source: trunk/kernel/kern/scheduler.c @ 675

Last change on this file since 675 was 669, checked in by alain, 4 years ago

1) Introduce up to 4 command lines arguments in the KSH "load" command.
These arguments are transfered to the user process through the
argc/argv mechanism, using the user space "args" vseg.

2) Introduce the named and anonymous "pipes", for inter-process communication
through the pipe() and mkfifo() syscalls.

3) Introduce the "chat" application to validate the two above mechanisms.

4) Improve printk() and assert() fonctions in printk.c.

File size: 23.8 KB
RevLine 
[1]1/*
2 * scheduler.c - Core scheduler implementation.
3 *
[564]4 * Author    Alain Greiner (2016,2017,2018)
[1]5 *
6 * Copyright (c)  UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH. is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH. is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH.; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
[14]24#include <kernel_config.h>
[457]25#include <hal_kernel_types.h>
[407]26#include <hal_switch.h>
[1]27#include <hal_irqmask.h>
28#include <hal_context.h>
29#include <printk.h>
30#include <list.h>
[619]31#include <rpc.h>
[1]32#include <core.h>
33#include <thread.h>
[296]34#include <chdev.h>
[1]35#include <scheduler.h>
36
[443]37
[296]38///////////////////////////////////////////////////////////////////////////////////////////
[564]39//         global variables
[296]40///////////////////////////////////////////////////////////////////////////////////////////
[1]41
[564]42extern chdev_directory_t    chdev_dir;          // allocated in kernel_init.c
[583]43extern process_t            process_zero;       // allocated in kernel_init.c
[296]44
[564]45///////////////////////////////////////////////////////////////////////////////////////////
46//         private functions
47///////////////////////////////////////////////////////////////////////////////////////////
[443]48
[1]49
[564]50////////////////////////////////////////////////////////////////////////////////////////////
51// This static function does NOT modify the scheduler state.
52// It just select a thread in the list of attached threads, implementing the following
53// three steps policy:
54// 1) It scan the list of kernel threads, from the next thread after the last executed one,
55//    and returns the first runnable found : not IDLE, not blocked, client queue not empty.
56//    It can be the current thread.
57// 2) If no kernel thread found, it scan the list of user thread, from the next thread after
58//    the last executed one, and returns the first runable found : not blocked.
59//    It can be the current thread.
60// 3) If no runable thread found, it returns the idle thread.
61////////////////////////////////////////////////////////////////////////////////////////////
62// @ sched   : local pointer on scheduler.
63// @ returns pointer on selected thread descriptor
64////////////////////////////////////////////////////////////////////////////////////////////
[629]65static thread_t * sched_select( scheduler_t * sched )
[1]66{
[408]67    thread_t     * thread;
68    list_entry_t * current;
69    list_entry_t * last;
[437]70    list_entry_t * root;
71    bool_t         done;
[450]72    uint32_t       count;
[1]73
[437]74    // first : scan the kernel threads list if not empty
[279]75    if( list_is_empty( &sched->k_root ) == false )
[1]76    {
[437]77        root    = &sched->k_root;
[279]78        last    = sched->k_last;
[450]79        done    = false;
80        count   = 0;
[437]81        current = last;
82
83        while( done == false )
[279]84        {
[450]85
[564]86// check kernel threads list
[669]87assert( __FUNCTION__, (count < sched->k_threads_nr), "bad kernel threads list" );
[564]88
[279]89            // get next entry in kernel list
[437]90            current = current->next;
[1]91
[437]92            // check exit condition
93            if( current == last ) done = true;
