source: trunk/kernel/kern/thread.c @ 420

Last change on this file since 420 was 418, checked in by alain, 7 years ago

Fix a bug in hal_kentry.S : the "uzone" pointer in the thread descriptor
must not be modified in case of interrupt.

File size: 31.9 KB
RevLine 
[1]1/*
2 * thread.c -  implementation of thread operations (user & kernel)
[171]3 *
[1]4 * Author  Ghassan Almaless (2008,2009,2010,2011,2012)
[23]5 *         Alain Greiner (2016,2017)
[1]6 *
7 * Copyright (c) UPMC Sorbonne Universites
8 *
[5]9 * This file is part of ALMOS-MKH.
[1]10 *
[5]11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
[1]12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
[5]15 * ALMOS-MKH is distributed in the hope that it will be useful, but
[1]16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
[5]21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
[1]22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[1]26#include <hal_types.h>
27#include <hal_context.h>
28#include <hal_irqmask.h>
29#include <hal_special.h>
30#include <hal_remote.h>
31#include <memcpy.h>
32#include <printk.h>
33#include <cluster.h>
34#include <process.h>
35#include <scheduler.h>
[188]36#include <dev_pic.h>
[1]37#include <core.h>
38#include <list.h>
39#include <xlist.h>
40#include <page.h>
41#include <kmem.h>
42#include <ppm.h>
43#include <thread.h>
44
45//////////////////////////////////////////////////////////////////////////////////////
46// Extern global variables
47//////////////////////////////////////////////////////////////////////////////////////
48
49extern process_t      process_zero;
50
51//////////////////////////////////////////////////////////////////////////////////////
[16]52// This function returns a printable string for the thread type.
[1]53//////////////////////////////////////////////////////////////////////////////////////
[5]54char * thread_type_str( uint32_t type )
55{
[296]56    if     ( type == THREAD_USER   ) return "USR";
[16]57    else if( type == THREAD_RPC    ) return "RPC";
58    else if( type == THREAD_DEV    ) return "DEV";
[296]59    else if( type == THREAD_IDLE   ) return "IDL";
[5]60    else                             return "undefined";
61}
62
[1]63/////////////////////////////////////////////////////////////////////////////////////
[14]64// This static function allocates physical memory for a thread descriptor.
65// It can be called by the three functions:
[1]66// - thread_user_create()
[14]67// - thread_user_fork()
[1]68// - thread_kernel_create()
69/////////////////////////////////////////////////////////////////////////////////////
[14]70// @ return pointer on thread descriptor if success / return NULL if failure.
[1]71/////////////////////////////////////////////////////////////////////////////////////
[14]72static thread_t * thread_alloc()
[1]73{
[23]74        page_t       * page;   // pointer on page descriptor containing thread descriptor
[171]75        kmem_req_t     req;    // kmem request
[1]76
77        // allocates memory for thread descriptor + kernel stack
78        req.type  = KMEM_PAGE;
[14]79        req.size  = CONFIG_THREAD_DESC_ORDER;
[1]80        req.flags = AF_KERNEL | AF_ZERO;
81        page      = kmem_alloc( &req );
82
[23]83        if( page == NULL ) return NULL;
[1]84
[315]85    // return pointer on new thread descriptor
86    xptr_t base_xp = ppm_page2base( XPTR(local_cxy , page ) );
87    return (thread_t *)GET_PTR( base_xp );
88
89}  // end thread_alloc()
90 
91
[14]92/////////////////////////////////////////////////////////////////////////////////////
[23]93// This static function releases the physical memory for a thread descriptor.
[53]94// It is called by the three functions:
[23]95// - thread_user_create()
96// - thread_user_fork()
97// - thread_kernel_create()
98/////////////////////////////////////////////////////////////////////////////////////
99// @ thread  : pointer on thread descriptor.
