use both "ltid" and "count" because it can exist "holes" in th_tbl
819    // - if the calling thread and the target thread are not running on the same
820    //   core, we ask the target scheduler to acknowlege the blocking
821    //   to be sure that the target thread is not running.
822    // - if the calling thread and the target thread are running on the same core,
823    //   we don't need confirmation from scheduler.
824           
825    for( ltid = 0 , count = 0 , ack_count = 0 ; count < process->th_nr ; ltid++ )
826    {
827        target = process->th_tbl[ltid];
828
829        if( target != NULL )                                 // thread exist
830        {
831            count++;
832
833            // set the global blocked bit in target thread descriptor.
834            thread_block( XPTR( local_cxy , target ) , THREAD_BLOCKED_GLOBAL );
835 
836            if( this->core->lid != target->core->lid )
837            {
838                // increment responses counter
839                hal_atomic_add( (void*)&ack_count , 1 );
840
841                // set FLAG_REQ_ACK and &ack_rsp_count in target descriptor
842                thread_set_req_ack( target , (uint32_t *)&ack_count );
843
844                // force scheduling on target thread
845                dev_pic_send_ipi( local_cxy , target->core->lid );
846            }
847        }
848    }
849
850    // release lock protecting process th_tbl[]
851    rwlock_rd_release( &process->th_lock );
852
853    // wait other threads acknowledges  TODO this could be improved...
854    while( 1 )
855    {
856        // exit when all scheduler acknowledges received
857        if ( ack_count == 0 ) break;
858   
859        // wait 1000 cycles before retry
860        hal_fixed_delay( 1000 );
861    }
862
863#if DEBUG_PROCESS_SIGACTION
864cycle = (uint32_t)hal_get_cycles();
865if( DEBUG_PROCESS_SIGACTION < cycle )
866printk("\n[%s] thread[%x,%x] exit for process %x in cluster %x / cycle %d\n",
867__FUNCTION__, this->process->pid, this->trdid, pid, local_cxy , cycle );
868#endif
869
870}  // end process_block_threads()
871
872/////////////////////////////////////////////////
873void process_delete_threads( process_t * process,
874                             xptr_t      client_xp )
875{
876    thread_t          * target;        // local pointer on target thread
877    xptr_t              target_xp;     // extended pointer on target thread
878    cxy_t               owner_cxy;     // owner process cluster
879    uint32_t            ltid;          // index in process th_tbl
880    uint32_t            count;         // threads counter
881
882    // get calling thread pointer
883
884    // get target process owner cluster
885    owner_cxy = CXY_FROM_PID( process->pid );
886
887#if DEBUG_PROCESS_SIGACTION
888thread_t * this  = CURRENT_THREAD;
889uint32_t   cycle = (uint32_t)hal_get_cycles();
890if( DEBUG_PROCESS_SIGACTION < cycle )
891printk("\n[%s] thread[%x,%x] enter for process %x n cluster %x / cycle %d\n",
892__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy, cycle );
893#endif
894
895// check target process is an user process
896assert( (LPID_FROM_PID( process->pid ) != 0),
897"process %x is not an user process\n", process->pid );
898
899    // get lock protecting process th_tbl[]
900    rwlock_wr_acquire( &process->th_lock );
901
902    // loop on target process local threads                       
903    // we use both "ltid" and "count" because it can exist "holes" in th_tbl
904    for( ltid = 0 , count = 0  ; count < process->th_nr ; ltid++ )
905    {
906        target = process->th_tbl[ltid];
907
908        if( target != NULL )    // valid thread 
909        {
910            count++;
911            target_xp = XPTR( local_cxy , target );
912
913            // main thread and client thread should not be deleted
914            if( ((ltid != 0) || (owner_cxy != local_cxy)) &&         // not main thread
915                (client_xp) != target_xp )                           // not client thread
916            {
917                // mark target thread for delete and block it
918                thread_delete( target_xp , true );                   // forced
919            }
920        }
921    }
922
923    // release lock protecting process th_tbl[]
924    rwlock_wr_release( &process->th_lock );
925
926#if DEBUG_PROCESS_SIGACTION
927cycle = (uint32_t)hal_get_cycles();
928if( DEBUG_PROCESS_SIGACTION < cycle )
929printk("\n[%s] thread[%x,%x] exit for process %x in cluster %x / cycle %d\n",
930__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy , cycle );
931#endif
932
933}  // end process_delete_threads()
934
935///////////////////////////////////////////////////
936void process_unblock_threads( process_t * process )
937{
938    thread_t          * target;        // pointer on target thead
939    uint32_t            ltid;          // index in process th_tbl
940    uint32_t            count;         // requests counter
941
942#if DEBUG_PROCESS_SIGACTION
943thread_t * this  = CURRENT_THREAD;
944pid_t      pid   = process->pid;
945uint32_t   cycle = (uint32_t)hal_get_cycles();
946if( DEBUG_PROCESS_SIGACTION < cycle )
947printk("\n[%s] thread[%x,%x] enter for process %x in cluster %x / cycle %d\n",
948__FUNCTION__, this->process->pid, this->trdid, pid, local_cxy , cycle );
949#endif
950
951// check target process is an user process
952assert( ( LPID_FROM_PID( process->pid ) != 0 ),
953"process %x is not an user process\n", process->pid );
954
955    // get lock protecting process th_tbl[]
956    rwlock_rd_acquire( &process->th_lock );
957
958    // loop on process threads to unblock all threads
959    // we use both "ltid" and "count" because it can exist "holes" in th_tbl
960    for( ltid = 0 , count = 0 ; count < process->th_nr ; ltid++ )
961    {
962        target = process->th_tbl[ltid];
963
964        if( target != NULL )             // thread found
965        {
966            count++;
967
968            // reset the global blocked bit in target thread descriptor.
969            thread_unblock( XPTR( local_cxy , target ) , THREAD_BLOCKED_GLOBAL );
970        }
971    }
972
973    // release lock protecting process th_tbl[]
974    rwlock_rd_release( &process->th_lock );
975
976#if DEBUG_PROCESS_SIGACTION
977cycle = (uint32_t)hal_get_cycles();
978if( DEBUG_PROCESS_SIGACTION < cycle )
979printk("\n[%s] thread[%x,%x] exit for process %x in cluster %x / cycle %d\n",
980__FUNCTION__, this->process->pid, this->trdid, pid, local_cxy, cycle );
981#endif
982
983}  // end process_unblock_threads()
984
985///////////////////////////////////////////////
986process_t * process_get_local_copy( pid_t pid )
987{
988    error_t        error;
989    process_t    * process_ptr;   // local pointer on process
990    xptr_t         process_xp;    // extended pointer on process
991
992    cluster_t * cluster = LOCAL_CLUSTER;
993
994#if DEBUG_PROCESS_GET_LOCAL_COPY
995thread_t * this = CURRENT_THREAD;
996uint32_t cycle = (uint32_t)hal_get_cycles();
997if( DEBUG_PROCESS_GET_LOCAL_COPY < cycle )
998printk("\n[%s] thread[%x,%x] enter for process %x in cluster %x / cycle %d\n",
999__FUNCTION__, this->process->pid, this->trdid, pid, local_cxy, cycle );
1000#endif
1001
1002    // get lock protecting local list of processes
1003    remote_queuelock_acquire( XPTR( local_cxy , &cluster->pmgr.local_lock ) );
1004
1005    // scan the local list of process descriptors to find the process
1006    xptr_t  iter;
1007    bool_t  found = false;
1008    XLIST_FOREACH( XPTR( local_cxy , &cluster->pmgr.local_root ) , iter )
1009    {
1010        process_xp  = XLIST_ELEMENT( iter , process_t , local_list );
1011        process_ptr = GET_PTR( process_xp );
1012        if( process_ptr->pid == pid )
1013        {
1014            found = true;
1015            break;
1016        }
1017    }
1018
1019    // release lock protecting local list of processes
1020    remote_queuelock_release( XPTR( local_cxy , &cluster->pmgr.local_lock ) );
1021
1022    // allocate memory for a new local process descriptor
1023    // and initialise it from reference cluster if not found
1024    if( !found )
1025    {
1026        // get extended pointer on reference process descriptor
1027        xptr_t ref_xp = cluster_get_reference_process_from_pid( pid );
1028
1029        assert( (ref_xp != XPTR_NULL) , "illegal pid\n" );
1030
1031        // allocate memory for local process descriptor
1032        process_ptr = process_alloc();
1033
1034        if( process_ptr == NULL )  return NULL;
1035
1036        // initialize local process descriptor copy
1037        error = process_copy_init( process_ptr , ref_xp );
1038
1039        if( error ) return NULL;
1040    }
1041
1042#if DEBUG_PROCESS_GET_LOCAL_COPY
1043cycle = (uint32_t)hal_get_cycles();
1044if( DEBUG_PROCESS_GET_LOCAL_COPY < cycle )
1045printk("\n[%s] thread[%x,%x] exit in cluster %x / process %x / cycle %d\n",
1046__FUNCTION__, this->process->pid, this->trdid, local_cxy, process_ptr, cycle );
1047#endif
1048
1049    return process_ptr;
1050
1051}  // end process_get_local_copy()
1052
1053////////////////////////////////////////////
1054pid_t process_get_ppid( xptr_t  process_xp )
1055{
1056    cxy_t       process_cxy;
