source: trunk/kernel/kern/scheduler.c @ 611

Last change on this file since 611 was 610, checked in by alain, 6 years ago

Fix several bugs in VFS to support the following
ksh commandis : cp, mv, rm, mkdir, cd, pwd

File size: 25.7 KB
RevLine 
[1]1/*
2 * scheduler.c - Core scheduler implementation.
3 *
[564]4 * Author    Alain Greiner (2016,2017,2018)
[1]5 *
6 * Copyright (c)  UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH. is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH. is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH.; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
[14]24#include <kernel_config.h>
[457]25#include <hal_kernel_types.h>
[407]26#include <hal_switch.h>
[1]27#include <hal_irqmask.h>
28#include <hal_context.h>
29#include <printk.h>
30#include <list.h>
31#include <core.h>
32#include <thread.h>
[296]33#include <chdev.h>
[1]34#include <scheduler.h>
35
[443]36
[296]37///////////////////////////////////////////////////////////////////////////////////////////
[564]38//         global variables
[296]39///////////////////////////////////////////////////////////////////////////////////////////
[1]40
[564]41extern chdev_directory_t    chdev_dir;          // allocated in kernel_init.c
[583]42extern process_t            process_zero;       // allocated in kernel_init.c
[296]43
[564]44///////////////////////////////////////////////////////////////////////////////////////////
45//         private functions
46///////////////////////////////////////////////////////////////////////////////////////////
[443]47
[1]48
[564]49////////////////////////////////////////////////////////////////////////////////////////////
50// This static function does NOT modify the scheduler state.
51// It just select a thread in the list of attached threads, implementing the following
52// three steps policy:
53// 1) It scan the list of kernel threads, from the next thread after the last executed one,
54//    and returns the first runnable found : not IDLE, not blocked, client queue not empty.
55//    It can be the current thread.
56// 2) If no kernel thread found, it scan the list of user thread, from the next thread after
57//    the last executed one, and returns the first runable found : not blocked.
58//    It can be the current thread.
59// 3) If no runable thread found, it returns the idle thread.
60////////////////////////////////////////////////////////////////////////////////////////////
61// @ sched   : local pointer on scheduler.
62// @ returns pointer on selected thread descriptor
63////////////////////////////////////////////////////////////////////////////////////////////
[408]64thread_t * sched_select( scheduler_t * sched )
[1]65{
[408]66    thread_t     * thread;
67    list_entry_t * current;
68    list_entry_t * last;
[437]69    list_entry_t * root;
70    bool_t         done;
[450]71    uint32_t       count;
[1]72
[437]73    // first : scan the kernel threads list if not empty
[279]74    if( list_is_empty( &sched->k_root ) == false )
[1]75    {
[437]76        root    = &sched->k_root;
[279]77        last    = sched->k_last;
[450]78        done    = false;
79        count   = 0;
[437]80        current = last;
81
82        while( done == false )
[279]83        {
[450]84
[564]85// check kernel threads list
[583]86assert( (count < sched->k_threads_nr), "bad kernel threads list" );
[564]87
[279]88            // get next entry in kernel list
[437]89            current = current->next;
[1]90
[437]91            // check exit condition
92            if( current == last ) done = true;
93
[279]94            // skip the root that does not contain a thread
[437]95            if( current == root ) continue;
[450]96            else                  count++;
[1]97
[279]98            // get thread pointer for this entry
99            thread = LIST_ELEMENT( current , thread_t , sched_list );
[1]100
[450]101            // select kernel thread if non blocked and non THREAD_IDLE
[564]102            if( (thread->blocked == 0)  && (thread->type != THREAD_IDLE) ) return thread;
103
[437]104        } // end loop on kernel threads
[450]105    } // end kernel threads
[437]106
107    // second : scan the user threads list if not empty
[279]108    if( list_is_empty( &sched->u_root ) == false )
[1]109    {
[437]110        root    = &sched->u_root;
[279]111        last    = sched->u_last;
[450]112        done    = false;
113        count   = 0;
[437]114        current = last;
115
116        while( done == false )
[279]117        {
[450]118
[564]119// check user threads list
[583]120assert( (count < sched->u_threads_nr), "bad user threads list" );
[564]121
[279]122            // get next entry in user list
[437]123            current = current->next;
[1]124
[437]125            // check exit condition
126            if( current == last ) done = true;
127
[279]128            // skip the root that does not contain a thread
[437]129            if( current == root ) continue;
[450]130            else                  count++;
[1]131
[279]132            // get thread pointer for this entry
133            thread = LIST_ELEMENT( current , thread_t , sched_list );
[1]134
[450]135            // select thread if non blocked
[564]136            if( thread->blocked == 0 )  return thread;
137
[437]138        } // end loop on user threads
[450]139    } // end user threads
[1]140
[437]141    // third : return idle thread if no other runnable thread
[1]142    return sched->idle;
143
[296]144}  // end sched_select()
[1]145
[564]146////////////////////////////////////////////////////////////////////////////////////////////
[592]147// This static function is the only function that can actually delete a thread,
148// and the associated process descriptor, if required.