94
[279]95            // skip the root that does not contain a thread
[437]96            if( current == root ) continue;
[450]97            else                  count++;
[1]98
[279]99            // get thread pointer for this entry
100            thread = LIST_ELEMENT( current , thread_t , sched_list );
[1]101
[450]102            // select kernel thread if non blocked and non THREAD_IDLE
[564]103            if( (thread->blocked == 0)  && (thread->type != THREAD_IDLE) ) return thread;
104
[437]105        } // end loop on kernel threads
[450]106    } // end kernel threads
[437]107
108    // second : scan the user threads list if not empty
[279]109    if( list_is_empty( &sched->u_root ) == false )
[1]110    {
[437]111        root    = &sched->u_root;
[279]112        last    = sched->u_last;
[450]113        done    = false;
114        count   = 0;
[437]115        current = last;
116
117        while( done == false )
[279]118        {
[450]119
[564]120// check user threads list
[669]121assert( __FUNCTION__, (count < sched->u_threads_nr), "bad user threads list" );
[564]122
[279]123            // get next entry in user list
[437]124            current = current->next;
[1]125
[437]126            // check exit condition
127            if( current == last ) done = true;
128
[279]129            // skip the root that does not contain a thread
[437]130            if( current == root ) continue;
[450]131            else                  count++;
[1]132
[279]133            // get thread pointer for this entry
134            thread = LIST_ELEMENT( current , thread_t , sched_list );
[1]135
[450]136            // select thread if non blocked
[564]137            if( thread->blocked == 0 )  return thread;
138
[437]139        } // end loop on user threads
[450]140    } // end user threads
[1]141
[437]142    // third : return idle thread if no other runnable thread
[1]143    return sched->idle;
144
[296]145}  // end sched_select()
[1]146
[564]147////////////////////////////////////////////////////////////////////////////////////////////
[592]148// This static function is the only function that can actually delete a thread,
[619]149// (and the associated process descriptor if required).
150// It is private, because it is only called by the sched_yield() public function.
[564]151// It scan all threads attached to a given scheduler, and executes the relevant
[583]152// actions for two types of pending requests:
[592]153//
[564]154// - REQ_ACK : it checks that target thread is blocked, decrements the response counter
155//   to acknowledge the client thread, and reset the pending request.
[583]156// - REQ_DELETE : it removes the target thread from the process th_tbl[], remove it
157//   from the scheduler list, and release the memory allocated to thread descriptor.
158//   For an user thread, it destroys the process descriptor it the target thread is
159//   the last thread in the local process descriptor.
160//
161// Implementation note:
162// We use a while to scan the threads in scheduler lists, because some threads can
163// be destroyed, and we want not use a LIST_FOREACH()
[564]164////////////////////////////////////////////////////////////////////////////////////////////
165// @ core    : local pointer on the core descriptor.
166////////////////////////////////////////////////////////////////////////////////////////////
167static void sched_handle_signals( core_t * core )
[1]168{
[437]169
[1]170    list_entry_t * iter;
[440]171    list_entry_t * root;
[1]172    thread_t     * thread;
[428]173    process_t    * process;
[564]174    scheduler_t  * sched;
[583]175    uint32_t       threads_nr;   // number of threads in scheduler list
176    ltid_t         ltid;         // thread local index
177    uint32_t       count;        // number of threads in local process
[409]178
[440]179    // get pointer on scheduler
[564]180    sched = &core->scheduler;
[1]181
[635]182    ////////////////// scan user threads to handle ACK and DELETE requests