1057    process_t * process_ptr;
1058    xptr_t      parent_xp;
1059    cxy_t       parent_cxy;
1060    process_t * parent_ptr;
1061
1062    // get process cluster and local pointer
1063    process_cxy = GET_CXY( process_xp );
1064    process_ptr = GET_PTR( process_xp );
1065
1066    // get pointers on parent process
1067    parent_xp  = (xptr_t)hal_remote_l64( XPTR( process_cxy , &process_ptr->parent_xp ) );
1068    parent_cxy = GET_CXY( parent_xp );
1069    parent_ptr = GET_PTR( parent_xp );
1070
1071    return hal_remote_l32( XPTR( parent_cxy , &parent_ptr->pid ) );
1072}
1073
1074//////////////////////////////////////////////////////////////////////////////////////////
1075// File descriptor array related functions
1076//////////////////////////////////////////////////////////////////////////////////////////
1077
1078///////////////////////////////////////////
1079void process_fd_init( process_t * process )
1080{
1081    uint32_t fd;
1082
1083    // initialize lock
1084    remote_queuelock_init( XPTR( local_cxy , &process->fd_array.lock ), LOCK_PROCESS_FDARRAY );
1085
1086    // initialize number of open files
1087    process->fd_array.current = 0;
1088
1089    // initialize array
1090    for ( fd = 0 ; fd < CONFIG_PROCESS_FILE_MAX_NR ; fd++ )
1091    {
1092        process->fd_array.array[fd] = XPTR_NULL;
1093    }
1094}
1095
1096////////////////////////////////////////////////////
1097error_t process_fd_register( xptr_t      process_xp,
1098                             xptr_t      file_xp,
1099                             uint32_t  * fdid )
1100{
1101    bool_t    found;
1102    uint32_t  id;
1103    xptr_t    xp;
1104
1105    // get target process cluster and local pointer
1106    process_t * process_ptr = GET_PTR( process_xp );
1107    cxy_t       process_cxy = GET_CXY( process_xp );
1108
1109// check target process is reference process
1110assert( (process_xp == hal_remote_l64( XPTR( process_cxy , &process_ptr->ref_xp ) ) ),
1111"client process must be reference process\n" );
1112
1113#if DEBUG_PROCESS_FD_REGISTER
1114thread_t * this  = CURRENT_THREAD;
1115uint32_t   cycle = (uint32_t)hal_get_cycles();
1116pid_t      pid   = hal_remote_l32( XPTR( process_cxy , &process_ptr->pid) );
1117if( DEBUG_PROCESS_FD_REGISTER < cycle )
1118printk("\n[%s] thread[%x,%x] enter for process %x / cycle %d\n",
1119__FUNCTION__, this->process->pid, this->trdid, pid, cycle );
1120#endif
1121
1122    // build extended pointer on lock protecting reference fd_array
1123    xptr_t lock_xp = XPTR( process_cxy , &process_ptr->fd_array.lock );
1124
1125    // take lock protecting reference fd_array
1126        remote_queuelock_acquire( lock_xp );
1127
1128    found   = false;
1129
1130    for ( id = 0; id < CONFIG_PROCESS_FILE_MAX_NR ; id++ )
1131    {
1132        xp = hal_remote_l64( XPTR( process_cxy , &process_ptr->fd_array.array[id] ) );
1133        if ( xp == XPTR_NULL )
1134        {
1135            // update reference fd_array
1136            hal_remote_s64( XPTR( process_cxy , &process_ptr->fd_array.array[id] ) , file_xp );
1137                hal_remote_atomic_add( XPTR( process_cxy , &process_ptr->fd_array.current ) , 1 );
1138
1139            // exit
1140                        *fdid = id;
1141            found = true;
1142            break;
1143        }
1144    }
1145
1146    // release lock protecting fd_array
1147        remote_queuelock_release( lock_xp );
1148
1149#if DEBUG_PROCESS_FD_REGISTER
1150cycle = (uint32_t)hal_get_cycles();
1151if( DEBUG_PROCESS_FD_REGISTER < cycle )
1152printk("\n[%s] thread[%x,%x] exit for process %x / fdid %d / cycle %d\n",
1153__FUNCTION__, this->process->pid, this->trdid, pid, id, cycle );
1154#endif
1155
1156    if ( !found ) return -1;
1157    else          return 0;
1158
1159}  // end process_fd_register()
1160
1161/////////////////////////////////////////////
1162void process_fd_remove( xptr_t    process_xp,
1163                        uint32_t  fdid )
1164{
1165    pid_t       pid;           // target process PID
1166    lpid_t      lpid;          // target process LPID
1167    xptr_t      iter_xp;       // iterator for list of process copies
1168    xptr_t      copy_xp;       // extended pointer on process copy
1169    process_t * copy_ptr;      // local pointer on process copy 
1170    cxy_t       copy_cxy;      // process copy cluster identifier
1171
1172// check process_xp argument
1173assert( (process_xp != XPTR_NULL), "process_xp argument cannot be XPTR_NULL");
1174
1175    // get target process cluster and local pointer
1176    process_t * process_ptr = GET_PTR( process_xp );
1177    cxy_t       process_cxy = GET_CXY( process_xp );
1178
1179    // get target process pid and lpid
1180    pid  = hal_remote_l32( XPTR( process_cxy , &process_ptr->pid) );
1181    lpid = LPID_FROM_PID( pid );
1182
1183    // get process descriptor in owner cluster and in reference cluster
1184    xptr_t  owner_xp = hal_remote_l64( XPTR( process_cxy , &process_ptr->owner_xp ));
1185    xptr_t  ref_xp   = hal_remote_l64( XPTR( process_cxy , &process_ptr->ref_xp   ));
1186
1187// check target process in in owner cluster
1188assert( (process_xp == owner_xp), "target process must be in owner process\n" );
1189
1190#if DEBUG_PROCESS_FD_REMOVE
1191uint32_t    cycle = (uint32_t)hal_get_cycles();
1192thread_t  * this  = CURRENT_THREAD;
1193if( DEBUG_PROCESS_FD_REMOVE < cycle )
1194printk("\n[%s] thread[%x,%x] enter for fdid %d in process %x / cycle %d\n",
1195__FUNCTION__, this->process->pid, this->trdid, fdid, pid, cycle );
1196#endif
1197
1198    // build extended pointers on list_of_copies root and lock (in owner cluster)
1199    xptr_t copies_root_xp = XPTR( process_cxy , &LOCAL_CLUSTER->pmgr.copies_root[lpid] );
1200    xptr_t copies_lock_xp = XPTR( process_cxy , &LOCAL_CLUSTER->pmgr.copies_lock[lpid] );
1201 
1202    // get reference process cluster and local pointer
1203    process_t * ref_ptr = GET_PTR( ref_xp );
1204    cxy_t       ref_cxy = GET_CXY( ref_xp );
1205
1206    // build extended pointer on lock protecting reference fd_array
1207    xptr_t fd_lock_xp = XPTR( ref_cxy , &ref_ptr->fd_array.lock );
1208
1209    // take lock protecting reference fd_array
1210        remote_queuelock_acquire( fd_lock_xp );
1211
1212    // take the lock protecting the list of copies
1213    remote_queuelock_acquire( copies_lock_xp );
1214
1215    // loop on list of process copies
1216    XLIST_FOREACH( copies_root_xp , iter_xp )
1217    {
1218        // get pointers on process copy
1219        copy_xp  = XLIST_ELEMENT( iter_xp , process_t , copies_list );
1220        copy_ptr = GET_PTR( copy_xp );
1221        copy_cxy = GET_CXY( copy_xp );
1222
1223        // release the fd_array entry in process copy
1224        hal_remote_s64( XPTR( copy_cxy , &copy_ptr->fd_array.array[fdid] ), XPTR_NULL );
1225    }
1226
1227    // release the lock protecting reference fd_array
1228        remote_queuelock_release( fd_lock_xp );
1229
1230    // release the lock protecting the list of copies
1231    remote_queuelock_release( copies_lock_xp );
1232
1233#if DEBUG_PROCESS_FD_REMOVE
1234cycle = (uint32_t)hal_get_cycles();
1235if( DEBUG_PROCESS_FD_REMOVE < cycle )
1236printk("\n[%s] thread[%x,%x] exit for fdid %d in process %x / cycle %d\n",
1237__FUNCTION__, this->process->pid, this->trdid, fdid, pid, cycle );
1238#endif
1239
1240}  // end process_fd_remove()
1241
1242////////////////////////////////////////////////
1243xptr_t process_fd_get_xptr( process_t * process,
1244                            uint32_t    fdid )
1245{
1246    xptr_t  file_xp;
1247    xptr_t  lock_xp;
1248
1249    // access local copy of process descriptor
1250    file_xp = process->fd_array.array[fdid];
1251
1252    if( file_xp == XPTR_NULL )
1253    {
1254        // get reference process cluster and local pointer
1255        xptr_t      ref_xp  = process->ref_xp;
1256        cxy_t       ref_cxy = GET_CXY( ref_xp );
1257        process_t * ref_ptr = GET_PTR( ref_xp );
1258
1259        // build extended pointer on lock protecting reference fd_array
1260        lock_xp = XPTR( ref_cxy , &ref_ptr->fd_array.lock );
1261
1262        // take lock protecting reference fd_array
1263            remote_queuelock_acquire( lock_xp );
1264
1265        // access reference process descriptor
1266        file_xp = hal_remote_l64( XPTR( ref_cxy , &ref_ptr->fd_array.array[fdid] ) );
1267
1268        // update local fd_array if found
1269        if( file_xp != XPTR_NULL )  process->fd_array.array[fdid] = file_xp;
1270       
1271        // release lock protecting reference fd_array
1272            remote_queuelock_release( lock_xp );
1273    }
1274
1275    return file_xp;
1276
1277}  // end process_fd_get_xptr()
1278
1279///////////////////////////////////////////
1280void process_fd_remote_copy( xptr_t dst_xp,
1281                             xptr_t src_xp )
1282{
1283    uint32_t fd;
1284    xptr_t   entry;
1285
1286    // get cluster and local pointer for src fd_array
1287    cxy_t        src_cxy = GET_CXY( src_xp );
1288    fd_array_t * src_ptr = GET_PTR( src_xp );
1289
1290    // get cluster and local pointer for dst fd_array
1291    cxy_t        dst_cxy = GET_CXY( dst_xp );
