source: trunk/kernel/kern/thread.c @ 330

Last change on this file since 330 was 315, checked in by alain, 7 years ago

Redefine the fuctions ppm_base2page() / ppm_page2base() / ppm_page2ppn() / ppm_ppn2page() / ppm_base2ppn() / ppm_ppn2base(),
to use explicitely extended pointers.

File size: 27.1 KB
RevLine 
[1]1/*
2 * thread.c -  implementation of thread operations (user & kernel)
[171]3 *
[1]4 * Author  Ghassan Almaless (2008,2009,2010,2011,2012)
[23]5 *         Alain Greiner (2016,2017)
[1]6 *
7 * Copyright (c) UPMC Sorbonne Universites
8 *
[5]9 * This file is part of ALMOS-MKH.
[1]10 *
[5]11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
[1]12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
[5]15 * ALMOS-MKH is distributed in the hope that it will be useful, but
[1]16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
[5]21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
[1]22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[1]26#include <hal_types.h>
27#include <hal_context.h>
28#include <hal_irqmask.h>
29#include <hal_special.h>
30#include <hal_remote.h>
31#include <memcpy.h>
32#include <printk.h>
33#include <cluster.h>
34#include <process.h>
35#include <scheduler.h>
[188]36#include <dev_pic.h>
[1]37#include <core.h>
38#include <list.h>
39#include <xlist.h>
40#include <page.h>
41#include <kmem.h>
42#include <ppm.h>
43#include <thread.h>
44
45//////////////////////////////////////////////////////////////////////////////////////
46// Extern global variables
47//////////////////////////////////////////////////////////////////////////////////////
48
49extern process_t      process_zero;
50
51//////////////////////////////////////////////////////////////////////////////////////
[16]52// This function returns a printable string for the thread type.
[1]53//////////////////////////////////////////////////////////////////////////////////////
[5]54char * thread_type_str( uint32_t type )
55{
[296]56    if     ( type == THREAD_USER   ) return "USR";
[16]57    else if( type == THREAD_RPC    ) return "RPC";
58    else if( type == THREAD_DEV    ) return "DEV";
[296]59    else if( type == THREAD_KERNEL ) return "KER";
60    else if( type == THREAD_IDLE   ) return "IDL";
[5]61    else                             return "undefined";
62}
63
[1]64/////////////////////////////////////////////////////////////////////////////////////
[14]65// This static function allocates physical memory for a thread descriptor.
66// It can be called by the three functions:
[1]67// - thread_user_create()
[14]68// - thread_user_fork()
[1]69// - thread_kernel_create()
70/////////////////////////////////////////////////////////////////////////////////////
[14]71// @ return pointer on thread descriptor if success / return NULL if failure.
[1]72/////////////////////////////////////////////////////////////////////////////////////
[14]73static thread_t * thread_alloc()
[1]74{
[23]75        page_t       * page;   // pointer on page descriptor containing thread descriptor
[171]76        kmem_req_t     req;    // kmem request
[1]77
78        // allocates memory for thread descriptor + kernel stack
79        req.type  = KMEM_PAGE;
[14]80        req.size  = CONFIG_THREAD_DESC_ORDER;
[1]81        req.flags = AF_KERNEL | AF_ZERO;
82        page      = kmem_alloc( &req );
83
[23]84        if( page == NULL ) return NULL;
[1]85
[315]86    // return pointer on new thread descriptor
87    xptr_t base_xp = ppm_page2base( XPTR(local_cxy , page ) );
88    return (thread_t *)GET_PTR( base_xp );
89
90}  // end thread_alloc()
91 
92
[14]93/////////////////////////////////////////////////////////////////////////////////////
[23]94// This static function releases the physical memory for a thread descriptor.
[53]95// It is called by the three functions:
[23]96// - thread_user_create()
97// - thread_user_fork()
98// - thread_kernel_create()
99/////////////////////////////////////////////////////////////////////////////////////
100// @ thread  : pointer on thread descriptor.