[564]149// It is private, because it is called by the sched_yield() public function.
150// It scan all threads attached to a given scheduler, and executes the relevant
[583]151// actions for two types of pending requests:
[592]152//
[564]153// - REQ_ACK : it checks that target thread is blocked, decrements the response counter
154//   to acknowledge the client thread, and reset the pending request.
[583]155// - REQ_DELETE : it removes the target thread from the process th_tbl[], remove it
156//   from the scheduler list, and release the memory allocated to thread descriptor.
157//   For an user thread, it destroys the process descriptor it the target thread is
158//   the last thread in the local process descriptor.
159//
160// Implementation note:
161// We use a while to scan the threads in scheduler lists, because some threads can
162// be destroyed, and we want not use a LIST_FOREACH()
[564]163////////////////////////////////////////////////////////////////////////////////////////////
164// @ core    : local pointer on the core descriptor.
165////////////////////////////////////////////////////////////////////////////////////////////
166static void sched_handle_signals( core_t * core )
[1]167{
[437]168
[1]169    list_entry_t * iter;
[440]170    list_entry_t * root;
[1]171    thread_t     * thread;
[428]172    process_t    * process;
[564]173    scheduler_t  * sched;
[583]174    uint32_t       threads_nr;   // number of threads in scheduler list
175    ltid_t         ltid;         // thread local index
176    uint32_t       count;        // number of threads in local process
[409]177
[440]178    // get pointer on scheduler
[564]179    sched = &core->scheduler;
[1]180
[593]181    /////////////// scan user threads to handle both ACK and DELETE requests
[440]182    root = &sched->u_root;
183    iter = root->next;
184    while( iter != root )
[1]185    {
[440]186        // get pointer on thread
[1]187        thread = LIST_ELEMENT( iter , thread_t , sched_list );
188
[440]189        // increment iterator
190        iter = iter->next;
191
[416]192        // handle REQ_ACK
193        if( thread->flags & THREAD_FLAG_REQ_ACK )
[408]194        {
[564]195
196// check thread blocked
[592]197assert( (thread->blocked & THREAD_BLOCKED_GLOBAL) , "thread not blocked" );
[416]198 
199            // decrement response counter
200            hal_atomic_add( thread->ack_rsp_count , -1 );
[408]201
[416]202            // reset REQ_ACK in thread descriptor
203            thread_reset_req_ack( thread );
[408]204        }
[416]205
[564]206        // handle REQ_DELETE only if target thread != calling thread
207        if( (thread->flags & THREAD_FLAG_REQ_DELETE) && (thread != CURRENT_THREAD) )
[416]208        {
[428]209            // get thread process descriptor
210            process = thread->process;
[416]211
[583]212            // get thread ltid
213            ltid = LTID_FROM_TRDID( thread->trdid);
[416]214
[593]215            // take the lock protecting sheduler state
216            busylock_acquire( &sched->lock );
217
[564]218            // update scheduler state
[583]219            threads_nr = sched->u_threads_nr;
[428]220            sched->u_threads_nr = threads_nr - 1;
[416]221            list_unlink( &thread->sched_list );
[450]222            if( sched->u_last == &thread->sched_list )
223            {
224                if( threads_nr == 1 ) 
225                {
226                    sched->u_last = NULL;
227                }
228                else if( sched->u_root.next == &thread->sched_list )
229                {
230                    sched->u_last = sched->u_root.pred;
231                }
232                else
233                {
234                    sched->u_last = sched->u_root.next;
235                }
236            }
[416]237
[593]238            // release the lock protecting sheduler state
239            busylock_release( &sched->lock );
240
[583]241// check th_nr value
[592]242assert( (process->th_nr > 0) , "process th_nr cannot be 0\n" );