1292    fd_array_t * dst_ptr = GET_PTR( dst_xp );
1293
1294    // get the remote lock protecting the src fd_array
1295        remote_queuelock_acquire( XPTR( src_cxy , &src_ptr->lock ) );
1296
1297    // loop on all fd_array entries
1298    for( fd = 0 ; fd < CONFIG_PROCESS_FILE_MAX_NR ; fd++ )
1299        {
1300                entry = (xptr_t)hal_remote_l64( XPTR( src_cxy , &src_ptr->array[fd] ) );
1301
1302                if( entry != XPTR_NULL )
1303                {
1304            // increment file descriptor refcount
1305            vfs_file_count_up( entry );
1306
1307                        // copy entry in destination process fd_array
1308                        hal_remote_s64( XPTR( dst_cxy , &dst_ptr->array[fd] ) , entry );
1309                }
1310        }
1311
1312    // release lock on source process fd_array
1313        remote_queuelock_release( XPTR( src_cxy , &src_ptr->lock ) );
1314
1315}  // end process_fd_remote_copy()
1316
1317
1318////////////////////////////////////
1319bool_t process_fd_array_full( void )
1320{
1321    // get extended pointer on reference process
1322    xptr_t ref_xp = CURRENT_THREAD->process->ref_xp;
1323
1324    // get reference process cluster and local pointer
1325    process_t * ref_ptr = GET_PTR( ref_xp );
1326    cxy_t       ref_cxy = GET_CXY( ref_xp );
1327
1328    // get number of open file descriptors from reference fd_array
1329    uint32_t current = hal_remote_l32( XPTR( ref_cxy , &ref_ptr->fd_array.current ) );
1330
1331        return ( current >= CONFIG_PROCESS_FILE_MAX_NR );
1332}
1333
1334
1335////////////////////////////////////////////////////////////////////////////////////
1336//  Thread related functions
1337////////////////////////////////////////////////////////////////////////////////////
1338
1339/////////////////////////////////////////////////////
1340error_t process_register_thread( process_t * process,
1341                                 thread_t  * thread,
1342                                 trdid_t   * trdid )
1343{
1344    ltid_t         ltid;
1345    bool_t         found = false;
1346 
1347// check arguments
1348assert( (process != NULL) , "process argument is NULL" );
1349assert( (thread != NULL) , "thread argument is NULL" );
1350
1351    // get the lock protecting th_tbl for all threads
1352    // but the idle thread executing kernel_init (cannot yield)
1353    if( thread->type != THREAD_IDLE ) rwlock_wr_acquire( &process->th_lock );
1354
1355    // scan th_tbl
1356    for( ltid = 0 ; ltid < CONFIG_THREADS_MAX_PER_CLUSTER ; ltid++ )
1357    {
1358        if( process->th_tbl[ltid] == NULL )
1359        {
1360            found = true;
1361            break;
1362        }
1363    }
1364
1365    if( found )
1366    {
1367        // register thread in th_tbl[]
1368        process->th_tbl[ltid] = thread;
1369        process->th_nr++;
1370
1371        // returns trdid
1372        *trdid = TRDID( local_cxy , ltid );
1373    }
1374
1375    // release the lock protecting th_tbl
1376    if( thread->type != THREAD_IDLE ) rwlock_wr_release( &process->th_lock );
1377
1378    return (found) ? 0 : 0xFFFFFFFF;
1379
1380}  // end process_register_thread()
1381
1382///////////////////////////////////////////////////
1383uint32_t process_remove_thread( thread_t * thread )
1384{
1385    uint32_t count;  // number of threads in local process descriptor
1386
1387// check thread
1388assert( (thread != NULL) , "thread argument is NULL" );
1389
1390    process_t * process = thread->process;
1391
1392    // get thread local index
1393    ltid_t  ltid = LTID_FROM_TRDID( thread->trdid );
1394   
1395    // get the lock protecting th_tbl[]
1396    rwlock_wr_acquire( &process->th_lock );
1397
1398    // get number of threads
1399    count = process->th_nr;
1400
1401// check th_nr value
1402assert( (count > 0) , "process th_nr cannot be 0" );
1403
1404    // remove thread from th_tbl[]
1405    process->th_tbl[ltid] = NULL;
1406    process->th_nr = count-1;
1407
1408    // release lock protecting th_tbl
1409    rwlock_wr_release( &process->th_lock );
1410
1411    return count;
1412
1413}  // end process_remove_thread()
1414
1415/////////////////////////////////////////////////////////
1416error_t process_make_fork( xptr_t      parent_process_xp,
1417                           xptr_t      parent_thread_xp,
1418                           pid_t     * child_pid,
1419                           thread_t ** child_thread )
1420{
1421    process_t * process;         // local pointer on child process descriptor
1422    thread_t  * thread;          // local pointer on child thread descriptor
1423    pid_t       new_pid;         // process identifier for child process
1424    pid_t       parent_pid;      // process identifier for parent process
1425    xptr_t      ref_xp;          // extended pointer on reference process
1426    xptr_t      vfs_bin_xp;      // extended pointer on .elf file
1427    error_t     error;
1428
1429    // get cluster and local pointer for parent process
1430    cxy_t       parent_process_cxy = GET_CXY( parent_process_xp );
1431    process_t * parent_process_ptr = GET_PTR( parent_process_xp );
1432
1433    // get parent process PID and extended pointer on .elf file
1434    parent_pid = hal_remote_l32 (XPTR( parent_process_cxy , &parent_process_ptr->pid));
1435    vfs_bin_xp = hal_remote_l64(XPTR( parent_process_cxy , &parent_process_ptr->vfs_bin_xp));
1436
1437    // get extended pointer on reference process
1438    ref_xp = hal_remote_l64( XPTR( parent_process_cxy , &parent_process_ptr->ref_xp ) );
1439
1440// check parent process is the reference process
1441assert( (parent_process_xp == ref_xp ) ,
1442"parent process must be the reference process" );
1443
1444#if DEBUG_PROCESS_MAKE_FORK
1445uint32_t   cycle;
1446thread_t * this  = CURRENT_THREAD;
1447trdid_t    trdid = this->trdid;
1448pid_t      pid   = this->process->pid;
1449#endif
1450
1451#if( DEBUG_PROCESS_MAKE_FORK & 1 )
1452cycle   = (uint32_t)hal_get_cycles();
1453if( DEBUG_PROCESS_MAKE_FORK < cycle )
1454printk("\n[%s] thread[%x,%x] enter / cluster %x / cycle %d\n",
1455__FUNCTION__, pid, trdid, local_cxy, cycle );
1456#endif
1457
1458    // allocate a process descriptor
1459    process = process_alloc();
1460
1461    if( process == NULL )
1462    {
1463        printk("\n[ERROR] in %s : cannot get process in cluster %x\n", 
1464        __FUNCTION__, local_cxy ); 
1465        return -1;
1466    }
1467
1468    // allocate a child PID from local cluster
1469    error = cluster_pid_alloc( process , &new_pid );
1470    if( error ) 
1471    {
1472        printk("\n[ERROR] in %s : cannot get PID in cluster %x\n", 
1473        __FUNCTION__, local_cxy ); 
1474        process_free( process );
1475        return -1;
1476    }
1477
1478#if( DEBUG_PROCESS_MAKE_FORK & 1 )
1479cycle = (uint32_t)hal_get_cycles();
1480if( DEBUG_PROCESS_MAKE_FORK < cycle )
1481printk("\n[%s] thread[%x,%x] allocated child_process %x / cycle %d\n",
1482__FUNCTION__, pid, trdid, new_pid, cycle );
1483#endif
1484
1485    // initializes child process descriptor from parent process descriptor
1486    error = process_reference_init( process,
1487                                    new_pid,
1488                                    parent_process_xp );
1489    if( error ) 
1490    {
1491        printk("\n[ERROR] in %s : cannot initialize child process in cluster %x\n", 
1492        __FUNCTION__, local_cxy ); 
1493        process_free( process );
1494        return -1;
1495    }
1496
1497#if( DEBUG_PROCESS_MAKE_FORK & 1 )
1498cycle = (uint32_t)hal_get_cycles();
1499if( DEBUG_PROCESS_MAKE_FORK < cycle )
1500printk("\n[%s] thread[%x,%x] initialized child_process %x / cycle %d\n",
1501__FUNCTION__, pid, trdid, new_pid, cycle );
1502#endif
1503
1504    // copy VMM from parent descriptor to child descriptor
1505    error = vmm_fork_copy( process,
1506                           parent_process_xp );
1507    if( error )
1508    {
1509        printk("\n[ERROR] in %s : cannot copy VMM in cluster %x\n", 
1510        __FUNCTION__, local_cxy ); 
1511        process_free( process );
1512        cluster_pid_release( new_pid );
1513        return -1;
1514    }
1515
1516#if( DEBUG_PROCESS_MAKE_FORK & 1 )
1517cycle = (uint32_t)hal_get_cycles();
1518if( DEBUG_PROCESS_MAKE_FORK < cycle )
1519printk("\n[%s] thread[%x,%x] copied VMM from parent to child / cycle %d\n",
1520__FUNCTION__, pid, trdid, cycle );
1521hal_vmm_display( XPTR( local_cxy , process ) , true );
1522#endif
1523
1524    // if parent_process is INIT, or if parent_process is the TXT owner,
1525    // the child_process becomes the owner of its TXT terminal
1526    if( (parent_pid == 1) || process_txt_is_owner( parent_process_xp ) )
1527    {
1528        process_txt_set_ownership( XPTR( local_cxy , process ) );
1529
1530#if( DEBUG_PROCESS_MAKE_FORK & 1 )
1531cycle = (uint32_t)hal_get_cycles();
1532if( DEBUG_PROCESS_MAKE_FORK < cycle )
1533printk("\n[%s] thread[%x,%x] / child_process %x takes TXT ownership / cycle %d\n",
1534__FUNCTION__ , pid, trdid, new_pid, cycle );
1535#endif
1536
1537    }
1538
1539    // update extended pointer on .elf file
1540    process->vfs_bin_xp = vfs_bin_xp;
1541
1542    // create child thread descriptor from parent thread descriptor