101/////////////////////////////////////////////////////////////////////////////////////
102static void thread_release( thread_t * thread )
103{
104    kmem_req_t   req;
105
[315]106    xptr_t base_xp = ppm_base2page( XPTR(local_cxy , thread ) );
107
[23]108    req.type  = KMEM_PAGE;
[315]109    req.ptr   = GET_PTR( base_xp );
[23]110    kmem_free( &req );
111}
112
113/////////////////////////////////////////////////////////////////////////////////////
[14]114// This static function initializes a thread descriptor (kernel or user).
115// It can be called by the four functions:
116// - thread_user_create()
117// - thread_user_fork()
118// - thread_kernel_create()
119// - thread_user_init()
120/////////////////////////////////////////////////////////////////////////////////////
121// @ thread       : pointer on thread descriptor
122// @ process      : pointer on process descriptor.
123// @ type         : thread type.
124// @ func         : pointer on thread entry function.
125// @ args         : pointer on thread entry function arguments.
126// @ core_lid     : target core local index.
127// @ u_stack_base : stack base (user thread only)
128// @ u_stack_size : stack base (user thread only)
129/////////////////////////////////////////////////////////////////////////////////////
130static error_t thread_init( thread_t      * thread,
131                            process_t     * process,
132                            thread_type_t   type,
133                            void          * func,
134                            void          * args,
135                            lid_t           core_lid,
136                            intptr_t        u_stack_base,
137                            uint32_t        u_stack_size )
138{
139    error_t        error;
140    trdid_t        trdid;      // allocated thread identifier
141
142        cluster_t    * local_cluster = LOCAL_CLUSTER;
143
144    // register new thread in process descriptor, and get a TRDID
[1]145    spinlock_lock( &process->th_lock );
146    error = process_register_thread( process, thread , &trdid );
147    spinlock_unlock( &process->th_lock );
148
[171]149    if( error )
[1]150    {
[14]151        printk("\n[ERROR] in %s : cannot get TRDID\n", __FUNCTION__ );
152        return EINVAL;
[1]153    }
[14]154
[1]155        // Initialize new thread descriptor
156    thread->trdid           = trdid;
[171]157        thread->type            = type;
[1]158    thread->quantum         = 0;            // TODO
159    thread->ticks_nr        = 0;            // TODO
160    thread->time_last_check = 0;
161        thread->core            = &local_cluster->core_tbl[core_lid];
162        thread->process         = process;
163
164    thread->local_locks     = 0;
165    list_root_init( &thread->locks_root );
166
167    thread->remote_locks    = 0;
168    xlist_root_init( XPTR( local_cxy , &thread->xlocks_root ) );
169
[171]170    thread->u_stack_base    = u_stack_base;
[1]171    thread->u_stack_size    = u_stack_size;
[171]172    thread->k_stack_base    = (intptr_t)thread;
[14]173    thread->k_stack_size    = CONFIG_THREAD_DESC_SIZE;
[1]174
175    thread->entry_func      = func;         // thread entry point
176    thread->entry_args      = args;         // thread function arguments
[171]177    thread->flags           = 0;            // all flags reset
[1]178    thread->signals         = 0;            // no pending signal
179    thread->errno           = 0;            // no error detected
[171]180    thread->fork_user       = 0;            // no fork required
[1]181    thread->fork_cxy        = 0;
182
183    // thread blocked
184    thread->blocked = THREAD_BLOCKED_GLOBAL;
185
186    // reset children list
187    xlist_root_init( XPTR( local_cxy , &thread->children_root ) );
188    thread->children_nr = 0;
189
190    // reset sched list and brothers list
191    list_entry_init( &thread->sched_list );
192    xlist_entry_init( XPTR( local_cxy , &thread->brothers_list ) );