100/////////////////////////////////////////////////////////////////////////////////////
101static void thread_release( thread_t * thread )
102{
103    kmem_req_t   req;
104
[315]105    xptr_t base_xp = ppm_base2page( XPTR(local_cxy , thread ) );
106
[23]107    req.type  = KMEM_PAGE;
[315]108    req.ptr   = GET_PTR( base_xp );
[23]109    kmem_free( &req );
110}
111
112/////////////////////////////////////////////////////////////////////////////////////
[14]113// This static function initializes a thread descriptor (kernel or user).
[409]114// It can be called by the three functions:
[14]115// - thread_user_create()
116// - thread_user_fork()
117// - thread_kernel_create()
118/////////////////////////////////////////////////////////////////////////////////////
119// @ thread       : pointer on thread descriptor
120// @ process      : pointer on process descriptor.
121// @ type         : thread type.
122// @ func         : pointer on thread entry function.
123// @ args         : pointer on thread entry function arguments.
124// @ core_lid     : target core local index.
125// @ u_stack_base : stack base (user thread only)
126// @ u_stack_size : stack base (user thread only)
127/////////////////////////////////////////////////////////////////////////////////////
128static error_t thread_init( thread_t      * thread,
129                            process_t     * process,
130                            thread_type_t   type,
131                            void          * func,
132                            void          * args,
133                            lid_t           core_lid,
134                            intptr_t        u_stack_base,
135                            uint32_t        u_stack_size )
136{
137    error_t        error;
138    trdid_t        trdid;      // allocated thread identifier
139
140        cluster_t    * local_cluster = LOCAL_CLUSTER;
141
142    // register new thread in process descriptor, and get a TRDID
[1]143    spinlock_lock( &process->th_lock );
144    error = process_register_thread( process, thread , &trdid );
145    spinlock_unlock( &process->th_lock );
146
[171]147    if( error )
[1]148    {
[14]149        printk("\n[ERROR] in %s : cannot get TRDID\n", __FUNCTION__ );
150        return EINVAL;
[1]151    }
[14]152
[407]153    // compute thread descriptor size without kernel stack
154    uint32_t desc_size = (intptr_t)(&thread->signature) - (intptr_t)thread + 4; 
155
[1]156        // Initialize new thread descriptor
157    thread->trdid           = trdid;
[171]158        thread->type            = type;
[1]159    thread->quantum         = 0;            // TODO
160    thread->ticks_nr        = 0;            // TODO
161    thread->time_last_check = 0;
162        thread->core            = &local_cluster->core_tbl[core_lid];
163        thread->process         = process;
164
165    thread->local_locks     = 0;
[409]166    thread->remote_locks    = 0;
[1]167
[409]168#if CONFIG_LOCKS_DEBUG
169    list_root_init( &thread->locks_root ); 
[1]170    xlist_root_init( XPTR( local_cxy , &thread->xlocks_root ) );
[409]171#endif
[1]172
[171]173    thread->u_stack_base    = u_stack_base;
[1]174    thread->u_stack_size    = u_stack_size;
[407]175    thread->k_stack_base    = (intptr_t)thread + desc_size;
176    thread->k_stack_size    = CONFIG_THREAD_DESC_SIZE - desc_size;
[1]177
178    thread->entry_func      = func;         // thread entry point
179    thread->entry_args      = args;         // thread function arguments
[171]180    thread->flags           = 0;            // all flags reset
[1]181    thread->errno           = 0;            // no error detected
[407]182    thread->fork_user       = 0;            // no user defined placement for fork
183    thread->fork_cxy        = 0;            // user defined target cluster for fork
[409]184    thread->blocked         = THREAD_BLOCKED_GLOBAL;
[1]185
186    // reset children list
187    xlist_root_init( XPTR( local_cxy , &thread->children_root ) );
188    thread->children_nr = 0;
189
190    // reset sched list and brothers list