[440]183    root = &sched->u_root;
184    iter = root->next;
185    while( iter != root )
[1]186    {
[440]187        // get pointer on thread
[1]188        thread = LIST_ELEMENT( iter , thread_t , sched_list );
189
[440]190        // increment iterator
191        iter = iter->next;
192
[416]193        // handle REQ_ACK
194        if( thread->flags & THREAD_FLAG_REQ_ACK )
[408]195        {
[564]196
[635]197// check target thread blocked
[669]198assert( __FUNCTION__, (thread->blocked & THREAD_BLOCKED_GLOBAL) , "thread not blocked" );
[416]199 
200            // decrement response counter
201            hal_atomic_add( thread->ack_rsp_count , -1 );
[408]202
[416]203            // reset REQ_ACK in thread descriptor
204            thread_reset_req_ack( thread );
[408]205        }
[416]206
[564]207        // handle REQ_DELETE only if target thread != calling thread
[635]208        if( thread->flags & THREAD_FLAG_REQ_DELETE )
[416]209        {
[635]210
211// check calling thread != target thread
[669]212assert( __FUNCTION__, (thread != CURRENT_THREAD) , "calling thread cannot delete itself" );
[635]213 
[428]214            // get thread process descriptor
215            process = thread->process;
[416]216
[583]217            // get thread ltid
218            ltid = LTID_FROM_TRDID( thread->trdid);
[416]219
[593]220            // take the lock protecting sheduler state
221            busylock_acquire( &sched->lock );
222
[564]223            // update scheduler state
[583]224            threads_nr = sched->u_threads_nr;
[428]225            sched->u_threads_nr = threads_nr - 1;
[416]226            list_unlink( &thread->sched_list );
[450]227            if( sched->u_last == &thread->sched_list )
228            {
229                if( threads_nr == 1 ) 
230                {
231                    sched->u_last = NULL;
232                }
233                else if( sched->u_root.next == &thread->sched_list )
234                {
235                    sched->u_last = sched->u_root.pred;
236                }
237                else
238                {
239                    sched->u_last = sched->u_root.next;
240                }
241            }
[416]242
[593]243            // release the lock protecting sheduler state
244            busylock_release( &sched->lock );
245
[625]246            // release memory allocated for thread
247            count = thread_destroy( thread );
[583]248
[593]249            hal_fence();
250
[438]251#if DEBUG_SCHED_HANDLE_SIGNALS
[440]252uint32_t cycle = (uint32_t)hal_get_cycles();
[438]253if( DEBUG_SCHED_HANDLE_SIGNALS < cycle )
[630]254printk("\n[%s] thread[%x,%x] on core[%x,%d] deleted / cycle %d\n",
255__FUNCTION__, process->pid, thread->trdid, local_cxy, thread->core->lid, cycle );
[433]256#endif
[583]257            // destroy process descriptor if last thread
258            if( count == 1 ) 
[428]259            {
260                // delete process   
261                process_destroy( process );
262
[438]263#if DEBUG_SCHED_HANDLE_SIGNALS
[433]264cycle = (uint32_t)hal_get_cycles();
[438]265if( DEBUG_SCHED_HANDLE_SIGNALS < cycle )
[610]266printk("\n[%s] process %x in cluster %x deleted / cycle %d\n",
[443]267__FUNCTION__ , process->pid , local_cxy , cycle );
[433]268#endif
[428]269            }
[416]270        }
[583]271    }  // end user threads
272
[625]273    ///////////// scan kernel threads for DELETE only
[583]274    root = &sched->k_root;
275    iter = root->next;
276    while( iter != root )
277    {
278        // get pointer on thread
279        thread = LIST_ELEMENT( iter , thread_t , sched_list );
280
281        // increment iterator
282        iter = iter->next;
283
284        // handle REQ_DELETE only if target thread != calling thread
285        if( (thread->flags & THREAD_FLAG_REQ_DELETE) && (thread != CURRENT_THREAD) )
286        {
287
288// check process descriptor is local kernel process