[583]243
244            // remove thread from process th_tbl[]
245            process->th_tbl[ltid] = NULL;
[593]246            count = hal_atomic_add( &process->th_nr , - 1 );
[583]247 
248            // release memory allocated for thread descriptor
249            thread_destroy( thread );
250
[593]251            hal_fence();
252
[438]253#if DEBUG_SCHED_HANDLE_SIGNALS
[440]254uint32_t cycle = (uint32_t)hal_get_cycles();
[438]255if( DEBUG_SCHED_HANDLE_SIGNALS < cycle )
[610]256printk("\n[%s] thread[%x,%x] on core[%x,%d] deleted / cycle %d\n",
[583]257__FUNCTION__ , process->pid , thread->trdid , local_cxy , thread->core->lid , cycle );
[433]258#endif
[583]259            // destroy process descriptor if last thread
260            if( count == 1 ) 
[428]261            {
262                // delete process   
263                process_destroy( process );
264
[438]265#if DEBUG_SCHED_HANDLE_SIGNALS
[433]266cycle = (uint32_t)hal_get_cycles();
[438]267if( DEBUG_SCHED_HANDLE_SIGNALS < cycle )
[610]268printk("\n[%s] process %x in cluster %x deleted / cycle %d\n",
[443]269__FUNCTION__ , process->pid , local_cxy , cycle );
[433]270#endif
[428]271            }
[416]272        }
[583]273    }  // end user threads
274
275    ////// scan kernel threads for DELETE only
276    root = &sched->k_root;
277    iter = root->next;
278    while( iter != root )
279    {
280        // get pointer on thread
281        thread = LIST_ELEMENT( iter , thread_t , sched_list );
282
283        // increment iterator
284        iter = iter->next;
285
286        // handle REQ_DELETE only if target thread != calling thread
287        if( (thread->flags & THREAD_FLAG_REQ_DELETE) && (thread != CURRENT_THREAD) )
288        {
289
290// check process descriptor is local kernel process
291assert( ( thread->process == &process_zero ) , "illegal process descriptor\n");
292
293            // get thread ltid
294            ltid = LTID_FROM_TRDID( thread->trdid);
295
[593]296            // take the lock protecting sheduler state
297            busylock_acquire( &sched->lock );
298
[583]299            // update scheduler state
300            threads_nr = sched->k_threads_nr;
301            sched->k_threads_nr = threads_nr - 1;
302            list_unlink( &thread->sched_list );
303            if( sched->k_last == &thread->sched_list )
304            {
305                if( threads_nr == 1 ) 
306                {
307                    sched->k_last = NULL;
308                }
309                else if( sched->k_root.next == &thread->sched_list )
310                {
311                    sched->k_last = sched->k_root.pred;
312                }
313                else
314                {
315                    sched->k_last = sched->k_root.next;
316                }
317            }
318
[593]319            // release the lock protecting sheduler state
320            busylock_release( &sched->lock );
321
[583]322            // get number of threads in local kernel process
323            count = process_zero.th_nr;
324
325// check th_nr value
[592]326assert( (process_zero.th_nr > 0) , "kernel process th_nr cannot be 0\n" );
[583]327
328            // remove thread from process th_tbl[]
329            process_zero.th_tbl[ltid] = NULL;
[592]330            hal_atomic_add( &process_zero.th_nr , - 1 );
[583]331 
332            // delete thread descriptor
333            thread_destroy( thread );
334
335#if DEBUG_SCHED_HANDLE_SIGNALS
336uint32_t cycle = (uint32_t)hal_get_cycles();
337if( DEBUG_SCHED_HANDLE_SIGNALS < cycle )
[610]338printk("\n[%s] thread[%x,%x] on core[%x,%d] deleted / cycle %d\n",
[583]339__FUNCTION__ , process_zero.pid , thread->trdid , local_cxy , thread->core->lid , cycle );
340#endif
341        }
[1]342    }
[564]343} // end sched_handle_signals()
[1]344
[564]345////////////////////////////////////////////////////////////////////////////////////////////
346// This static function is called by the sched_yield function when the RFC_FIFO
347// associated to the core is not empty.