193
194    // reset thread info
195    memset( &thread->info , 0 , sizeof(thread_info_t) );
196
197    // initialise signature
198        thread->signature = THREAD_SIGNATURE;
199
200    // update local DQDT
201    dqdt_local_update_threads( 1 );
202
[171]203    // register new thread in core scheduler
[1]204    sched_register_thread( thread->core , thread );
205
206        return 0;
207
[296]208} // end thread_init()
209
[1]210/////////////////////////////////////////////////////////
[23]211error_t thread_user_create( pid_t             pid,
212                            void            * start_func,
213                            void            * start_arg,
[1]214                            pthread_attr_t  * attr,
[23]215                            thread_t       ** new_thread )
[1]216{
217    error_t        error;
218        thread_t     * thread;       // pointer on created thread descriptor
219    process_t    * process;      // pointer to local process descriptor
220    lid_t          core_lid;     // selected core local index
[23]221    vseg_t       * vseg;         // stack vseg
[1]222
[23]223    thread_dmsg("\n[INFO] %s : enters for process %x\n", __FUNCTION__ , pid );
[5]224
[23]225    // get process descriptor local copy
226    process = process_get_local_copy( pid );
[1]227
[23]228    if( process == NULL )
229    {
230                printk("\n[ERROR] in %s : cannot get process descriptor %x\n",
231               __FUNCTION__ , pid );
232        return ENOMEM;
233    }
234
[171]235    // select a target core in local cluster
[23]236    if( attr->attributes & PT_ATTR_CORE_DEFINED ) core_lid = attr->lid;
237    else                                          core_lid = cluster_select_local_core();
[1]238
239    // check core local index
[23]240    if( core_lid >= LOCAL_CLUSTER->cores_nr )
241    {
242            printk("\n[ERROR] in %s : illegal core index attribute = %d\n",
243               __FUNCTION__ , core_lid );
[171]244
[23]245        return EINVAL;
246    }
[1]247
[171]248    // allocate a stack from local VMM
[23]249    vseg = vmm_create_vseg( process, 0 , 0 , VSEG_TYPE_STACK );
[1]250
[170]251    if( vseg == NULL )
[23]252    {
253            printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ );
254                return ENOMEM;
[171]255    }
[23]256
[171]257    // allocate memory for thread descriptor
[14]258    thread = thread_alloc();
[1]259
[23]260    if( thread == NULL )
261    {
262            printk("\n[ERROR] in %s : cannot create new thread\n", __FUNCTION__ );
263        vmm_remove_vseg( vseg );
264        return ENOMEM;
265    }
[14]266
[171]267    // initialize thread descriptor
[14]268    error = thread_init( thread,
269                         process,
270                         THREAD_USER,
[23]271                         start_func,
272                         start_arg,
[14]273                         core_lid,
[23]274                         vseg->min,
275                         vseg->max - vseg->min );
[14]276
[171]277    if( error )
[14]278    {
[23]279            printk("\n[ERROR] in %s : cannot initialize new thread\n", __FUNCTION__ );
280        vmm_remove_vseg( vseg );
281        thread_release( thread );
[14]282        return EINVAL;
283    }
284
[171]285    // set LOADABLE flag
[1]286    thread->flags = THREAD_FLAG_LOADABLE;
[14]287
288    // set DETACHED flag if required
[23]289    if( attr->attributes & PT_ATTR_DETACH ) thread->flags |= THREAD_FLAG_DETACHED;
[1]290
[171]291    // allocate & initialize CPU context
292        error = hal_cpu_context_create( thread );
[1]293
[171]294    if( error )
[23]295    {
296            printk("\n[ERROR] in %s : cannot create CPU context\n", __FUNCTION__ );
297        vmm_remove_vseg( vseg );
298        thread_release( thread );
299        return ENOMEM;
300    }
301
[171]302    // allocate & initialize FPU context
303    error = hal_fpu_context_create( thread );
[23]304