[669]289assert( __FUNCTION__, ( thread->process == &process_zero ) , "illegal process descriptor");
[583]290
291            // get thread ltid
292            ltid = LTID_FROM_TRDID( thread->trdid);
293
[593]294            // take the lock protecting sheduler state
295            busylock_acquire( &sched->lock );
296
[583]297            // update scheduler state
298            threads_nr = sched->k_threads_nr;
299            sched->k_threads_nr = threads_nr - 1;
300            list_unlink( &thread->sched_list );
301            if( sched->k_last == &thread->sched_list )
302            {
303                if( threads_nr == 1 ) 
304                {
305                    sched->k_last = NULL;
306                }
307                else if( sched->k_root.next == &thread->sched_list )
308                {
309                    sched->k_last = sched->k_root.pred;
310                }
311                else
312                {
313                    sched->k_last = sched->k_root.next;
314                }
315            }
316
[593]317            // release the lock protecting sheduler state
318            busylock_release( &sched->lock );
319
[583]320            // get number of threads in local kernel process
321            count = process_zero.th_nr;
322
323// check th_nr value
[669]324assert( __FUNCTION__, (process_zero.th_nr > 0) , "kernel process th_nr cannot be 0" );
[583]325
326            // remove thread from process th_tbl[]
327            process_zero.th_tbl[ltid] = NULL;
[592]328            hal_atomic_add( &process_zero.th_nr , - 1 );
[583]329 
330            // delete thread descriptor
331            thread_destroy( thread );
332
333#if DEBUG_SCHED_HANDLE_SIGNALS
334uint32_t cycle = (uint32_t)hal_get_cycles();
335if( DEBUG_SCHED_HANDLE_SIGNALS < cycle )
[610]336printk("\n[%s] thread[%x,%x] on core[%x,%d] deleted / cycle %d\n",
[583]337__FUNCTION__ , process_zero.pid , thread->trdid , local_cxy , thread->core->lid , cycle );
338#endif
339        }
[1]340    }
[564]341} // end sched_handle_signals()
[1]342
[564]343////////////////////////////////////////////////////////////////////////////////////////////
344// This static function is called by the sched_yield function when the RFC_FIFO
345// associated to the core is not empty.
[583]346// It search an idle RPC thread for this core, and unblock it if found.
347// It creates a new RPC thread if no idle RPC thread is found.
[564]348////////////////////////////////////////////////////////////////////////////////////////////
349// @ sched   : local pointer on scheduler.
350////////////////////////////////////////////////////////////////////////////////////////////
[582]351static void sched_rpc_activate( scheduler_t * sched )
[564]352{
353    error_t         error;
354    thread_t      * thread; 
355    list_entry_t  * iter;
356    lid_t           lid = CURRENT_THREAD->core->lid;
357    bool_t          found = false;
358
359    // search one IDLE RPC thread associated to the selected core   
360    LIST_FOREACH( &sched->k_root , iter )
361    {
362        thread = LIST_ELEMENT( iter , thread_t , sched_list );
[583]363
364        if( (thread->type == THREAD_RPC) && 
365            (thread->blocked == THREAD_BLOCKED_IDLE ) ) 
[564]366        {
367            found = true;
368            break;
369        }
370    }
371
372    if( found == false )     // create new RPC thread     
373    {
374        error = thread_kernel_create( &thread,
375                                      THREAD_RPC, 
[619]376                                              &rpc_server_func, 
[564]377                                      NULL,
378                                          lid );
379        // check memory
380        if ( error )
381        {
[583]382            printk("\n[ERROR] in %s : no memory to create a RPC thread in cluster %x\n",
[564]383            __FUNCTION__, local_cxy );
384        }
385        else
386        {
387            // unblock created RPC thread