[583]348// It search an idle RPC thread for this core, and unblock it if found.
349// It creates a new RPC thread if no idle RPC thread is found.
[564]350////////////////////////////////////////////////////////////////////////////////////////////
351// @ sched   : local pointer on scheduler.
352////////////////////////////////////////////////////////////////////////////////////////////
[582]353static void sched_rpc_activate( scheduler_t * sched )
[564]354{
355    error_t         error;
356    thread_t      * thread; 
357    list_entry_t  * iter;
358    lid_t           lid = CURRENT_THREAD->core->lid;
359    bool_t          found = false;
360
361    // search one IDLE RPC thread associated to the selected core   
362    LIST_FOREACH( &sched->k_root , iter )
363    {
364        thread = LIST_ELEMENT( iter , thread_t , sched_list );
[583]365
366        if( (thread->type == THREAD_RPC) && 
367            (thread->blocked == THREAD_BLOCKED_IDLE ) ) 
[564]368        {
369            found = true;
370            break;
371        }
372    }
373
374    if( found == false )     // create new RPC thread     
375    {
376        error = thread_kernel_create( &thread,
377                                      THREAD_RPC, 
378                                              &rpc_thread_func, 
379                                      NULL,
380                                          lid );
381        // check memory
382        if ( error )
383        {
[583]384            printk("\n[ERROR] in %s : no memory to create a RPC thread in cluster %x\n",
[564]385            __FUNCTION__, local_cxy );
386        }
387        else
388        {
389            // unblock created RPC thread
390            thread->blocked = 0;
391
392            // update RPC threads counter 
393            hal_atomic_add( &LOCAL_CLUSTER->rpc_threads[lid] , 1 );
394
395#if DEBUG_SCHED_RPC_ACTIVATE
396uint32_t cycle = (uint32_t)hal_get_cycles();
397if( DEBUG_SCHED_RPC_ACTIVATE < cycle ) 
[610]398printk("\n[%s] new RPC thread %x created for core[%x,%d] / total %d / cycle %d\n",
[583]399__FUNCTION__, thread->trdid, local_cxy, lid, LOCAL_CLUSTER->rpc_threads[lid], cycle );
[564]400#endif
401        }
402    }
403    else                 // RPC thread found => unblock it
404    {
405        // unblock found RPC thread
406        thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_IDLE );
407
408#if DEBUG_SCHED_RPC_ACTIVATE
409uint32_t cycle = (uint32_t)hal_get_cycles();
410if( DEBUG_SCHED_RPC_ACTIVATE < cycle ) 
[610]411printk("\n[%s] idle RPC thread %x unblocked for core[%x,%d] / cycle %d\n",
[564]412__FUNCTION__, thread->trdid, local_cxy, lid, cycle );
413#endif
414
415    }
416
417} // end sched_rpc_activate()
418
419
420
421///////////////////////////////////////////////////////////////////////////////////////////
422//         public functions
423///////////////////////////////////////////////////////////////////////////////////////////
424
425////////////////////////////////
426void sched_init( core_t * core )
427{
428    scheduler_t * sched = &core->scheduler;
429
430    sched->u_threads_nr   = 0;
431    sched->k_threads_nr   = 0;
432
433    sched->current        = CURRENT_THREAD;
434    sched->idle           = NULL;               // initialized in kernel_init()
435    sched->u_last         = NULL;               // initialized in sched_register_thread()
436    sched->k_last         = NULL;               // initialized in sched_register_thread()
437
438    // initialise threads lists
439    list_root_init( &sched->u_root );
440    list_root_init( &sched->k_root );
441
442    // init lock
443    busylock_init( &sched->lock , LOCK_SCHED_STATE );
444
445    sched->req_ack_pending = false;             // no pending request
446    sched->trace           = false;             // context switches trace desactivated
447
448}  // end sched_init()
449
450////////////////////////////////////////////
451void sched_register_thread( core_t   * core,
452                            thread_t * thread )
453{
454    scheduler_t * sched = &core->scheduler;
455    thread_type_t type  = thread->type;
456
457    // take lock protecting sheduler state
458    busylock_acquire( &sched->lock );
459
460    if( type == THREAD_USER )
461    {
462        list_add_last( &sched->u_root , &thread->sched_list );