305    if( error )
306    {
307            printk("\n[ERROR] in %s : cannot create FPU context\n", __FUNCTION__ );
308        vmm_remove_vseg( vseg );
309        thread_release( thread );
310        return ENOMEM;
311    }
312
[171]313    thread_dmsg("\n[INFO] %s : exit / trdid = %x / process %x / core = %d\n",
[5]314                __FUNCTION__ , thread->trdid , process->pid , core_lid );
[1]315
316    *new_thread = thread;
317        return 0;
[14]318
[296]319}  // end thread_user_create()
320
[23]321//////////////////////////////////////////////
322error_t thread_user_fork( process_t * process,
323                          thread_t ** new_thread )
[1]324{
325    error_t        error;
[14]326        thread_t     * thread;       // pointer on new thread descriptor
[1]327    lid_t          core_lid;     // selected core local index
[23]328        vseg_t       * vseg;         // stack vseg
[1]329
[14]330    thread_dmsg("\n[INFO] %s : enters\n", __FUNCTION__ );
[5]331
[171]332    // allocate a stack from local VMM
[23]333    vseg = vmm_create_vseg( process, 0 , 0 , VSEG_TYPE_STACK );
334
[286]335    if( vseg == NULL )
[23]336    {
337            printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ );
338                return ENOMEM;
[171]339    }
[23]340
[1]341    // select a target core in local cluster
342    core_lid = cluster_select_local_core();
343
344    // get pointer on calling thread descriptor
345    thread_t * this = CURRENT_THREAD;
346
[171]347    // allocate memory for new thread descriptor
[14]348    thread = thread_alloc();
[1]349
[23]350    if( thread == NULL )
351    {
352        printk("\n[ERROR] in %s : cannot allocate new thread\n", __FUNCTION__ );
353        vmm_remove_vseg( vseg );
354        return ENOMEM;
355    }
[14]356
[171]357    // initialize thread descriptor
[14]358    error = thread_init( thread,
359                         process,
360                         THREAD_USER,
361                         this->entry_func,
362                         this->entry_args,
363                         core_lid,
[23]364                         vseg->min,
365                         vseg->max - vseg->min );
[14]366
[23]367    if( error )
[14]368    {
[23]369            printk("\n[ERROR] in %s : cannot initialize new thread\n", __FUNCTION__ );
370        vmm_remove_vseg( vseg );
371        thread_release( thread );
[14]372        return EINVAL;
373    }
374
[1]375    // set ATTACHED flag if set in this thread
[14]376    if( this->flags & THREAD_FLAG_DETACHED ) thread->flags = THREAD_FLAG_DETACHED;
[1]377
[171]378    // allocate & initialize CPU context from calling thread
379        error = hal_cpu_context_copy( thread , this );
[1]380
[23]381    if( error )
382    {
383            printk("\n[ERROR] in %s : cannot create CPU context\n", __FUNCTION__ );
384        vmm_remove_vseg( vseg );
385        thread_release( thread );
386        return ENOMEM;
387    }
388
[171]389    // allocate & initialize FPU context from calling thread
390        error = hal_fpu_context_copy( thread , this );
[1]391
[23]392    if( error )
393    {
394            printk("\n[ERROR] in %s : cannot create CPU context\n", __FUNCTION__ );
395        vmm_remove_vseg( vseg );
396        thread_release( thread );
397        return ENOMEM;
398    }
399
[171]400    thread_dmsg("\n[INFO] %s : exit / thread %x for process %x on core %d in cluster %x\n",
[14]401                 __FUNCTION__, thread->trdid, process->pid, core_lid, local_cxy );
[1]402
[14]403    *new_thread = thread;
[1]404        return 0;
[5]405
[296]406}  // end thread_user_fork()
407
[1]408/////////////////////////////////////////////////////////
409error_t thread_kernel_create( thread_t     ** new_thread,
410                              thread_type_t   type,
[171]411                              void          * func,
412                              void          * args,
[1]413                                              lid_t           core_lid )