388            thread->blocked = 0;
389
390            // update RPC threads counter 
391            hal_atomic_add( &LOCAL_CLUSTER->rpc_threads[lid] , 1 );
392
393#if DEBUG_SCHED_RPC_ACTIVATE
394uint32_t cycle = (uint32_t)hal_get_cycles();
395if( DEBUG_SCHED_RPC_ACTIVATE < cycle ) 
[610]396printk("\n[%s] new RPC thread %x created for core[%x,%d] / total %d / cycle %d\n",
[583]397__FUNCTION__, thread->trdid, local_cxy, lid, LOCAL_CLUSTER->rpc_threads[lid], cycle );
[564]398#endif
399        }
400    }
401    else                 // RPC thread found => unblock it
402    {
403        // unblock found RPC thread
404        thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_IDLE );
405
406#if DEBUG_SCHED_RPC_ACTIVATE
407uint32_t cycle = (uint32_t)hal_get_cycles();
408if( DEBUG_SCHED_RPC_ACTIVATE < cycle ) 
[610]409printk("\n[%s] idle RPC thread %x unblocked for core[%x,%d] / cycle %d\n",
[564]410__FUNCTION__, thread->trdid, local_cxy, lid, cycle );
411#endif
412
413    }
414
415} // end sched_rpc_activate()
416
417
418
419///////////////////////////////////////////////////////////////////////////////////////////
420//         public functions
421///////////////////////////////////////////////////////////////////////////////////////////
422
423////////////////////////////////
424void sched_init( core_t * core )
425{
426    scheduler_t * sched = &core->scheduler;
427
428    sched->u_threads_nr   = 0;
429    sched->k_threads_nr   = 0;
430
431    sched->current        = CURRENT_THREAD;
432    sched->idle           = NULL;               // initialized in kernel_init()
433    sched->u_last         = NULL;               // initialized in sched_register_thread()
434    sched->k_last         = NULL;               // initialized in sched_register_thread()
435
436    // initialise threads lists
437    list_root_init( &sched->u_root );
438    list_root_init( &sched->k_root );
439
440    // init lock
441    busylock_init( &sched->lock , LOCK_SCHED_STATE );
442
443    sched->req_ack_pending = false;             // no pending request
444    sched->trace           = false;             // context switches trace desactivated
445
446}  // end sched_init()
447
448////////////////////////////////////////////
449void sched_register_thread( core_t   * core,
450                            thread_t * thread )
451{
452    scheduler_t * sched = &core->scheduler;
453    thread_type_t type  = thread->type;
454
455    // take lock protecting sheduler state
456    busylock_acquire( &sched->lock );
457
458    if( type == THREAD_USER )
459    {
460        list_add_last( &sched->u_root , &thread->sched_list );
461        sched->u_threads_nr++;
462        if( sched->u_last == NULL ) sched->u_last = &thread->sched_list;
463    }
464    else // kernel thread
465    {
466        list_add_last( &sched->k_root , &thread->sched_list );
467        sched->k_threads_nr++;
468        if( sched->k_last == NULL ) sched->k_last = &thread->sched_list; 
469    }
470
[1]471    // release lock
[564]472    busylock_release( &sched->lock );
[1]473
[564]474}  // end sched_register_thread()
[416]475
[625]476//////////////////////////////////////////////////////////////////
477void sched_yield( const char * cause __attribute__((__unused__)) )
[1]478{
[564]479    thread_t      * next;
480    thread_t      * current = CURRENT_THREAD;
481    core_t        * core    = current->core;
482    lid_t           lid     = core->lid;
483    scheduler_t   * sched   = &core->scheduler;
484    remote_fifo_t * fifo    = &LOCAL_CLUSTER->rpc_fifo[lid]; 
[407]485 
[635]486#if DEBUG_SCHED_YIELD
487uint32_t cycle = (uint32_t)hal_get_cycles();
488#endif
489
[438]490#if (DEBUG_SCHED_YIELD & 0x1)
[635]491if( sched->trace || (cycle > DEBUG_SCHED_YIELD) )
[640]492sched_remote_display( local_cxy , lid );
[407]493#endif
[1]494
[651]495// This assert should always be true, as this check has been
[614]496// done before, by any function that can possibly deschedule...