463        sched->u_threads_nr++;
464        if( sched->u_last == NULL ) sched->u_last = &thread->sched_list;
465    }
466    else // kernel thread
467    {
468        list_add_last( &sched->k_root , &thread->sched_list );
469        sched->k_threads_nr++;
470        if( sched->k_last == NULL ) sched->k_last = &thread->sched_list; 
471    }
472
[1]473    // release lock
[564]474    busylock_release( &sched->lock );
[1]475
[564]476}  // end sched_register_thread()
[416]477
[564]478//////////////////////////////////////
[470]479void sched_yield( const char * cause )
[1]480{
[564]481    thread_t      * next;
482    thread_t      * current = CURRENT_THREAD;
483    core_t        * core    = current->core;
484    lid_t           lid     = core->lid;
485    scheduler_t   * sched   = &core->scheduler;
486    remote_fifo_t * fifo    = &LOCAL_CLUSTER->rpc_fifo[lid]; 
[407]487 
[438]488#if (DEBUG_SCHED_YIELD & 0x1)
[564]489if( sched->trace ) sched_display( lid );
[407]490#endif
[1]491
[581]492// This assert should never be false, as this check must be
493// done before by any function that can possibly deschedule...
[564]494assert( (current->busylocks == 0),
[581]495"unexpected descheduling of thread holding %d busylocks = %d\n", current->busylocks ); 
[1]496
[564]497    // activate or create an RPC thread if RPC_FIFO non empty
498    if( remote_fifo_is_empty( fifo ) == false )  sched_rpc_activate( sched );
[408]499
[564]500    // disable IRQs / save SR in current thread descriptor
501    hal_disable_irq( &current->save_sr );
502
503    // take lock protecting sheduler state
504    busylock_acquire( &sched->lock );
505   
506    // select next thread
[408]507    next = sched_select( sched );
[1]508
[564]509// check next thread kernel_stack overflow
510assert( (next->signature == THREAD_SIGNATURE),
511"kernel stack overflow for thread %x on core[%x,%d] \n", next, local_cxy, lid );
[436]512
[564]513// check next thread attached to same core as the calling thread
514assert( (next->core == current->core),
515"next core %x != current core %x\n", next->core, current->core );
[296]516
[564]517// check next thread not blocked when type != IDLE
518assert( ((next->blocked == 0) || (next->type == THREAD_IDLE)) ,
519"next thread %x (%s) is blocked on core[%x,%d]\n", 
520next->trdid , thread_type_str(next->type) , local_cxy , lid );
[296]521
522    // switch contexts and update scheduler state if next != current
523        if( next != current )
[1]524    {
[296]525        // update scheduler
[408]526        sched->current = next;
527        if( next->type == THREAD_USER ) sched->u_last = &next->sched_list;
528        else                            sched->k_last = &next->sched_list;
[1]529
[407]530        // handle FPU ownership
[306]531            if( next->type == THREAD_USER )
[296]532        {
[407]533                if( next == current->core->fpu_owner )  hal_fpu_enable();
534                else                                    hal_fpu_disable();
[296]535        }
[1]536
[564]537        // release lock protecting scheduler state
538        busylock_release( &sched->lock );
539
540#if DEBUG_SCHED_YIELD
541if( sched->trace )
[610]542printk("\n[%s] core[%x,%d] / cause = %s\n"
[564]543"      thread %x (%s) (%x,%x) => thread %x (%s) (%x,%x) / cycle %d\n",
544__FUNCTION__, local_cxy, lid, cause, 
545current, thread_type_str(current->type), current->process->pid, current->trdid,next ,
546thread_type_str(next->type) , next->process->pid , next->trdid , (uint32_t)hal_get_cycles() );
547#endif
548
[435]549        // switch CPU from current thread context to new thread context
[407]550        hal_do_cpu_switch( current->cpu_context, next->cpu_context );
[296]551    }
552    else
553    {
[564]554        // release lock protecting scheduler state
555        busylock_release( &sched->lock );
[407]556
[583]557#if (DEBUG_SCHED_YIELD & 1)
[443]558if( sched->trace )
[610]559printk("\n[%s] core[%x,%d] / cause = %s\n"
[435]560"      thread %x (%s) (%x,%x) continue / cycle %d\n",
[564]561__FUNCTION__, local_cxy, lid, cause, current, thread_type_str(current->type),
[443]562current->process->pid, current->trdid, (uint32_t)hal_get_cycles() );
[428]563#endif
[407]564
[296]565    }
[408]566
[416]567    // handle pending requests for all threads executing on this core.