414{
415    error_t        error;
[14]416        thread_t     * thread;       // pointer on new thread descriptor
[1]417
[296]418    thread_dmsg("\n[INFO] %s : enter / for type %s on core[%x,%d] / cycle %d\n",
419    __FUNCTION__ , thread_type_str( type ) , local_cxy , core_lid , hal_time_stamp() );
[1]420
[171]421    assert( ( (type == THREAD_KERNEL) || (type == THREAD_RPC) ||
[5]422              (type == THREAD_IDLE)   || (type == THREAD_DEV) ) ,
423              __FUNCTION__ , "illegal thread type" );
[1]424
[171]425    assert( (core_lid < LOCAL_CLUSTER->cores_nr) ,
[5]426            __FUNCTION__ , "illegal core_lid" );
[1]427
[171]428    // allocate memory for new thread descriptor
[14]429    thread = thread_alloc();
430
431    if( thread == NULL ) return ENOMEM;
432
[171]433    // initialize thread descriptor
[14]434    error = thread_init( thread,
435                         &process_zero,
436                         type,
437                         func,
438                         args,
439                         core_lid,
440                         0 , 0 );  // no user stack for a kernel thread
441
[171]442    if( error ) // release allocated memory for thread descriptor
[1]443    {
[185]444        thread_release( thread );
[14]445        return EINVAL;
[1]446    }
447
[171]448    // allocate & initialize CPU context
449        hal_cpu_context_create( thread );
[14]450
[296]451    thread_dmsg("\n[INFO] %s : exit / trdid = %x / type = %s / core = [%x,%d] / cycle %d\n",
452    __FUNCTION__ , thread->trdid , thread_type_str(type) , 
453    local_cxy , core_lid , hal_time_stamp() );
[1]454
[171]455    *new_thread = thread;
[1]456        return 0;
[5]457
[296]458} // end thread_kernel_create()
459
[14]460///////////////////////////////////////////////////
461error_t thread_kernel_init( thread_t      * thread,
462                            thread_type_t   type,
[171]463                            void          * func,
464                            void          * args,
[14]465                                            lid_t           core_lid )
466{
[171]467    assert( ( (type == THREAD_KERNEL) || (type == THREAD_RPC) ||
[14]468              (type == THREAD_IDLE)   || (type == THREAD_DEV) ) ,
469              __FUNCTION__ , "illegal thread type" );
[1]470
[171]471    if( core_lid >= LOCAL_CLUSTER->cores_nr )
[14]472    {
[171]473        printk("\n[PANIC] in %s : illegal core_lid / cores = %d / lid = %d / cxy = %x\n",
[14]474               __FUNCTION__ , LOCAL_CLUSTER->cores_nr , core_lid , local_cxy );
475        hal_core_sleep();
476    }
477
478    error_t  error = thread_init( thread,
479                                  &process_zero,
480                                  type,
481                                  func,
482                                  args,
483                                  core_lid,
484                                  0 , 0 );   // no user stack for a kernel thread
485
486    // allocate & initialize CPU context if success
487    if( error == 0 ) hal_cpu_context_create( thread );
[171]488
[14]489    return error;
[171]490}
[14]491
[1]492///////////////////////////////////////////////////////////////////////////////////////
493// TODO: check that all memory dynamically allocated during thread execution
494// has been released, using a cache of mmap and malloc requests. [AG]
495///////////////////////////////////////////////////////////////////////////////////////
496void thread_destroy( thread_t * thread )
497{
498        uint32_t     tm_start;
499        uint32_t     tm_end;
[60]500    reg_t        state;
[1]501
502    process_t  * process    = thread->process;
503    core_t     * core       = thread->core;
504
[5]505    thread_dmsg("\n[INFO] %s : enters for thread %x in process %x / type = %s\n",
506                __FUNCTION__ , thread->trdid , process->pid , thread_type_str( thread->type ) );
[1]507