191    list_entry_init( &thread->sched_list );
192    xlist_entry_init( XPTR( local_cxy , &thread->brothers_list ) );
193
194    // reset thread info
195    memset( &thread->info , 0 , sizeof(thread_info_t) );
196
[409]197    // initializes join_lock
198    remote_spinlock_init( XPTR( local_cxy , &thread->join_lock ) );
199
[1]200    // initialise signature
201        thread->signature = THREAD_SIGNATURE;
202
[408]203    // FIXME call hal_thread_init() function to initialise the save_sr field
204    thread->save_sr = 0xFF13;
205
[1]206    // update local DQDT
207    dqdt_local_update_threads( 1 );
208
[171]209    // register new thread in core scheduler
[1]210    sched_register_thread( thread->core , thread );
211
212        return 0;
213
[296]214} // end thread_init()
215
[1]216/////////////////////////////////////////////////////////
[23]217error_t thread_user_create( pid_t             pid,
218                            void            * start_func,
219                            void            * start_arg,
[1]220                            pthread_attr_t  * attr,
[23]221                            thread_t       ** new_thread )
[1]222{
223    error_t        error;
224        thread_t     * thread;       // pointer on created thread descriptor
225    process_t    * process;      // pointer to local process descriptor
226    lid_t          core_lid;     // selected core local index
[23]227    vseg_t       * vseg;         // stack vseg
[1]228
[407]229    assert( (attr != NULL) , __FUNCTION__, "pthread attributes must be defined" );
[5]230
[23]231    // get process descriptor local copy
232    process = process_get_local_copy( pid );
[1]233
[23]234    if( process == NULL )
235    {
236                printk("\n[ERROR] in %s : cannot get process descriptor %x\n",
237               __FUNCTION__ , pid );
238        return ENOMEM;
239    }
240
[171]241    // select a target core in local cluster
[407]242    if( attr->attributes & PT_ATTR_CORE_DEFINED )
[23]243    {
[407]244        core_lid = attr->lid;
245        if( core_lid >= LOCAL_CLUSTER->cores_nr )
246        {
247                printk("\n[ERROR] in %s : illegal core index attribute = %d\n",
248            __FUNCTION__ , core_lid );
249            return EINVAL;
250        }
[23]251    }
[407]252    else
253    {
254        core_lid = cluster_select_local_core();
255    }
[1]256
[171]257    // allocate a stack from local VMM
[407]258    vseg = vmm_create_vseg( process,
259                            VSEG_TYPE_STACK,
260                            0,                 // size unused
261                            0,                 // length unused
262                            0,                 // file_offset unused
263                            0,                 // file_size unused
264                            XPTR_NULL,         // mapper_xp unused
265                            local_cxy );
[1]266
[170]267    if( vseg == NULL )
[23]268    {
269            printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ );
270                return ENOMEM;
[171]271    }
[23]272
[171]273    // allocate memory for thread descriptor
[14]274    thread = thread_alloc();
[1]275
[23]276    if( thread == NULL )
277    {
278            printk("\n[ERROR] in %s : cannot create new thread\n", __FUNCTION__ );
279        vmm_remove_vseg( vseg );
280        return ENOMEM;
281    }
[14]282
[171]283    // initialize thread descriptor
[14]284    error = thread_init( thread,
285                         process,
286                         THREAD_USER,
[23]287                         start_func,
288                         start_arg,
[14]289                         core_lid,
[23]290                         vseg->min,
291                         vseg->max - vseg->min );
[14]292
[171]293    if( error )
[14]294    {
[23]295            printk("\n[ERROR] in %s : cannot initialize new thread\n", __FUNCTION__ );
296        vmm_remove_vseg( vseg );
297        thread_release( thread );
[14]298        return EINVAL;
299    }
300
301    // set DETACHED flag if required