1543    error = thread_user_fork( parent_thread_xp,
1544                              process,
1545                              &thread );
1546    if( error )
1547    {
1548        printk("\n[ERROR] in %s : cannot create thread in cluster %x\n",
1549        __FUNCTION__, local_cxy ); 
1550        process_free( process );
1551        cluster_pid_release( new_pid );
1552        return -1;
1553    }
1554
1555// check main thread LTID
1556assert( (LTID_FROM_TRDID(thread->trdid) == 0) ,
1557"main thread must have LTID == 0" );
1558
1559#if( DEBUG_PROCESS_MAKE_FORK & 1 )
1560cycle = (uint32_t)hal_get_cycles();
1561if( DEBUG_PROCESS_MAKE_FORK < cycle )
1562printk("\n[%s] thread[%x,%x] created main thread %x / cycle %d\n", 
1563__FUNCTION__, pid, trdid, thread, cycle );
1564#endif
1565
1566    // set COW flag in DATA, ANON, REMOTE vsegs in parent process VMM
1567    // this includes all parent process copies in all clusters
1568    if( parent_process_cxy == local_cxy )   // reference is local
1569    {
1570        vmm_set_cow( parent_process_ptr );
1571    }
1572    else                                    // reference is remote
1573    {
1574        rpc_vmm_set_cow_client( parent_process_cxy,
1575                                parent_process_ptr );
1576    }
1577
1578    // set COW flag in DATA, ANON, REMOTE vsegs for child process VMM
1579    vmm_set_cow( process );
1580 
1581#if( DEBUG_PROCESS_MAKE_FORK & 1 )
1582cycle = (uint32_t)hal_get_cycles();
1583if( DEBUG_PROCESS_MAKE_FORK < cycle )
1584printk("\n[%s] thread[%x,%x] set COW in DATA / ANON / REMOTE for parent and child / cycle %d\n",
1585__FUNCTION__, pid, trdid, cycle );
1586#endif
1587
1588    // get extended pointers on parent children_root, children_lock and children_nr
1589    xptr_t children_root_xp = XPTR( parent_process_cxy , &parent_process_ptr->children_root );
1590    xptr_t children_lock_xp = XPTR( parent_process_cxy , &parent_process_ptr->children_lock );
1591    xptr_t children_nr_xp   = XPTR( parent_process_cxy , &parent_process_ptr->children_nr   );
1592
1593    // register process in parent children list
1594    remote_queuelock_acquire( children_lock_xp );
1595        xlist_add_last( children_root_xp , XPTR( local_cxy , &process->children_list ) );
1596        hal_remote_atomic_add( children_nr_xp , 1 );
1597    remote_queuelock_release( children_lock_xp );
1598
1599    // return success
1600    *child_thread = thread;
1601    *child_pid    = new_pid;
1602
1603#if DEBUG_PROCESS_MAKE_FORK
1604cycle = (uint32_t)hal_get_cycles();
1605if( DEBUG_PROCESS_MAKE_FORK < cycle )
1606printk("\n[%s] thread[%x,%x] exit / created process %x / cycle %d\n",
1607__FUNCTION__, pid, trdid, new_pid, cycle );
1608#endif
1609
1610    return 0;
1611
1612}   // end process_make_fork()
1613
1614/////////////////////////////////////////////////////
1615error_t process_make_exec( exec_info_t  * exec_info )
1616{
1617    thread_t       * thread;                  // local pointer on this thread
1618    process_t      * process;                 // local pointer on this process
1619    pid_t            pid;                     // this process identifier
1620    xptr_t           ref_xp;                  // reference process for this process
1621        error_t          error;                   // value returned by called functions
1622    char           * path;                    // path to .elf file
1623    xptr_t           file_xp;                 // extended pointer on .elf file descriptor
1624    uint32_t         file_id;                 // file index in fd_array
1625    uint32_t         args_nr;                 // number of main thread arguments
1626    char          ** args_pointers;           // array of pointers on main thread arguments
1627
1628    // get calling thread, process, pid and ref_xp
1629    thread  = CURRENT_THREAD;
1630    process = thread->process;
1631    pid     = process->pid;
1632    ref_xp  = process->ref_xp;
1633
1634        // get relevant infos from exec_info
1635        path          = exec_info->path;
1636    args_nr       = exec_info->args_nr;
1637    args_pointers = exec_info->args_pointers;
1638
1639#if DEBUG_PROCESS_MAKE_EXEC
1640uint32_t cycle = (uint32_t)hal_get_cycles();
1641if( DEBUG_PROCESS_MAKE_EXEC < cycle )
1642printk("\n[%s] thread[%x,%x] enters for %s / cycle %d\n",
1643__FUNCTION__, pid, thread->trdid, path, cycle );
1644#endif
1645
1646    // open the file identified by <path>
1647    file_xp = XPTR_NULL;
1648    file_id = 0xFFFFFFFF;
1649        error   = vfs_open( process->vfs_root_xp,
1650                            path,
1651                        ref_xp,
1652                            O_RDONLY,
1653                            0,
1654                            &file_xp,
1655                            &file_id );
1656        if( error )
1657        {
1658                printk("\n[ERROR] in %s : failed to open file <%s>\n", __FUNCTION__ , path );
1659                return -1;
1660        }
1661
1662#if (DEBUG_PROCESS_MAKE_EXEC & 1)
1663cycle = (uint32_t)hal_get_cycles();
1664if( DEBUG_PROCESS_MAKE_EXEC < cycle )
1665printk("\n[%s] thread[%x,%x] opened file <%s> / cycle %d\n",
1666__FUNCTION__, pid, thread->trdid, path, cycle );
1667#endif
1668
1669    // delete all threads other than this main thread in all clusters
1670    process_sigaction( pid , DELETE_ALL_THREADS );
1671
1672#if (DEBUG_PROCESS_MAKE_EXEC & 1)
1673cycle = (uint32_t)hal_get_cycles();
1674if( DEBUG_PROCESS_MAKE_EXEC < cycle )
1675printk("\n[%s] thread[%x,%x] deleted existing threads / cycle %d\n",
1676__FUNCTION__, pid, thread->trdid, cycle );
1677#endif
1678
1679    // reset calling process VMM
1680    vmm_user_reset( process );
1681
1682#if( DEBUG_PROCESS_MAKE_EXEC & 1 )
1683cycle = (uint32_t)hal_get_cycles();
1684if( DEBUG_PROCESS_MAKE_EXEC < cycle )
1685printk("\n[%s] thread[%x,%x] completed VMM reset / cycle %d\n",
1686__FUNCTION__, pid, thread->trdid, cycle );
1687#endif
1688
1689    // re-initialize the VMM (args/envs vsegs registration)
1690    error = vmm_user_init( process );
1691    if( error )
1692    {
1693        printk("\n[ERROR] in %s : cannot initialise VMM for %s\n", __FUNCTION__ , path );
1694        vfs_close( file_xp , file_id );
1695        // FIXME restore old process VMM [AG]
1696        return -1;
1697    }
1698   
1699#if( DEBUG_PROCESS_MAKE_EXEC & 1 )
1700cycle = (uint32_t)hal_get_cycles();
1701if( DEBUG_PROCESS_MAKE_EXEC < cycle )
1702printk("\n[%s] thread[%x,%x] registered args/envs vsegs / cycle %d\n",
1703__FUNCTION__, pid, thread->trdid, cycle );
1704#endif
1705
1706    // register code & data vsegs as well as entry-point in process VMM,
1707    // and register extended pointer on .elf file in process descriptor
1708        error = elf_load_process( file_xp , process );
1709    if( error )
1710        {
1711                printk("\n[ERROR] in %s : failed to access <%s>\n", __FUNCTION__ , path );
1712        vfs_close( file_xp , file_id );
1713        // FIXME restore old process VMM [AG]
1714        return -1;
1715        }
1716
1717#if( DEBUG_PROCESS_MAKE_EXEC & 1 )
1718cycle = (uint32_t)hal_get_cycles();
1719if( DEBUG_PROCESS_MAKE_EXEC < cycle )
1720printk("\n[%s] thread[%x,%x] registered code/data vsegs / cycle %d\n",
1721__FUNCTION__, pid, thread->trdid, cycle );
1722#endif
1723
1724    // update the existing main thread descriptor... and jump to user code
1725    error = thread_user_exec( (void *)process->vmm.entry_point,
1726                              args_nr,
1727                              args_pointers );
1728    if( error )
1729    {
1730        printk("\n[ERROR] in %s : cannot update main thread for %s\n", __FUNCTION__ , path );
1731        vfs_close( file_xp , file_id );
1732        // FIXME restore old process VMM
1733        return -1;
1734    }
1735
1736    assert( false, "we should not execute this code");
1737 
1738        return 0;
1739
1740}  // end process_make_exec()
1741
1742
1743////////////////////////////////////////////////
1744void process_zero_create( process_t   * process,
1745                          boot_info_t * info )
1746{
1747    error_t error;
1748    pid_t   pid;
1749
1750#if DEBUG_PROCESS_ZERO_CREATE
1751uint32_t cycle = (uint32_t)hal_get_cycles();
1752if( DEBUG_PROCESS_ZERO_CREATE < cycle )
1753printk("\n[%s] enter / cluster %x / cycle %d\n",
1754__FUNCTION__, local_cxy, cycle );
1755#endif
1756
1757    // get pointer on VMM
1758    vmm_t * vmm = &process->vmm;
1759
1760    // get PID from local cluster manager for this kernel process
1761    error = cluster_pid_alloc( process , &pid );
1762
1763    if( error || (LPID_FROM_PID( pid ) != 0) )
1764    {
1765        printk("\n[PANIC] in %s : cannot get valid PID in cluster %x / PID = %x\n",
1766        __FUNCTION__ , local_cxy, pid );
1767        hal_core_sleep();
1768    }
1769
1770#if (DEBUG_PROCESS_ZERO_CREATE & 1)
1771if( DEBUG_PROCESS_ZERO_CREATE < cycle )
1772printk("\n[%s] allocated pid %x in cluster %x\n", __FUNCTION__, pid, local_cxy );
1773#endif
1774
1775    // initialize PID, REF_XP, PARENT_XP, and STATE
1776    // the kernel process_zero is its own parent_process,
1777    // reference_process, and owner_process, and cannot be killed...