[669]497assert( __FUNCTION__, (current->busylocks == 0),
[651]498"current thread hold %d busylocks\n", current->busylocks ); 
[1]499
[564]500    // activate or create an RPC thread if RPC_FIFO non empty
501    if( remote_fifo_is_empty( fifo ) == false )  sched_rpc_activate( sched );
[408]502
[564]503    // disable IRQs / save SR in current thread descriptor
504    hal_disable_irq( &current->save_sr );
505
506    // take lock protecting sheduler state
507    busylock_acquire( &sched->lock );
508   
509    // select next thread
[408]510    next = sched_select( sched );
[1]511
[564]512// check next thread kernel_stack overflow
[669]513assert( __FUNCTION__, (next->signature == THREAD_SIGNATURE),
[625]514"kernel stack overflow for thread %x on core[%x,%d]", next, local_cxy, lid );
[436]515
[651]516// check next thread attached to same core as the current thread
[669]517assert( __FUNCTION__, (next->core == current->core),
[651]518"next_core_lid %d / current_core_lid %d", current->core->lid, next->core->lid );
519   
[564]520// check next thread not blocked when type != IDLE
[669]521assert( __FUNCTION__, ((next->blocked == 0) || (next->type == THREAD_IDLE)) ,
[625]522"next thread %x (%s) is blocked on core[%x,%d]", 
[564]523next->trdid , thread_type_str(next->type) , local_cxy , lid );
[296]524
525    // switch contexts and update scheduler state if next != current
526        if( next != current )
[1]527    {
[296]528        // update scheduler
[408]529        sched->current = next;
530        if( next->type == THREAD_USER ) sched->u_last = &next->sched_list;
531        else                            sched->k_last = &next->sched_list;
[1]532
[407]533        // handle FPU ownership
[306]534            if( next->type == THREAD_USER )
[296]535        {
[407]536                if( next == current->core->fpu_owner )  hal_fpu_enable();
537                else                                    hal_fpu_disable();
[296]538        }
[1]539
[564]540        // release lock protecting scheduler state
541        busylock_release( &sched->lock );
542
543#if DEBUG_SCHED_YIELD
[635]544if( sched->trace || (cycle > DEBUG_SCHED_YIELD) )
[610]545printk("\n[%s] core[%x,%d] / cause = %s\n"
[564]546"      thread %x (%s) (%x,%x) => thread %x (%s) (%x,%x) / cycle %d\n",
547__FUNCTION__, local_cxy, lid, cause, 
548current, thread_type_str(current->type), current->process->pid, current->trdid,next ,
[635]549thread_type_str(next->type) , next->process->pid , next->trdid , cycle );
[564]550#endif
551
[435]552        // switch CPU from current thread context to new thread context
[407]553        hal_do_cpu_switch( current->cpu_context, next->cpu_context );
[296]554    }
555    else
556    {
[564]557        // release lock protecting scheduler state
558        busylock_release( &sched->lock );
[407]559
[635]560#if DEBUG_SCHED_YIELD
561if( sched->trace || (cycle > DEBUG_SCHED_YIELD) )
[610]562printk("\n[%s] core[%x,%d] / cause = %s\n"
[435]563"      thread %x (%s) (%x,%x) continue / cycle %d\n",
[564]564__FUNCTION__, local_cxy, lid, cause, current, thread_type_str(current->type),
[443]565current->process->pid, current->trdid, (uint32_t)hal_get_cycles() );
[428]566#endif
[407]567
[296]568    }
[408]569
[416]570    // handle pending requests for all threads executing on this core.
[433]571    sched_handle_signals( core );
[409]572
[435]573    // exit critical section / restore SR from current thread descriptor
574    hal_restore_irq( CURRENT_THREAD->save_sr );
[408]575
[1]576}  // end sched_yield()
577
[407]578
[450]579/////////////////////////////////////
580void sched_remote_display( cxy_t cxy,
581                           lid_t lid )
582{
583    thread_t     * thread;
584
585    // get local pointer on target scheduler
586    core_t      * core  = &LOCAL_CLUSTER->core_tbl[lid];
587    scheduler_t * sched = &core->scheduler;
588
589    // get local pointer on current thread in target scheduler
590    thread_t * current = hal_remote_lpt( XPTR( cxy, &sched->current ) );
591