[407]302    if( attr->attributes & PT_ATTR_DETACH ) 
303    {
304        thread->flags |= THREAD_FLAG_DETACHED;
305    }
[1]306
[171]307    // allocate & initialize CPU context
[407]308        if( hal_cpu_context_create( thread ) )
[23]309    {
310            printk("\n[ERROR] in %s : cannot create CPU context\n", __FUNCTION__ );
311        vmm_remove_vseg( vseg );
312        thread_release( thread );
313        return ENOMEM;
314    }
315
[407]316    // allocate  FPU context
317    if( hal_fpu_context_alloc( thread ) )
[23]318    {
319            printk("\n[ERROR] in %s : cannot create FPU context\n", __FUNCTION__ );
320        vmm_remove_vseg( vseg );
321        thread_release( thread );
322        return ENOMEM;
323    }
324
[408]325        // update DQDT for new thread
326    dqdt_local_update_threads( 1 );
327
[407]328thread_dmsg("\n[DBG] %s : core[%x,%d] exit / trdid = %x / process %x / core = %d\n",
329__FUNCTION__, local_cxy, CURRENT_THREAD->core->lid,
330thread->trdid , process->pid , core_lid );
[1]331
332    *new_thread = thread;
333        return 0;
[14]334
[296]335}  // end thread_user_create()
336
[408]337///////////////////////////////////////////////////////
338error_t thread_user_fork( xptr_t      parent_thread_xp,
339                          process_t * child_process,
340                          thread_t ** child_thread )
[1]341{
342    error_t        error;
[408]343        thread_t     * child_ptr;        // local pointer on local child thread
344    lid_t          core_lid;         // selected core local index
[1]345
[408]346    thread_t     * parent_ptr;       // local pointer on remote parent thread
347    cxy_t          parent_cxy;       // parent thread cluster
348    process_t    * parent_process;   // local pointer on parent process
349    xptr_t         parent_gpt_xp;    // extended pointer on parent thread GPT
[5]350
[408]351    void         * func;             // parent thread entry_func
352    void         * args;             // parent thread entry_args
353    intptr_t       base;             // parent thread u_stack_base
354    uint32_t       size;             // parent thread u_stack_size
355    uint32_t       flags;            // parent_thread flags
356    vpn_t          vpn_base;         // parent thread stack vpn_base
357    vpn_t          vpn_size;         // parent thread stack vpn_size
358    reg_t        * uzone;            // parent thread pointer on uzone 
359
360    vseg_t       * vseg;             // child thread STACK vseg
361
362thread_dmsg("\n[DBG] %s : core[%x,%d] enters at cycle %d\n",
363__FUNCTION__ , local_cxy , CURRENT_THREAD->core->lid , hal_get_cycles() );
364
[1]365    // select a target core in local cluster
366    core_lid = cluster_select_local_core();
367
[408]368    // get cluster and local pointer on parent thread descriptor
369    parent_cxy = GET_CXY( parent_thread_xp );
370    parent_ptr = (thread_t *)GET_PTR( parent_thread_xp );
[1]371
[408]372    // get relevant fields from parent thread
373    func  = (void *)  hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_func   ) );
374    args  = (void *)  hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_args   ) );
375    base  = (intptr_t)hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->u_stack_base ) );
376    size  = (uint32_t)hal_remote_lw ( XPTR( parent_cxy , &parent_ptr->u_stack_size ) );
377    flags =           hal_remote_lw ( XPTR( parent_cxy , &parent_ptr->flags        ) );
378    uzone = (reg_t *) hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->uzone        ) );
[1]379
[408]380    vpn_base = base >> CONFIG_PPM_PAGE_SHIFT;
381    vpn_size = size >> CONFIG_PPM_PAGE_SHIFT;
382
383    // get pointer on parent process in parent thread cluster
384    parent_process = (process_t *)hal_remote_lpt( XPTR( parent_cxy,
385                                                        &parent_ptr->process ) );
386 
387    // get extended pointer on parent GPT in parent thread cluster
388    parent_gpt_xp = XPTR( parent_cxy , &parent_process->vmm.gpt );