1778    process->pid        = pid;
1779    process->ref_xp     = XPTR( local_cxy , process );
1780    process->owner_xp   = XPTR( local_cxy , process );
1781    process->parent_xp  = XPTR( local_cxy , process );
1782    process->term_state = 0;
1783
1784    // initialize VSL as empty
1785    vmm->vsegs_nr = 0;
1786        xlist_root_init( XPTR( local_cxy , &vmm->vsegs_root ) );
1787
1788#if (DEBUG_PROCESS_ZERO_CREATE & 1)
1789if( DEBUG_PROCESS_ZERO_CREATE < cycle )
1790printk("\n[%s] initialized VSL empty in cluster %x\n", __FUNCTION__, local_cxy );
1791#endif
1792
1793    // initialize GPT as empty
1794    error = hal_gpt_create( &vmm->gpt );
1795
1796    if( error ) 
1797    {
1798        printk("\n[PANIC] in %s : cannot create empty GPT\n", __FUNCTION__ );
1799        hal_core_sleep();
1800    }
1801
1802#if (DEBUG_PROCESS_ZERO_CREATE & 1)
1803if( DEBUG_PROCESS_ZERO_CREATE < cycle )
1804printk("\n[%s] initialized GPT empty in cluster %x\n", __FUNCTION__, local_cxy );
1805#endif
1806
1807    // initialize VSL and GPT locks
1808    remote_rwlock_init( XPTR( local_cxy , &vmm->vsl_lock ) , LOCK_VMM_VSL );
1809   
1810    // create kernel vsegs in GPT and VSL, as required by the hardware architecture
1811    error = hal_vmm_kernel_init( info );
1812
1813    if( error ) 
1814    {
1815        printk("\n[PANIC] in %s : cannot create kernel vsegs in VMM\n", __FUNCTION__ );
1816        hal_core_sleep();
1817    }
1818
1819#if (DEBUG_PROCESS_ZERO_CREATE & 1)
1820if( DEBUG_PROCESS_ZERO_CREATE < cycle )
1821printk("\n[%s] initialized hal specific VMM in cluster%x\n", __FUNCTION__, local_cxy );
1822#endif
1823
1824    // reset th_tbl[] array and associated fields
1825    uint32_t i;
1826    for( i = 0 ; i < CONFIG_THREADS_MAX_PER_CLUSTER ; i++ )
1827        {
1828        process->th_tbl[i] = NULL;
1829    }
1830    process->th_nr  = 0;
1831    rwlock_init( &process->th_lock , LOCK_PROCESS_THTBL );
1832
1833#if (DEBUG_PROCESS_ZERO_CREATE & 1)
1834if( DEBUG_PROCESS_ZERO_CREATE < cycle )
1835printk("\n[%s] initialized th_tbl[] in cluster%x\n", __FUNCTION__, local_cxy );
1836#endif
1837
1838    // reset children list as empty
1839    xlist_root_init( XPTR( local_cxy , &process->children_root ) );
1840    process->children_nr = 0;
1841    remote_queuelock_init( XPTR( local_cxy , &process->children_lock ),
1842                           LOCK_PROCESS_CHILDREN );
1843
1844#if (DEBUG_PROCESS_ZERO_CREATE & 1)
1845if( DEBUG_PROCESS_ZERO_CREATE < cycle )
1846printk("\n[%s] initialized children list in cluster%x\n", __FUNCTION__, local_cxy );
1847#endif
1848
1849    // register kernel process in cluster manager local_list
1850    cluster_process_local_link( process );
1851   
1852        hal_fence();
1853
1854#if DEBUG_PROCESS_ZERO_CREATE
1855cycle = (uint32_t)hal_get_cycles();
1856if( DEBUG_PROCESS_ZERO_CREATE < cycle )
1857printk("\n[%s] exit / cluster %x / cycle %d\n",
1858__FUNCTION__, local_cxy, cycle );
1859#endif
1860
1861}  // end process_zero_create()
1862
1863////////////////////////////////
1864void process_init_create( void )
1865{
1866    process_t      * process;       // local pointer on process descriptor
1867    pid_t            pid;           // process_init identifier
1868    thread_t       * thread;        // local pointer on main thread
1869    pthread_attr_t   attr;          // main thread attributes
1870    lid_t            lid;           // selected core local index for main thread
1871    xptr_t           file_xp;       // extended pointer on .elf file descriptor
1872    uint32_t         file_id;       // file index in fd_array
1873    error_t          error;
1874
1875#if DEBUG_PROCESS_INIT_CREATE
1876thread_t * this = CURRENT_THREAD;
1877uint32_t cycle = (uint32_t)hal_get_cycles();
1878if( DEBUG_PROCESS_INIT_CREATE < cycle )
1879printk("\n[%s] thread[%x,%x] enter / cycle %d\n",
1880__FUNCTION__, this->process->pid, this->trdid, cycle );
1881#endif
1882
1883    // allocates memory for process descriptor from local cluster
1884        process = process_alloc(); 
1885    if( process == NULL )
1886    {
1887        printk("\n[PANIC] in %s : cannot allocate process\n", __FUNCTION__ );
1888        hal_core_sleep();
1889    }
1890
1891    // set the CWD and VFS_ROOT fields in process descriptor
1892    process->cwd_xp      = process_zero.vfs_root_xp;
1893    process->vfs_root_xp = process_zero.vfs_root_xp;
1894
1895    // get PID from local cluster
1896    error = cluster_pid_alloc( process , &pid );
1897    if( error ) 
1898    {
1899        printk("\n[PANIC] in %s : cannot allocate PID\n", __FUNCTION__ );
1900        hal_core_sleep();
1901    }
1902    if( pid != 1 ) 
1903    {
1904        printk("\n[PANIC] in %s : process PID must be 0x1\n", __FUNCTION__ );
1905        hal_core_sleep();
1906    }
1907
1908    // initialize process descriptor / parent is local process_zero
1909    error = process_reference_init( process,
1910                                    pid,
1911                                    XPTR( local_cxy , &process_zero ) ); 
1912    if( error )
1913    {
1914        printk("\n[PANIC] in %s : cannot initialize process\n", __FUNCTION__ );
1915        hal_core_sleep();
1916    }
1917
1918#if(DEBUG_PROCESS_INIT_CREATE & 1)
1919if( DEBUG_PROCESS_INIT_CREATE < cycle )
1920printk("\n[%s] thread[%x,%x] initialized process descriptor\n",
1921__FUNCTION__, this->process->pid, this->trdid );
1922#endif
1923
1924    // open the file identified by CONFIG_PROCESS_INIT_PATH
1925    file_xp = XPTR_NULL;
1926    file_id = -1;
1927        error   = vfs_open( process->vfs_root_xp,
1928                            CONFIG_PROCESS_INIT_PATH,
1929                        XPTR( local_cxy , process ),
1930                            O_RDONLY,
1931                            0,
1932                            &file_xp,
1933                            &file_id );
1934    if( error )
1935    {
1936        printk("\n[PANIC] in %s : cannot open file <%s>\n",
1937         __FUNCTION__, CONFIG_PROCESS_INIT_PATH  );
1938        hal_core_sleep();
1939    }
1940
1941#if(DEBUG_PROCESS_INIT_CREATE & 1)
1942if( DEBUG_PROCESS_INIT_CREATE < cycle )
1943printk("\n[%s] thread[%x,%x] open .elf file decriptor\n",
1944__FUNCTION__, this->process->pid, this->trdid );
1945#endif
1946
1947    // register "code" and "data" vsegs as well as entry-point
1948    // in process VMM, using information contained in the elf file.