[5]508    assert( (thread->children_nr == 0) , __FUNCTION__ , "still attached children" );
509
510    assert( (thread->local_locks == 0) , __FUNCTION__ , "all local locks not released" );
[171]511
[5]512    assert( (thread->remote_locks == 0) , __FUNCTION__ , "all remote locks not released" );
513
[101]514        tm_start = hal_get_cycles();
[1]515
516    // update intrumentation values
517    uint32_t pgfaults = thread->info.pgfault_nr;
518    uint32_t u_errors = thread->info.u_err_nr;
519    uint32_t m_errors = thread->info.m_err_nr;
520
521        process->vmm.pgfault_nr += pgfaults;
522        process->vmm.u_err_nr   += u_errors;
523        process->vmm.m_err_nr   += m_errors;
524
525    // release memory allocated for CPU context and FPU context
526        hal_cpu_context_destroy( thread );
527        hal_fpu_context_destroy( thread );
528       
529    // release FPU if required
530    // TODO This should be done before calling thread_destroy()
531        hal_disable_irq( &state );
532        if( core->fpu_owner == thread )
533        {
534                core->fpu_owner = NULL;
535                hal_fpu_disable();
536        }
537        hal_restore_irq( state );
538
[171]539    // remove thread from process th_tbl[]
[1]540    // TODO This should be done before calling thread_destroy()
541    ltid_t ltid = LTID_FROM_TRDID( thread->trdid );
542
543        spinlock_lock( &process->th_lock );
544        process->th_tbl[ltid] = XPTR_NULL;
545        process->th_nr--;
546        spinlock_unlock( &process->th_lock );
547       
[23]548    // update local DQDT
549    dqdt_local_update_threads( -1 );
550
[1]551    // invalidate thread descriptor
552        thread->signature = 0;
553
554    // release memory for thread descriptor
[23]555    thread_release( thread );
[1]556
[101]557        tm_end = hal_get_cycles();
[1]558
[5]559        thread_dmsg("\n[INFO] %s : exit for thread %x in process %x / duration = %d\n",
560                       __FUNCTION__, thread->trdid , process->pid , tm_end - tm_start );
[171]561}
[1]562
563/////////////////////////////////////////////////
564void thread_child_parent_link( xptr_t  xp_parent,
565                               xptr_t  xp_child )
566{
[171]567    // get extended pointers on children list root
568    cxy_t      parent_cxy = GET_CXY( xp_parent );
[1]569    thread_t * parent_ptr = (thread_t *)GET_PTR( xp_parent );
570    xptr_t     root       = XPTR( parent_cxy , &parent_ptr->children_root );
571
[171]572    // get extended pointer on children list entry
573    cxy_t      child_cxy  = GET_CXY( xp_child );
[1]574    thread_t * child_ptr  = (thread_t *)GET_PTR( xp_child );
575    xptr_t     entry      = XPTR( child_cxy , &child_ptr->brothers_list );
576
577    // set the link
578    xlist_add_first( root , entry );
579    hal_remote_atomic_add( XPTR( parent_cxy , &parent_ptr->children_nr ) , 1 );
[171]580}
[1]581
582///////////////////////////////////////////////////
583void thread_child_parent_unlink( xptr_t  xp_parent,
584                                 xptr_t  xp_child )
585{
586    // get extended pointer on children list lock
[171]587    cxy_t      parent_cxy = GET_CXY( xp_parent );
[1]588    thread_t * parent_ptr = (thread_t *)GET_PTR( xp_parent );
589    xptr_t     lock       = XPTR( parent_cxy , &parent_ptr->children_lock );
590
[171]591    // get extended pointer on children list entry
592    cxy_t      child_cxy  = GET_CXY( xp_child );
[1]593    thread_t * child_ptr  = (thread_t *)GET_PTR( xp_child );
594    xptr_t     entry      = XPTR( child_cxy , &child_ptr->brothers_list );
595
596    // get the lock
597    remote_spinlock_lock( lock );
598
599    // remove the link
600    xlist_unlink( entry );
601    hal_remote_atomic_add( XPTR( parent_cxy , &parent_ptr->children_nr ) , -1 );
[171]602
[1]603    // release the lock
604    remote_spinlock_unlock( lock );
605}
606
607/////////////////////////////////////////////////
608inline void thread_set_signal( thread_t * thread,