389
390    // allocate memory for child thread descriptor
391    child_ptr = thread_alloc();
392    if( child_ptr == NULL )
[23]393    {
394        printk("\n[ERROR] in %s : cannot allocate new thread\n", __FUNCTION__ );
[408]395        return -1;
[23]396    }
[14]397
[171]398    // initialize thread descriptor
[408]399    error = thread_init( child_ptr,
400                         child_process,
[14]401                         THREAD_USER,
[408]402                         func,
403                         args,
[14]404                         core_lid,
[408]405                         base,
406                         size );
[23]407    if( error )
[14]408    {
[408]409            printk("\n[ERROR] in %s : cannot initialize child thread\n", __FUNCTION__ );
410        thread_release( child_ptr );
[14]411        return EINVAL;
412    }
413
[407]414    // return child pointer
[408]415    *child_thread = child_ptr;
[1]416
[408]417    // set detached flag if required
418    if( flags & THREAD_FLAG_DETACHED ) child_ptr->flags = THREAD_FLAG_DETACHED;
[1]419
[408]420    // update uzone pointer in child thread descriptor
421    child_ptr->uzone = (char *)((intptr_t)uzone +
422                                (intptr_t)child_ptr - 
423                                (intptr_t)parent_ptr );
424 
425
[407]426    // allocate CPU context for child thread
[408]427        if( hal_cpu_context_alloc( child_ptr ) )
[23]428    {
[407]429            printk("\n[ERROR] in %s : cannot allocate CPU context\n", __FUNCTION__ );
[408]430        thread_release( child_ptr );
431        return -1;
[23]432    }
433
[407]434    // allocate FPU context for child thread
[408]435        if( hal_fpu_context_alloc( child_ptr ) )
[23]436    {
[407]437            printk("\n[ERROR] in %s : cannot allocate FPU context\n", __FUNCTION__ );
[408]438        thread_release( child_ptr );
439        return -1;
[23]440    }
441
[408]442    // create and initialize STACK vseg
443    vseg = vseg_alloc();
444    vseg_init( vseg,
445               VSEG_TYPE_STACK,
446               base,
447               size,
448               vpn_base,
449               vpn_size,
450               0, 0, XPTR_NULL,                         // not a file vseg
451               local_cxy );
[1]452
[408]453    // register STACK vseg in local child VSL
454    vseg_attach( &child_process->vmm , vseg );
455
456    // copy all valid STACK GPT entries   
457    vpn_t          vpn;
458    bool_t         mapped;
459    ppn_t          ppn;
460    for( vpn = vpn_base ; vpn < (vpn_base + vpn_size) ; vpn++ )
461    {
462        error = hal_gpt_pte_copy( &child_process->vmm.gpt,
463                                  parent_gpt_xp,
464                                  vpn,
465                                  true,                 // set cow
466                                  &ppn,
467                                  &mapped );
468        if( error )
469        {
470            vseg_detach( &child_process->vmm , vseg );
471            vseg_free( vseg );
472            thread_release( child_ptr );
473            printk("\n[ERROR] in %s : cannot update child GPT\n", __FUNCTION__ );
474            return -1;
475        }
476
477        // increment page descriptor fork_nr for the referenced page if mapped
478        if( mapped )
479        {
480            xptr_t   page_xp  = ppm_ppn2page( ppn );
481            cxy_t    page_cxy = GET_CXY( page_xp );
482            page_t * page_ptr = (page_t *)GET_PTR( page_xp );
483            hal_remote_atomic_add( XPTR( page_cxy , &page_ptr->fork_nr ) , 1 );
484
485thread_dmsg("\n[DBG] %s : core[%x,%d] copied PTE to child GPT : vpn %x\n",
486__FUNCTION__ , local_cxy , CURRENT_THREAD->core->lid , vpn );
487
488        }
489    }
490
491    // set COW flag for STAK vseg in parent thread GPT
492    hal_gpt_flip_cow( true,                               // set cow
493                      parent_gpt_xp,
494                      vpn_base,
495                      vpn_size );
496 
497        // update DQDT for child thread