1949        error = elf_load_process( file_xp , process );
1950
1951    if( error ) 
1952    {
1953        printk("\n[PANIC] in %s : cannot access file <%s>\n",
1954         __FUNCTION__, CONFIG_PROCESS_INIT_PATH  );
1955        hal_core_sleep();
1956    }
1957
1958
1959#if(DEBUG_PROCESS_INIT_CREATE & 1)
1960if( DEBUG_PROCESS_INIT_CREATE < cycle )
1961printk("\n[%s] thread[%x,%x] registered code/data vsegs in VMM\n",
1962__FUNCTION__, this->process->pid, this->trdid );
1963#endif
1964
1965#if (DEBUG_PROCESS_INIT_CREATE & 1)
1966hal_vmm_display( XPTR( local_cxy , process ) , true );
1967#endif
1968
1969    // get extended pointers on process_zero children_root, children_lock
1970    xptr_t children_root_xp = XPTR( local_cxy , &process_zero.children_root );
1971    xptr_t children_lock_xp = XPTR( local_cxy , &process_zero.children_lock );
1972
1973    // take lock protecting kernel process children list
1974    remote_queuelock_acquire( children_lock_xp );
1975
1976    // register process INIT in parent local process_zero
1977        xlist_add_last( children_root_xp , XPTR( local_cxy , &process->children_list ) );
1978        hal_atomic_add( &process_zero.children_nr , 1 );
1979
1980    // release lock protecting kernel process children list
1981    remote_queuelock_release( children_lock_xp );
1982
1983#if(DEBUG_PROCESS_INIT_CREATE & 1)
1984if( DEBUG_PROCESS_INIT_CREATE < cycle )
1985printk("\n[%s] thread[%x,%x] registered init process in parent\n",
1986__FUNCTION__, this->process->pid, this->trdid );
1987#endif
1988
1989    // select a core in local cluster to execute the main thread
1990    lid  = cluster_select_local_core( local_cxy );
1991
1992    // initialize pthread attributes for main thread
1993    attr.attributes = PT_ATTR_DETACH | PT_ATTR_CLUSTER_DEFINED | PT_ATTR_CORE_DEFINED;
1994    attr.cxy        = local_cxy;
1995    attr.lid        = lid;
1996
1997    // create and initialize thread descriptor
1998        error = thread_user_create( pid,
1999                                (void *)process->vmm.entry_point,
2000                                NULL,
2001                                &attr,
2002                                &thread );
2003
2004    if( error )
2005    {
2006        printk("\n[PANIC] in %s : cannot create main thread\n", __FUNCTION__  );
2007        hal_core_sleep();
2008    }
2009    if( thread->trdid != 0 )
2010    {
2011        printk("\n[PANIC] in %s : bad main thread trdid\n", __FUNCTION__  );
2012        hal_core_sleep();
2013    }
2014
2015#if(DEBUG_PROCESS_INIT_CREATE & 1)
2016if( DEBUG_PROCESS_INIT_CREATE < cycle )
2017printk("\n[%s] thread[%x,%x] created main thread\n",
2018__FUNCTION__, this->process->pid, this->trdid );
2019#endif
2020
2021    // activate thread
2022        thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_GLOBAL );
2023
2024    hal_fence();
2025
2026#if DEBUG_PROCESS_INIT_CREATE
2027cycle = (uint32_t)hal_get_cycles();
2028if( DEBUG_PROCESS_INIT_CREATE < cycle )
2029printk("\n[%s] thread[%x,%x] exit / cycle %d\n",
2030__FUNCTION__, this->process->pid, this->trdid, cycle );
2031#endif
2032
2033}  // end process_init_create()
2034
2035/////////////////////////////////////////
2036void process_display( xptr_t process_xp )
2037{
2038    process_t   * process_ptr;
2039    cxy_t         process_cxy;
2040
2041    xptr_t        parent_xp;       // extended pointer on parent process
2042    process_t   * parent_ptr;
2043    cxy_t         parent_cxy;
2044
2045    xptr_t        owner_xp;        // extended pointer on owner process
2046    process_t   * owner_ptr;
2047    cxy_t         owner_cxy;
2048
2049    pid_t         pid;
2050    pid_t         ppid;
2051    lpid_t        lpid;
2052    uint32_t      state;
2053    uint32_t      th_nr;
2054
2055    xptr_t        txt_file_xp;     // extended pointer on TXT_RX file descriptor
2056    xptr_t        txt_chdev_xp;    // extended pointer on TXT_RX chdev
2057    chdev_t     * txt_chdev_ptr;
2058    cxy_t         txt_chdev_cxy;
2059    xptr_t        txt_owner_xp;    // extended pointer on TXT owner process
2060
2061    xptr_t        elf_file_xp;     // extended pointer on .elf file
2062    cxy_t         elf_file_cxy;
2063    vfs_file_t  * elf_file_ptr;
2064    vfs_inode_t * elf_inode_ptr;   // local pointer on .elf inode
2065
2066    char          txt_name[CONFIG_VFS_MAX_NAME_LENGTH];
2067    char          elf_name[CONFIG_VFS_MAX_NAME_LENGTH];
2068
2069    // get cluster and local pointer on process
2070    process_ptr = GET_PTR( process_xp );
2071    process_cxy = GET_CXY( process_xp );
2072
2073    // get process PID, LPID, and state
2074    pid   = hal_remote_l32( XPTR( process_cxy , &process_ptr->pid ) );
2075    lpid  = LPID_FROM_PID( pid );
2076    state = hal_remote_l32( XPTR( process_cxy , &process_ptr->term_state ) );
2077
2078    // get process PPID
2079    parent_xp  = hal_remote_l64( XPTR( process_cxy , &process_ptr->parent_xp ) );
2080    parent_cxy = GET_CXY( parent_xp );
2081    parent_ptr = GET_PTR( parent_xp );
2082    ppid       = hal_remote_l32( XPTR( parent_cxy , &parent_ptr->pid ) );
2083
2084    // get number of threads
2085    th_nr      = hal_remote_l32( XPTR( process_cxy , &process_ptr->th_nr ) );
2086
2087    // get pointers on owner process descriptor
2088    owner_xp  = hal_remote_l64( XPTR( process_cxy , &process_ptr->owner_xp ) );
2089    owner_cxy = GET_CXY( owner_xp );
2090    owner_ptr = GET_PTR( owner_xp );
2091
2092    // get process TXT name and .elf name
2093    if( lpid )                                   // user process
2094    {
2095
2096        // get extended pointer on file descriptor associated to TXT_RX
2097        txt_file_xp = hal_remote_l64( XPTR( owner_cxy , &owner_ptr->fd_array.array[0] ) );
2098
2099        assert( (txt_file_xp != XPTR_NULL) ,
2100        "process must be attached to one TXT terminal" ); 
2101
2102        // get TXT_RX chdev pointers
2103        txt_chdev_xp  = chdev_from_file( txt_file_xp );
2104        txt_chdev_cxy = GET_CXY( txt_chdev_xp );
2105        txt_chdev_ptr = GET_PTR( txt_chdev_xp );
2106
2107        // get TXT_RX name and ownership
2108        hal_remote_strcpy( XPTR( local_cxy , txt_name ) ,
2109                           XPTR( txt_chdev_cxy , txt_chdev_ptr->name ) );
2110   
2111        txt_owner_xp = (xptr_t)hal_remote_l64( XPTR( txt_chdev_cxy, 
2112                                                     &txt_chdev_ptr->ext.txt.owner_xp ) );
2113
2114        // get process .elf name
2115        elf_file_xp   = hal_remote_l64( XPTR( process_cxy , &process_ptr->vfs_bin_xp ) );
2116        elf_file_cxy  = GET_CXY( elf_file_xp );
2117        elf_file_ptr  = GET_PTR( elf_file_xp );
2118        elf_inode_ptr = hal_remote_lpt( XPTR( elf_file_cxy , &elf_file_ptr->inode ) );
2119        vfs_inode_get_name( XPTR( elf_file_cxy , elf_inode_ptr ) , elf_name );
2120    }
2121    else                                         // kernel process_zero
2122    {
2123        // TXT name and .elf name are not registered in kernel process_zero
2124        strcpy( txt_name , "txt0_rx" );
2125        txt_owner_xp = process_xp; 
2126        strcpy( elf_name , "kernel.elf" );
2127    }
2128
2129    // display process info
2130    if( txt_owner_xp == process_xp )
2131    {
2132        nolock_printk("PID %X | %s (FG) | %X | PPID %X | TS %X | %d | %s\n", 
2133        pid, txt_name, process_ptr, ppid, state, th_nr, elf_name );
2134    }
2135    else
2136    {
2137        nolock_printk("PID %X | %s (BG) | %X | PPID %X | TS %X | %d | %s\n", 
2138        pid, txt_name, process_ptr, ppid, state, th_nr, elf_name );
2139    }
2140}  // end process_display()
2141
2142
2143////////////////////////////////////////////////////////////////////////////////////////
2144//     Terminals related functions
2145////////////////////////////////////////////////////////////////////////////////////////
2146
2147//////////////////////////////////
2148uint32_t process_txt_alloc( void )
2149{
2150    uint32_t  index;       // TXT terminal index
2151    xptr_t    chdev_xp;    // extended pointer on TXT_RX chdev
2152    chdev_t * chdev_ptr;   // local pointer on TXT_RX chdev
2153    cxy_t     chdev_cxy;   // TXT_RX chdev cluster
2154    xptr_t    root_xp;     // extended pointer on owner field in chdev
2155
2156    // scan the user TXT_RX chdevs (TXT0 is reserved for kernel)