[433]568    sched_handle_signals( core );
[409]569
[435]570    // exit critical section / restore SR from current thread descriptor
571    hal_restore_irq( CURRENT_THREAD->save_sr );
[408]572
[1]573}  // end sched_yield()
574
[407]575
576///////////////////////////////
577void sched_display( lid_t lid )
[1]578{
[296]579    list_entry_t * iter;
580    thread_t     * thread;
[1]581
[564]582// check lid
583assert( (lid < LOCAL_CLUSTER->cores_nr), 
584"illegal core index %d\n", lid);
[407]585
586    core_t       * core    = &LOCAL_CLUSTER->core_tbl[lid];
[296]587    scheduler_t  * sched   = &core->scheduler;
588   
589    // get pointers on TXT0 chdev
[407]590    xptr_t    txt0_xp  = chdev_dir.txt_tx[0];
[296]591    cxy_t     txt0_cxy = GET_CXY( txt0_xp );
592    chdev_t * txt0_ptr = GET_PTR( txt0_xp );
[1]593
[564]594    // get extended pointer on remote TXT0 lock
[296]595    xptr_t  lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
[1]596
[564]597    // get TXT0 lock
598    remote_busylock_acquire( lock_xp );
[296]599
[583]600    nolock_printk("\n***** threads on core[%x,%d] / current %x / rpc_threads %d / cycle %d\n",
601    local_cxy , core->lid, sched->current, LOCAL_CLUSTER->rpc_threads[lid],
602    (uint32_t)hal_get_cycles() );
[296]603
604    // display kernel threads
605    LIST_FOREACH( &sched->k_root , iter )
[1]606    {
[296]607        thread = LIST_ELEMENT( iter , thread_t , sched_list );
[408]608        if (thread->type == THREAD_DEV) 
609        {
[416]610            nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X / %s\n",
[408]611            thread_type_str( thread->type ), thread->process->pid, thread->trdid,
[416]612            thread, thread->blocked, thread->flags, thread->chdev->name );
[408]613        }
614        else
615        {
[437]616            nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X\n",
[408]617            thread_type_str( thread->type ), thread->process->pid, thread->trdid,
[437]618            thread, thread->blocked, thread->flags );
[408]619        }
[1]620    }
621
[296]622    // display user threads
623    LIST_FOREACH( &sched->u_root , iter )
[1]624    {
[296]625        thread = LIST_ELEMENT( iter , thread_t , sched_list );
[416]626        nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X\n",
[408]627        thread_type_str( thread->type ), thread->process->pid, thread->trdid,
[416]628        thread, thread->blocked, thread->flags );
[1]629    }
630
[296]631    // release TXT0 lock
[564]632    remote_busylock_release( lock_xp );
[1]633
[296]634}  // end sched_display()
[1]635
[450]636/////////////////////////////////////
637void sched_remote_display( cxy_t cxy,
638                           lid_t lid )
639{
640    thread_t     * thread;
641
[564]642// check cxy
643assert( (cluster_is_undefined( cxy ) == false),
644"illegal cluster %x\n", cxy );
[450]645
[564]646assert( (lid < hal_remote_l32( XPTR( cxy , &LOCAL_CLUSTER->cores_nr ) ) ),
647"illegal core index %d\n", lid );
[450]648
649    // get local pointer on target scheduler
650    core_t      * core  = &LOCAL_CLUSTER->core_tbl[lid];
651    scheduler_t * sched = &core->scheduler;
652
653    // get local pointer on current thread in target scheduler
654    thread_t * current = hal_remote_lpt( XPTR( cxy, &sched->current ) );
655
656    // get local pointer on the first kernel and user threads list_entry
657    list_entry_t * k_entry = hal_remote_lpt( XPTR( cxy , &sched->k_root.next ) );
658    list_entry_t * u_entry = hal_remote_lpt( XPTR( cxy , &sched->u_root.next ) );
659   