609                               uint32_t   mask )
610{
611    hal_atomic_or( &thread->signals , mask );
612}
[171]613
[1]614///////////////////////////////////////////////////
615inline void thread_reset_signal( thread_t * thread,
616                                 uint32_t   mask )
617{
618    hal_atomic_and( &thread->signals , ~mask );
619}
[171]620
[1]621//////////////////////////////////
622inline bool_t thread_is_joinable()
623{
624    thread_t * this = CURRENT_THREAD;
625    return( (this->brothers_list.next != XPTR_NULL) &&
626            (this->brothers_list.pred != XPTR_NULL) );
627}
628
629//////////////////////////////////
630inline bool_t thread_is_runnable()
631{
632    thread_t * this = CURRENT_THREAD;
633    return( this->blocked == 0 );
634}
635
636////////////////////////////////
637inline bool_t thread_can_yield()
638{
639    thread_t * this = CURRENT_THREAD;
640    return ( (this->local_locks == 0) && (this->remote_locks == 0) );
641}
642
643///////////////////////////
644bool_t thread_check_sched()
645{
646        thread_t * this = CURRENT_THREAD;
647
648    // check locks count
649        if( (this->local_locks != 0) || (this->remote_locks != 0) ) return false;
650
651    // compute elapsed time, taking into account 32 bits register wrap
652    uint32_t elapsed;
[101]653    uint32_t time_now   = hal_get_cycles();
[1]654    uint32_t time_last  = this->time_last_check;
655    if( time_now < time_last ) elapsed = (0xFFFFFFFF - time_last) + time_now;
656        else                       elapsed = time_now - time_last;
657
658    // update thread time
659    this->time_last_check = time_now;
660
661        // check elapsed time
662        if( elapsed < CONFIG_CORE_CHECK_EVERY ) return false;
663    else                                    return true;
664}
665
666/////////////////////
667error_t thread_exit()
668{
[60]669    reg_t      sr_save;
[1]670
671        thread_t * this = CURRENT_THREAD;
672
673    // test if this thread can be descheduled
674        if( !thread_can_yield() )
675        {
676        printk("ERROR in %s : thread %x in process %x on core %d in cluster %x\n"
677               " did not released all locks\n",
678               __FUNCTION__ , this->trdid , this->process->pid ,
679               CURRENT_CORE->lid , local_cxy );
680        return EINVAL;
681    }
682
683    if( this->flags & THREAD_FLAG_DETACHED )
684    {
685        // if detached set signal and set blocking cause atomically
686        hal_disable_irq( &sr_save );
687        thread_set_signal( this , THREAD_SIG_KILL );
688        thread_block( this , THREAD_BLOCKED_EXIT );
689        hal_restore_irq( sr_save );
690    }
[171]691    else
[1]692    {
[171]693        // if attached, set blocking cause
[1]694        thread_block( this , THREAD_BLOCKED_EXIT );
695    }
696
697    // deschedule
[296]698    sched_yield( NULL );
[1]699    return 0;
[171]700}
[1]701
702/////////////////////////////////////
703void thread_block( thread_t * thread,
704                   uint32_t   cause )
705{
[171]706    // set blocking cause
[1]707    hal_atomic_or( &thread->blocked , cause );
[171]708}
[1]709
710////////////////////////////////////
711void thread_unblock( xptr_t   thread,
712                    uint32_t cause )
713{
714    // get thread cluster and local pointer
[171]715    cxy_t      cxy = GET_CXY( thread );
[1]716    thread_t * ptr = (thread_t *)GET_PTR( thread );
717
718    // reset blocking cause
719    hal_remote_atomic_and( XPTR( cxy , &ptr->blocked ) , ~cause );
[171]720}
[1]721
722/////////////////////////////////////
723void thread_kill( thread_t * target )
724{
725    // set SIG_KILL signal in target thread descriptor
726    thread_set_signal( target , THREAD_SIG_KILL );
727
728    // set the global blocked bit in target thread descriptor.
729    thread_block( target , THREAD_BLOCKED_GLOBAL );
730
[188]731    // send an IPI to schedule the target thread core.