592    // get local pointer on the first kernel and user threads list_entry
593    list_entry_t * k_entry = hal_remote_lpt( XPTR( cxy , &sched->k_root.next ) );
594    list_entry_t * u_entry = hal_remote_lpt( XPTR( cxy , &sched->u_root.next ) );
595   
596    // get pointers on TXT0 chdev
597    xptr_t    txt0_xp  = chdev_dir.txt_tx[0];
598    cxy_t     txt0_cxy = GET_CXY( txt0_xp );
599    chdev_t * txt0_ptr = GET_PTR( txt0_xp );
600
601    // get extended pointer on remote TXT0 chdev lock
602    xptr_t  lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
603
[564]604    // get TXT0 lock
605    remote_busylock_acquire( lock_xp );
[450]606
[583]607    // get rpc_threads
608    uint32_t rpcs = hal_remote_l32( XPTR( cxy , &LOCAL_CLUSTER->rpc_threads[lid] ) );
609 
[450]610    // display header
[583]611    nolock_printk("\n***** threads on core[%x,%d] / current %x / rpc_threads %d / cycle %d\n",
612    cxy , lid, current, rpcs, (uint32_t)hal_get_cycles() );
[640]613    nolock_printk("  type | pid        | trdid      | desc       | block      | flags      | func\n");
[450]614
615    // display kernel threads
616    while( k_entry != &sched->k_root )
617    {
618        // get local pointer on kernel_thread
619        thread = LIST_ELEMENT( k_entry , thread_t , sched_list );
620
621        // get relevant thead info
[564]622        thread_type_t type    = hal_remote_l32 ( XPTR( cxy , &thread->type ) );
623        trdid_t       trdid   = hal_remote_l32 ( XPTR( cxy , &thread->trdid ) );
624        uint32_t      blocked = hal_remote_l32 ( XPTR( cxy , &thread->blocked ) );
625        uint32_t      flags   = hal_remote_l32 ( XPTR( cxy , &thread->flags ) );
[610]626        process_t *   process = hal_remote_lpt ( XPTR( cxy , &thread->process ) );
[564]627        pid_t         pid     = hal_remote_l32 ( XPTR( cxy , &process->pid ) );
[450]628
629        // display thread info
630        if (type == THREAD_DEV) 
631        {
632            char      name[16];
633            chdev_t * chdev = hal_remote_lpt( XPTR( cxy , &thread->chdev ) );
[610]634            hal_remote_strcpy( XPTR( local_cxy , name ), XPTR( cxy , chdev->name ) );
[450]635
[640]636            nolock_printk(" - %s | %X | %X | %X | %X | %X | %s\n",
[450]637            thread_type_str( type ), pid, trdid, thread, blocked, flags, name );
638        }
639        else
640        {
[640]641            nolock_printk(" - %s | %X | %X | %X | %X | %X |\n",
[450]642            thread_type_str( type ), pid, trdid, thread, blocked, flags );
643        }
644
645        // get next remote kernel thread list_entry
646        k_entry = hal_remote_lpt( XPTR( cxy , &k_entry->next ) );
647    }
648
649    // display user threads
650    while( u_entry != &sched->u_root )
651    {
652        // get local pointer on user_thread
653        thread = LIST_ELEMENT( u_entry , thread_t , sched_list );
654
655        // get relevant thead info
[564]656        thread_type_t type    = hal_remote_l32 ( XPTR( cxy , &thread->type ) );
657        trdid_t       trdid   = hal_remote_l32 ( XPTR( cxy , &thread->trdid ) );
658        uint32_t      blocked = hal_remote_l32 ( XPTR( cxy , &thread->blocked ) );
659        uint32_t      flags   = hal_remote_l32 ( XPTR( cxy , &thread->flags ) );
[610]660        process_t *   process = hal_remote_lpt ( XPTR( cxy , &thread->process ) );
[564]661        pid_t         pid     = hal_remote_l32 ( XPTR( cxy , &process->pid ) );
[640]662        void      *   func    = hal_remote_lpt ( XPTR( cxy , &thread->entry_func ) );
[450]663
[640]664        nolock_printk(" - %s | %X | %X | %X | %X | %X | %x\n",
665        thread_type_str( type ), pid, trdid, thread, blocked, flags, (uint32_t)func );
[450]666
667        // get next user thread list_entry
668        u_entry = hal_remote_lpt( XPTR( cxy , &u_entry->next ) );
669    }
670
671    // release TXT0 lock
[564]672    remote_busylock_release( lock_xp );
[450]673
674}  // end sched_remote_display()
675
[564]676
Note: See TracBrowser for help on using the repository browser.