660    // get pointers on TXT0 chdev
661    xptr_t    txt0_xp  = chdev_dir.txt_tx[0];
662    cxy_t     txt0_cxy = GET_CXY( txt0_xp );
663    chdev_t * txt0_ptr = GET_PTR( txt0_xp );
664
665    // get extended pointer on remote TXT0 chdev lock
666    xptr_t  lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
667
[564]668    // get TXT0 lock
669    remote_busylock_acquire( lock_xp );
[450]670
[583]671    // get rpc_threads
672    uint32_t rpcs = hal_remote_l32( XPTR( cxy , &LOCAL_CLUSTER->rpc_threads[lid] ) );
673 
[450]674    // display header
[583]675    nolock_printk("\n***** threads on core[%x,%d] / current %x / rpc_threads %d / cycle %d\n",
676    cxy , lid, current, rpcs, (uint32_t)hal_get_cycles() );
[450]677
678    // display kernel threads
679    while( k_entry != &sched->k_root )
680    {
681        // get local pointer on kernel_thread
682        thread = LIST_ELEMENT( k_entry , thread_t , sched_list );
683
684        // get relevant thead info
[564]685        thread_type_t type    = hal_remote_l32 ( XPTR( cxy , &thread->type ) );
686        trdid_t       trdid   = hal_remote_l32 ( XPTR( cxy , &thread->trdid ) );
687        uint32_t      blocked = hal_remote_l32 ( XPTR( cxy , &thread->blocked ) );
688        uint32_t      flags   = hal_remote_l32 ( XPTR( cxy , &thread->flags ) );
[610]689        process_t *   process = hal_remote_lpt ( XPTR( cxy , &thread->process ) );
[564]690        pid_t         pid     = hal_remote_l32 ( XPTR( cxy , &process->pid ) );
[450]691
692        // display thread info
693        if (type == THREAD_DEV) 
694        {
695            char      name[16];
696            chdev_t * chdev = hal_remote_lpt( XPTR( cxy , &thread->chdev ) );
[610]697            hal_remote_strcpy( XPTR( local_cxy , name ), XPTR( cxy , chdev->name ) );
[450]698
699            nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X / %s\n",
700            thread_type_str( type ), pid, trdid, thread, blocked, flags, name );
701        }
702        else
703        {
704            nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X\n",
705            thread_type_str( type ), pid, trdid, thread, blocked, flags );
706        }
707
708        // get next remote kernel thread list_entry
709        k_entry = hal_remote_lpt( XPTR( cxy , &k_entry->next ) );
710    }
711
712    // display user threads
713    while( u_entry != &sched->u_root )
714    {
715        // get local pointer on user_thread
716        thread = LIST_ELEMENT( u_entry , thread_t , sched_list );
717
718        // get relevant thead info
[564]719        thread_type_t type    = hal_remote_l32 ( XPTR( cxy , &thread->type ) );
720        trdid_t       trdid   = hal_remote_l32 ( XPTR( cxy , &thread->trdid ) );
721        uint32_t      blocked = hal_remote_l32 ( XPTR( cxy , &thread->blocked ) );
722        uint32_t      flags   = hal_remote_l32 ( XPTR( cxy , &thread->flags ) );
[610]723        process_t *   process = hal_remote_lpt ( XPTR( cxy , &thread->process ) );
[564]724        pid_t         pid     = hal_remote_l32 ( XPTR( cxy , &process->pid ) );
[450]725
726        nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X\n",
727        thread_type_str( type ), pid, trdid, thread, blocked, flags );
728
729        // get next user thread list_entry
730        u_entry = hal_remote_lpt( XPTR( cxy , &u_entry->next ) );
731    }
732
733    // release TXT0 lock
[564]734    remote_busylock_release( lock_xp );
[450]735
736}  // end sched_remote_display()
737
[564]738
Note: See TracBrowser for help on using the repository browser.