732    dev_pic_send_ipi( local_cxy , target->core->lid );
[171]733}
[1]734
[14]735///////////////////////
736void thread_idle_func()
[1]737{
[68]738#if CONFIG_IDLE_DEBUG
[14]739    lid_t  lid = CURRENT_CORE->lid;
[68]740#endif
[14]741
[1]742    while( 1 )
743    {
[50]744        idle_dmsg("\n[INFO] %s : core[%x][%d] goes to sleep at cycle %d\n",
[101]745                    __FUNCTION__ , local_cxy , lid , hal_get_cycles() );
[1]746
747        // force core to sleeping state
748        hal_core_sleep();
749
[50]750        idle_dmsg("\n[INFO] %s : core[%x][%d] wake up at cycle %d\n",
[101]751                    __FUNCTION__ , local_cxy , lid , hal_get_cycles() );
[1]752
[14]753        // force scheduling
[296]754        sched_yield( NULL );
[1]755   }
[171]756}
[1]757
[16]758/////////////////////////////////////////////////
759void thread_user_time_update( thread_t * thread )
760{
761    // TODO
762    printk("\n[WARNING] function %s not implemented\n", __FUNCTION__ );
763}
[1]764
[16]765///////////////////////////////////////////////////
766void thread_kernel_time_update( thread_t * thread )
767{
768    // TODO
769    printk("\n[WARNING] function %s not implemented\n", __FUNCTION__ );
770}
771
772////////////////////////////////////////////////
[23]773void thread_signals_handle( thread_t * thread )
[16]774{
775    // TODO
776    printk("\n[WARNING] function %s not implemented\n", __FUNCTION__ );
777}
778
[23]779/////////////////////////////////////
780xptr_t thread_get_xptr( pid_t    pid,
781                        trdid_t  trdid )
782{
783    cxy_t         target_cxy;          // target thread cluster identifier
784    ltid_t        target_thread_ltid;  // target thread local index
[171]785    thread_t    * target_thread_ptr;   // target thread local pointer
[23]786    xptr_t        target_process_xp;   // extended pointer on target process descriptor
[171]787    process_t   * target_process_ptr;  // local pointer on target process descriptor
[23]788    pid_t         target_process_pid;  // target process identifier
789    xlist_entry_t root;                // root of list of process in target cluster
790    xptr_t        lock_xp;             // extended pointer on lock protecting  this list
[16]791
[23]792    // get target cluster identifier and local thread identifier
793    target_cxy         = CXY_FROM_TRDID( trdid );
794    target_thread_ltid = LTID_FROM_TRDID( trdid );
795
796    // get root of list of process descriptors in target cluster
797    hal_remote_memcpy( XPTR( local_cxy  , &root ),
798                       XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ),
799                       sizeof(xlist_entry_t) );
800
[171]801    // get extended pointer on lock protecting the list of processes
[23]802    lock_xp = XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_lock );
803
804    // take the lock protecting the list of processes in target cluster
805    remote_spinlock_lock( lock_xp );
806
807    // loop on list of process in target cluster to find the PID process
808    xptr_t  iter;
809    bool_t  found = false;
810    XLIST_FOREACH( XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ) , iter )
811    {
812        target_process_xp  = XLIST_ELEMENT( iter , process_t , local_list );
813        target_process_ptr = (process_t *)GET_PTR( target_process_xp );
814        target_process_pid = hal_remote_lw( XPTR( target_cxy , &target_process_ptr->pid ) );
815        if( target_process_pid == pid )
816        {
817            found = true;
818            break;
819        }
820    }
821
822    // release the lock protecting the list of processes in target cluster
823    remote_spinlock_unlock( lock_xp );
824
825    // check target thread found
826    if( found == false )
827    {
828        return XPTR_NULL;
829    }
830
831    // get target thread local pointer
832    xptr_t xp = XPTR( target_cxy , &target_process_ptr->th_tbl[target_thread_ltid] );
[171]833    target_thread_ptr = (thread_t *)hal_remote_lpt( xp );
[23]834
835    if( target_thread_ptr == NULL )
836    {
837        return XPTR_NULL;
838    }
839
840    return XPTR( target_cxy , target_thread_ptr );
[171]841}
[23]842
Note: See TracBrowser for help on using the repository browser.