498    dqdt_local_update_threads( 1 );
499
[407]500thread_dmsg("\n[DBG] %s : core[%x,%d] exit / created main thread %x for process %x\n",
[408]501__FUNCTION__, local_cxy, CURRENT_THREAD->core->lid, child_ptr->trdid, child_process->pid );
[407]502
[1]503        return 0;
[5]504
[296]505}  // end thread_user_fork()
506
[1]507/////////////////////////////////////////////////////////
508error_t thread_kernel_create( thread_t     ** new_thread,
509                              thread_type_t   type,
[171]510                              void          * func,
511                              void          * args,
[1]512                                              lid_t           core_lid )
513{
514    error_t        error;
[14]515        thread_t     * thread;       // pointer on new thread descriptor
[1]516
[407]517thread_dmsg("\n[DBG] %s : core[%x,%d] enters / type % / cycle %d\n",
518__FUNCTION__ , local_cxy , core_lid , thread_type_str( type ) , hal_time_stamp() );
[1]519
[407]520    assert( ( (type == THREAD_IDLE) || (type == THREAD_RPC) || (type == THREAD_DEV) ) ,
521    __FUNCTION__ , "illegal thread type" );
[1]522
[171]523    assert( (core_lid < LOCAL_CLUSTER->cores_nr) ,
[5]524            __FUNCTION__ , "illegal core_lid" );
[1]525
[171]526    // allocate memory for new thread descriptor
[14]527    thread = thread_alloc();
528
529    if( thread == NULL ) return ENOMEM;
530
[171]531    // initialize thread descriptor
[14]532    error = thread_init( thread,
533                         &process_zero,
534                         type,
535                         func,
536                         args,
537                         core_lid,
538                         0 , 0 );  // no user stack for a kernel thread
539
[171]540    if( error ) // release allocated memory for thread descriptor
[1]541    {
[185]542        thread_release( thread );
[14]543        return EINVAL;
[1]544    }
545
[171]546    // allocate & initialize CPU context
547        hal_cpu_context_create( thread );
[14]548
[408]549        // update DQDT for kernel thread
550    dqdt_local_update_threads( 1 );
551
[407]552thread_dmsg("\n[DBG] %s : core = [%x,%d] exit / trdid = %x / type %s / cycle %d\n",
553__FUNCTION__, local_cxy, core_lid, thread->trdid, thread_type_str(type), hal_time_stamp() );
[1]554
[171]555    *new_thread = thread;
[1]556        return 0;
[5]557
[296]558} // end thread_kernel_create()
559
[14]560///////////////////////////////////////////////////
561error_t thread_kernel_init( thread_t      * thread,
562                            thread_type_t   type,
[171]563                            void          * func,
564                            void          * args,
[14]565                                            lid_t           core_lid )
566{
[407]567    assert( (type == THREAD_IDLE) , __FUNCTION__ , "illegal thread type" );
[1]568
[407]569    assert( (core_lid < LOCAL_CLUSTER->cores_nr) , __FUNCTION__ , "illegal core index" );
[14]570
571    error_t  error = thread_init( thread,
572                                  &process_zero,
573                                  type,
574                                  func,
575                                  args,
576                                  core_lid,
577                                  0 , 0 );   // no user stack for a kernel thread
578
579    // allocate & initialize CPU context if success
580    if( error == 0 ) hal_cpu_context_create( thread );
[171]581
[14]582    return error;
583
[407]584}  // end thread_kernel_init()
585
[1]586///////////////////////////////////////////////////////////////////////////////////////
587// TODO: check that all memory dynamically allocated during thread execution
588// has been released, using a cache of mmap and malloc requests. [AG]
589///////////////////////////////////////////////////////////////////////////////////////
590void thread_destroy( thread_t * thread )
591{
592        uint32_t     tm_start;
593        uint32_t     tm_end;
[409]594    reg_t        save_sr;
[1]595
596    process_t  * process    = thread->process;