2157    for( index = 1 ; index < LOCAL_CLUSTER->nb_txt_channels ; index ++ )
2158    {
2159        // get pointers on TXT_RX[index]
2160        chdev_xp  = chdev_dir.txt_rx[index];
2161        chdev_cxy = GET_CXY( chdev_xp );
2162        chdev_ptr = GET_PTR( chdev_xp );
2163
2164        // get extended pointer on root of attached process
2165        root_xp = XPTR( chdev_cxy , &chdev_ptr->ext.txt.root );
2166
2167        // return free TXT index if found
2168        if( xlist_is_empty( root_xp ) ) return index; 
2169    }
2170
2171    assert( false , "no free TXT terminal found" );
2172
2173    return -1;
2174
2175} // end process_txt_alloc()
2176
2177/////////////////////////////////////////////
2178void process_txt_attach( process_t * process,
2179                         uint32_t    txt_id )
2180{
2181    xptr_t      chdev_xp;     // extended pointer on TXT_RX chdev
2182    cxy_t       chdev_cxy;    // TXT_RX chdev cluster
2183    chdev_t *   chdev_ptr;    // local pointer on TXT_RX chdev
2184    xptr_t      root_xp;      // extended pointer on list root in chdev
2185    xptr_t      lock_xp;      // extended pointer on list lock in chdev
2186
2187// check process is in owner cluster
2188assert( (CXY_FROM_PID( process->pid ) == local_cxy) ,
2189"process descriptor not in owner cluster" );
2190
2191// check terminal index
2192assert( (txt_id < LOCAL_CLUSTER->nb_txt_channels) ,
2193"illegal TXT terminal index" );
2194
2195    // get pointers on TXT_RX[txt_id] chdev
2196    chdev_xp  = chdev_dir.txt_rx[txt_id];
2197    chdev_cxy = GET_CXY( chdev_xp );
2198    chdev_ptr = GET_PTR( chdev_xp );
2199
2200    // get extended pointer on root & lock of attached process list
2201    root_xp = XPTR( chdev_cxy , &chdev_ptr->ext.txt.root );
2202    lock_xp = XPTR( chdev_cxy , &chdev_ptr->ext.txt.lock );
2203
2204    // get lock protecting list of processes attached to TXT
2205    remote_busylock_acquire( lock_xp );
2206
2207    // insert process in attached process list
2208    xlist_add_last( root_xp , XPTR( local_cxy , &process->txt_list ) );
2209
2210    // release lock protecting list of processes attached to TXT
2211    remote_busylock_release( lock_xp );
2212
2213#if DEBUG_PROCESS_TXT
2214thread_t * this = CURRENT_THREAD;
2215uint32_t cycle = (uint32_t)hal_get_cycles();
2216if( DEBUG_PROCESS_TXT < cycle )
2217printk("\n[%s] thread[%x,%x] attached process %x to TXT %d / cycle %d\n",
2218__FUNCTION__, this->process->pid, this->trdid, process->pid, txt_id , cycle );
2219#endif
2220
2221} // end process_txt_attach()
2222
2223/////////////////////////////////////////////
2224void process_txt_detach( xptr_t  process_xp )
2225{
2226    process_t * process_ptr;  // local pointer on process in owner cluster
2227    cxy_t       process_cxy;  // process owner cluster
2228    pid_t       process_pid;  // process identifier
2229    xptr_t      file_xp;      // extended pointer on stdin file
2230    xptr_t      chdev_xp;     // extended pointer on TXT_RX chdev
2231    cxy_t       chdev_cxy;    // TXT_RX chdev cluster
2232    chdev_t *   chdev_ptr;    // local pointer on TXT_RX chdev
2233    xptr_t      lock_xp;      // extended pointer on list lock in chdev
2234
2235    // get process cluster, local pointer, and PID
2236    process_cxy = GET_CXY( process_xp );
2237    process_ptr = GET_PTR( process_xp );
2238    process_pid = hal_remote_l32( XPTR( process_cxy , &process_ptr->pid ) );
2239
2240// check process descriptor in owner cluster
2241assert( (CXY_FROM_PID( process_pid ) == process_cxy ) ,
2242"process descriptor not in owner cluster" );
2243
2244    // release TXT ownership (does nothing if not TXT owner)
2245    process_txt_transfer_ownership( process_xp );
2246
2247    // get extended pointer on process stdin pseudo file
2248    file_xp = (xptr_t)hal_remote_l64( XPTR( process_cxy , &process_ptr->fd_array.array[0] ) );
2249
2250    // get pointers on TXT_RX chdev
2251    chdev_xp  = chdev_from_file( file_xp );
2252    chdev_cxy = GET_CXY( chdev_xp );
2253    chdev_ptr = (chdev_t *)GET_PTR( chdev_xp );
2254
2255    // get extended pointer on lock protecting attached process list
2256    lock_xp = XPTR( chdev_cxy , &chdev_ptr->ext.txt.lock );
2257
2258    // get lock protecting list of processes attached to TXT
2259    remote_busylock_acquire( lock_xp );
2260
2261    // unlink process from attached process list
2262    xlist_unlink( XPTR( process_cxy , &process_ptr->txt_list ) );
2263
2264    // release lock protecting list of processes attached to TXT
2265    remote_busylock_release( lock_xp );
2266
2267#if DEBUG_PROCESS_TXT
2268thread_t * this = CURRENT_THREAD;
2269uint32_t cycle  = (uint32_t)hal_get_cycles();
2270uint32_t txt_id = hal_remote_l32( XPTR( chdev_cxy , &chdev_ptr->channel ) );
2271if( DEBUG_PROCESS_TXT < cycle )
2272printk("\n[%s] thread[%x,%x] detached process %x from TXT%d / cycle %d\n",
2273__FUNCTION__, this->process->pid, this->trdid, process_pid, txt_id, cycle );
2274#endif
2275
2276} // end process_txt_detach()
2277
2278///////////////////////////////////////////////////
2279void process_txt_set_ownership( xptr_t process_xp )
2280{
2281    process_t * process_ptr;
2282    cxy_t       process_cxy;
2283    pid_t       process_pid;
2284    xptr_t      file_xp;
2285    xptr_t      txt_xp;     
2286    chdev_t   * txt_ptr;
2287    cxy_t       txt_cxy;
2288
2289    // get pointers on process in owner cluster
2290    process_cxy = GET_CXY( process_xp );
2291    process_ptr = GET_PTR( process_xp );
2292    process_pid = hal_remote_l32( XPTR( process_cxy , &process_ptr->pid ) );
2293
2294    // check owner cluster
2295    assert( (process_cxy == CXY_FROM_PID( process_pid )) ,
2296    "process descriptor not in owner cluster" );
2297
2298    // get extended pointer on stdin pseudo file
2299    file_xp = hal_remote_l64( XPTR( process_cxy , &process_ptr->fd_array.array[0] ) );
2300
2301    // get pointers on TXT chdev
2302    txt_xp  = chdev_from_file( file_xp );
2303    txt_cxy = GET_CXY( txt_xp );
2304    txt_ptr = GET_PTR( txt_xp );
2305
2306    // set owner field in TXT chdev
2307    hal_remote_s64( XPTR( txt_cxy , &txt_ptr->ext.txt.owner_xp ) , process_xp );
2308
2309#if DEBUG_PROCESS_TXT
2310thread_t * this = CURRENT_THREAD;
2311uint32_t cycle  = (uint32_t)hal_get_cycles();
2312uint32_t txt_id = hal_remote_l32( XPTR( txt_cxy , &txt_ptr->channel ) );
2313if( DEBUG_PROCESS_TXT < cycle )
2314printk("\n[%s] thread[%x,%x] give TXT%d ownership to process %x / cycle %d\n",
2315__FUNCTION__, this->process->pid, this->trdid, txt_id, process_pid, cycle );
2316#endif
2317
2318}  // end process_txt_set ownership()
2319
2320////////////////////////////////////////////////////////
2321void process_txt_transfer_ownership( xptr_t process_xp )
2322{
2323    process_t * process_ptr;     // local pointer on process releasing ownership
2324    cxy_t       process_cxy;     // process cluster
2325    pid_t       process_pid;     // process identifier
2326    xptr_t      file_xp;         // extended pointer on TXT_RX pseudo file
2327    xptr_t      txt_xp;          // extended pointer on TXT_RX chdev
2328    chdev_t   * txt_ptr;         // local pointer on TXT_RX chdev
2329    cxy_t       txt_cxy;         // cluster of TXT_RX chdev
2330    uint32_t    txt_id;          // TXT_RX channel
2331    xptr_t      owner_xp;        // extended pointer on current TXT_RX owner
2332    xptr_t      root_xp;         // extended pointer on root of attached process list
2333    xptr_t      lock_xp;         // extended pointer on lock protecting attached process list
2334    xptr_t      iter_xp;         // iterator for xlist
2335    xptr_t      current_xp;      // extended pointer on current process
2336    bool_t      found;
2337
2338#if DEBUG_PROCESS_TXT
2339thread_t * this  = CURRENT_THREAD;
2340uint32_t   cycle;
2341#endif
2342
2343    // get pointers on target process
2344    process_cxy = GET_CXY( process_xp );
2345    process_ptr = GET_PTR( process_xp );
2346    process_pid = hal_remote_l32( XPTR( process_cxy , &process_ptr->pid ) );
2347
2348// check owner cluster
2349assert( (process_cxy == CXY_FROM_PID( process_pid )) ,
2350"process descriptor not in owner cluster" );
2351
2352    // get extended pointer on stdin pseudo file