597    core_t     * core       = thread->core;
598
[407]599    thread_dmsg("\n[DBG] %s : enters for thread %x in process %x / type = %s\n",
[5]600                __FUNCTION__ , thread->trdid , process->pid , thread_type_str( thread->type ) );
[1]601
[5]602    assert( (thread->children_nr == 0) , __FUNCTION__ , "still attached children" );
603
604    assert( (thread->local_locks == 0) , __FUNCTION__ , "all local locks not released" );
[171]605
[5]606    assert( (thread->remote_locks == 0) , __FUNCTION__ , "all remote locks not released" );
607
[101]608        tm_start = hal_get_cycles();
[1]609
610    // update intrumentation values
[408]611        process->vmm.pgfault_nr += thread->info.pgfault_nr;
[1]612
613    // release memory allocated for CPU context and FPU context
614        hal_cpu_context_destroy( thread );
[409]615        if ( thread->type == THREAD_USER ) hal_fpu_context_destroy( thread );
[1]616       
617    // release FPU if required
618    // TODO This should be done before calling thread_destroy()
[409]619        hal_disable_irq( &save_sr );
[1]620        if( core->fpu_owner == thread )
621        {
622                core->fpu_owner = NULL;
623                hal_fpu_disable();
624        }
[409]625        hal_restore_irq( save_sr );
[1]626
[171]627    // remove thread from process th_tbl[]
[1]628    // TODO This should be done before calling thread_destroy()
629    ltid_t ltid = LTID_FROM_TRDID( thread->trdid );
630
631        spinlock_lock( &process->th_lock );
632        process->th_tbl[ltid] = XPTR_NULL;
633        process->th_nr--;
634        spinlock_unlock( &process->th_lock );
635       
[23]636    // update local DQDT
637    dqdt_local_update_threads( -1 );
638
[1]639    // invalidate thread descriptor
640        thread->signature = 0;
641
642    // release memory for thread descriptor
[23]643    thread_release( thread );
[1]644
[101]645        tm_end = hal_get_cycles();
[1]646
[407]647        thread_dmsg("\n[DBG] %s : exit for thread %x in process %x / duration = %d\n",
[5]648                       __FUNCTION__, thread->trdid , process->pid , tm_end - tm_start );
[1]649
[407]650}   // end thread_destroy()
651
[1]652/////////////////////////////////////////////////
653void thread_child_parent_link( xptr_t  xp_parent,
654                               xptr_t  xp_child )
655{
[171]656    // get extended pointers on children list root
657    cxy_t      parent_cxy = GET_CXY( xp_parent );
[1]658    thread_t * parent_ptr = (thread_t *)GET_PTR( xp_parent );
659    xptr_t     root       = XPTR( parent_cxy , &parent_ptr->children_root );
660
[171]661    // get extended pointer on children list entry
662    cxy_t      child_cxy  = GET_CXY( xp_child );
[1]663    thread_t * child_ptr  = (thread_t *)GET_PTR( xp_child );
664    xptr_t     entry      = XPTR( child_cxy , &child_ptr->brothers_list );
665
666    // set the link
667    xlist_add_first( root , entry );
668    hal_remote_atomic_add( XPTR( parent_cxy , &parent_ptr->children_nr ) , 1 );
669
[409]670}  // end thread_child_parent_link()
671
[1]672///////////////////////////////////////////////////
673void thread_child_parent_unlink( xptr_t  xp_parent,
674                                 xptr_t  xp_child )
675{
676    // get extended pointer on children list lock
[171]677    cxy_t      parent_cxy = GET_CXY( xp_parent );
[1]678    thread_t * parent_ptr = (thread_t *)GET_PTR( xp_parent );
679    xptr_t     lock       = XPTR( parent_cxy , &parent_ptr->children_lock );
680
[171]681    // get extended pointer on children list entry
682    cxy_t      child_cxy  = GET_CXY( xp_child );
[1]683    thread_t * child_ptr  = (thread_t *)GET_PTR( xp_child );
684    xptr_t     entry      = XPTR( child_cxy , &child_ptr->brothers_list );
685
686    // get the lock
687    remote_spinlock_lock( lock );
688
689    // remove the link
690    xlist_unlink( entry );
691    hal_remote_atomic_add( XPTR( parent_cxy , &parent_ptr->children_nr ) , -1 );
[171]692
[1]693    // release the lock
694    remote_spinlock_unlock( lock );
695