2353    file_xp = hal_remote_l64( XPTR( process_cxy , &process_ptr->fd_array.array[0] ) );
2354
2355    // get pointers on TXT chdev
2356    txt_xp  = chdev_from_file( file_xp );
2357    txt_cxy = GET_CXY( txt_xp );
2358    txt_ptr = GET_PTR( txt_xp );
2359
2360    // get relevant infos from chdev descriptor
2361    owner_xp = hal_remote_l64( XPTR( txt_cxy , &txt_ptr->ext.txt.owner_xp ) );
2362    txt_id   = hal_remote_l32( XPTR( txt_cxy , &txt_ptr->channel ) );
2363
2364    // transfer ownership only if target process is the TXT owner
2365    if( (owner_xp == process_xp) && (txt_id > 0) ) 
2366    {
2367        // get extended pointers on root and lock of attached processes list
2368        root_xp = XPTR( txt_cxy , &txt_ptr->ext.txt.root );
2369        lock_xp = XPTR( txt_cxy , &txt_ptr->ext.txt.lock );
2370
2371        if( process_get_ppid( process_xp ) != 1 )       // target process is not KSH
2372        {
2373            // get lock
2374            remote_busylock_acquire( lock_xp );
2375
2376            // scan attached process list to find KSH process
2377            found = false;
2378            for( iter_xp = hal_remote_l64( root_xp ) ;
2379                 (iter_xp != root_xp) && (found == false) ;
2380                 iter_xp = hal_remote_l64( iter_xp ) )
2381            {
2382                current_xp = XLIST_ELEMENT( iter_xp , process_t , txt_list );
2383
2384                if( process_get_ppid( current_xp ) == 1 )  // current is KSH
2385                {
2386                    // set owner field in TXT chdev
2387                    hal_remote_s64( XPTR( txt_cxy , &txt_ptr->ext.txt.owner_xp ) , current_xp );
2388
2389#if DEBUG_PROCESS_TXT
2390cycle = (uint32_t)hal_get_cycles();
2391if( DEBUG_PROCESS_TXT < cycle )
2392printk("\n[%s] thread[%x,%x] transfered TXT%d ownership to KSH / cycle %d\n",
2393__FUNCTION__, this->process->pid, this->trdid, txt_id, cycle );
2394#endif
2395                    found = true;
2396                }
2397            }
2398
2399            // release lock
2400            remote_busylock_release( lock_xp );
2401
2402// It must exist a KSH process for each user TXT channel
2403assert( (found == true), "KSH process not found for TXT%d", txt_id );
2404
2405        }
2406        else                                           // target process is KSH
2407        {
2408            // get lock
2409            remote_busylock_acquire( lock_xp );
2410
2411            // scan attached process list to find another process
2412            found = false;
2413            for( iter_xp = hal_remote_l64( root_xp ) ;
2414                 (iter_xp != root_xp) && (found == false) ;
2415                 iter_xp = hal_remote_l64( iter_xp ) )
2416            {
2417                current_xp  = XLIST_ELEMENT( iter_xp , process_t , txt_list );
2418
2419                if( current_xp != process_xp )            // current is not KSH
2420                {
2421                    // set owner field in TXT chdev
2422                    hal_remote_s64( XPTR( txt_cxy , &txt_ptr->ext.txt.owner_xp ) , current_xp );
2423
2424#if DEBUG_PROCESS_TXT
2425cycle  = (uint32_t)hal_get_cycles();
2426cxy_t       current_cxy = GET_CXY( current_xp );
2427process_t * current_ptr = GET_PTR( current_xp );
2428uint32_t    new_pid     = hal_remote_l32( XPTR( current_cxy , &current_ptr->pid ) );
2429if( DEBUG_PROCESS_TXT < cycle )
2430printk("\n[%s] thread[%x,%x] transfered TXT%d ownership to process %x / cycle %d\n",
2431__FUNCTION__,this->process->pid, this->trdid, txt_id, new_pid, cycle );
2432#endif
2433                    found = true;
2434                }
2435            }
2436
2437            // release lock
2438            remote_busylock_release( lock_xp );
2439
2440            // no more owner for TXT if no other process found
2441            if( found == false )
2442            {
2443                // set owner field in TXT chdev
2444                hal_remote_s64( XPTR( txt_cxy , &txt_ptr->ext.txt.owner_xp ) , XPTR_NULL );
2445
2446#if DEBUG_PROCESS_TXT
2447cycle = (uint32_t)hal_get_cycles();
2448if( DEBUG_PROCESS_TXT < cycle )
2449printk("\n[%s] thread[%x,%x] released TXT%d (no attached process) / cycle %d\n",
2450__FUNCTION__, this->process->pid, this->trdid, txt_id, cycle );
2451#endif
2452            }
2453        }
2454    }
2455    else
2456    {
2457
2458#if DEBUG_PROCESS_TXT
2459cycle = (uint32_t)hal_get_cycles();
2460if( DEBUG_PROCESS_TXT < cycle )
2461printk("\n[%s] thread[%x,%x] does nothing for process %x (not TXT owner) / cycle %d\n",
2462__FUNCTION__, this->process->pid, this->trdid, process_pid, cycle );
2463#endif
2464
2465    }
2466
2467}  // end process_txt_transfer_ownership()
2468
2469
2470////////////////////////////////////////////////
2471bool_t process_txt_is_owner( xptr_t process_xp )
2472{
2473    // get local pointer and cluster of process in owner cluster
2474    cxy_t       process_cxy = GET_CXY( process_xp );
2475    process_t * process_ptr = GET_PTR( process_xp );
2476
2477// check calling thread execute in target process owner cluster
2478pid_t process_pid = hal_remote_l32( XPTR( process_cxy , &process_ptr->pid ) );
2479assert( (process_cxy == CXY_FROM_PID( process_pid )) ,
2480"process descriptor not in owner cluster" );
2481
2482    // get extended pointer on stdin pseudo file
2483    xptr_t file_xp = hal_remote_l64( XPTR( process_cxy , &process_ptr->fd_array.array[0] ) );
2484
2485    // get pointers on TXT chdev
2486    xptr_t    txt_xp  = chdev_from_file( file_xp );
2487    cxy_t     txt_cxy = GET_CXY( txt_xp );
2488    chdev_t * txt_ptr = GET_PTR( txt_xp );
2489
2490    // get extended pointer on TXT_RX owner process
2491    xptr_t owner_xp = hal_remote_l64( XPTR( txt_cxy , &txt_ptr->ext.txt.owner_xp ) );
2492
2493    return (process_xp == owner_xp);
2494
2495}   // end process_txt_is_owner()
2496
2497////////////////////////////////////////////////     
2498xptr_t process_txt_get_owner( uint32_t channel )
2499{
2500    xptr_t      txt_rx_xp  = chdev_dir.txt_rx[channel];
2501    cxy_t       txt_rx_cxy = GET_CXY( txt_rx_xp );
2502    chdev_t *   txt_rx_ptr = GET_PTR( txt_rx_xp );
2503
2504    return (xptr_t)hal_remote_l64( XPTR( txt_rx_cxy , &txt_rx_ptr->ext.txt.owner_xp ) );
2505
2506}  // end process_txt_get_owner()
2507
2508///////////////////////////////////////////
2509void process_txt_display( uint32_t txt_id )
2510{
2511    xptr_t      chdev_xp;
2512    cxy_t       chdev_cxy;
2513    chdev_t   * chdev_ptr;
2514    xptr_t      root_xp;
2515    xptr_t      lock_xp;
2516    xptr_t      current_xp;
2517    xptr_t      iter_xp;
2518    cxy_t       txt0_cxy;
2519    chdev_t   * txt0_ptr;
2520    xptr_t      txt0_xp;
2521    xptr_t      txt0_lock_xp;
2522   
2523    assert( (txt_id < LOCAL_CLUSTER->nb_txt_channels) ,
2524    "illegal TXT terminal index" );
2525
2526    // get pointers on TXT0 chdev
2527    txt0_xp  = chdev_dir.txt_tx[0];
2528    txt0_cxy = GET_CXY( txt0_xp );
2529    txt0_ptr = GET_PTR( txt0_xp );
2530
2531    // get extended pointer on TXT0 lock
2532    txt0_lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
2533
2534    // get pointers on TXT_RX[txt_id] chdev
2535    chdev_xp  = chdev_dir.txt_rx[txt_id];
2536    chdev_cxy = GET_CXY( chdev_xp );
2537    chdev_ptr = GET_PTR( chdev_xp );
2538
2539    // get extended pointer on root & lock of attached process list
2540    root_xp = XPTR( chdev_cxy , &chdev_ptr->ext.txt.root );
2541    lock_xp = XPTR( chdev_cxy , &chdev_ptr->ext.txt.lock );
2542
2543    // get lock on attached process list
2544    remote_busylock_acquire( lock_xp );
2545
2546    // get TXT0 lock in busy waiting mode
2547    remote_busylock_acquire( txt0_lock_xp );
2548
2549    // display header
2550    nolock_printk("\n***** processes attached to TXT_%d / cycle %d\n",
2551    txt_id , (uint32_t)hal_get_cycles() );
2552
2553    // scan attached process list
2554    XLIST_FOREACH( root_xp , iter_xp )
2555    {
2556        current_xp  = XLIST_ELEMENT( iter_xp , process_t , txt_list );
2557        process_display( current_xp );
2558    }
2559
2560    // release TXT0 lock in busy waiting mode
2561    remote_busylock_release( txt0_lock_xp );
2562
2563    // release lock on attached process list
2564    remote_busylock_release( lock_xp );
2565
2566}  // end process_txt_display
Note: See TracBrowser for help on using the repository browser.