[409]696}  // thread_child_parent_unlink()
697
[416]698//////////////////////////////////////////////////
699inline void thread_set_req_ack( thread_t * target,
700                                uint32_t * rsp_count )
[1]701{
[409]702    reg_t    save_sr;   // for critical section
703
[416]704    // get pointer on target thread scheduler
705    scheduler_t * sched = &target->core->scheduler;
[409]706
[416]707    // wait scheduler ready to handle a new request
708    while( sched->req_ack_pending ) asm volatile( "nop" );
[409]709   
710    // enter critical section
711    hal_disable_irq( &save_sr );
712     
[416]713    // set request in target thread scheduler
714    sched->req_ack_pending = true;
[409]715
[416]716    // set ack request in target thread "flags"
717    hal_atomic_or( &target->flags , THREAD_FLAG_REQ_ACK );
[409]718
[416]719    // set pointer on responses counter in target thread
720    target->ack_rsp_count = rsp_count;
[409]721   
722    // exit critical section
723    hal_restore_irq( save_sr );
724
[407]725    hal_fence();
[171]726
[416]727}  // thread_set_req_ack()
[409]728
[416]729/////////////////////////////////////////////////////
730inline void thread_reset_req_ack( thread_t * target )
[1]731{
[409]732    reg_t    save_sr;   // for critical section
733
734    // get pointer on target thread scheduler
[416]735    scheduler_t * sched = &target->core->scheduler;
[409]736
737    // check signal pending in scheduler
[416]738    assert( sched->req_ack_pending , __FUNCTION__ , "no pending signal" );
[409]739   
740    // enter critical section
741    hal_disable_irq( &save_sr );
742     
743    // reset signal in scheduler
[416]744    sched->req_ack_pending = false;
[409]745
746    // reset signal in thread "flags"
[416]747    hal_atomic_and( &target->flags , ~THREAD_FLAG_REQ_ACK );
[409]748
749    // reset pointer on responses counter
[416]750    target->ack_rsp_count = NULL;
[409]751   
752    // exit critical section
753    hal_restore_irq( save_sr );
754
[407]755    hal_fence();
[171]756
[416]757}  // thread_reset_req_ack()
[409]758
[1]759////////////////////////////////
760inline bool_t thread_can_yield()
761{
762    thread_t * this = CURRENT_THREAD;
[367]763    return (this->local_locks == 0) && (this->remote_locks == 0);
[1]764}
765
[367]766/////////////////////////
767void thread_check_sched()
[1]768{
[338]769    thread_t * this = CURRENT_THREAD;
[1]770
[367]771        if( (this->local_locks == 0) && 
772        (this->remote_locks == 0) &&
773        (this->flags & THREAD_FLAG_SCHED) ) 
774    {
775        this->flags &= ~THREAD_FLAG_SCHED;
[408]776        sched_yield( "delayed scheduling" );
[367]777    }
[1]778
[407]779}  // end thread_check_sched()
780
781/////////////////////////////////////
782void thread_block( thread_t * thread,
783                   uint32_t   cause )
784{
785    // set blocking cause
786    hal_atomic_or( &thread->blocked , cause );
787    hal_fence();
788
789} // end thread_block()
790
791/////////////////////////////////////////
792uint32_t thread_unblock( xptr_t   thread,
793                         uint32_t cause )
794{
795    // get thread cluster and local pointer
796    cxy_t      cxy = GET_CXY( thread );
797    thread_t * ptr = (thread_t *)GET_PTR( thread );
798
799    // reset blocking cause
800    uint32_t previous = hal_remote_atomic_and( XPTR( cxy , &ptr->blocked ) , ~cause );
801    hal_fence();
802
803    // return a non zero value if the cause bit is modified
804    return( previous & cause );
805
806}  // end thread_unblock()
807
[409]808/////////////////////////////////////
809void thread_kill( thread_t * target )
[1]810{
[416]811    volatile uint32_t  rsp_count = 1;     // responses counter
[1]812
[409]813    thread_t * killer = CURRENT_THREAD;
[1]814
[416]815thread_dmsg("\n[DBG] %s : killer thread %x enter for target thread %x\n",
[409]816__FUNCTION__, local_cxy, killer->trdid , target trdid );
[1]817
[409]818    // set the global blocked bit in target thread descriptor.
819    thread_block( target , THREAD_BLOCKED_GLOBAL );
820
821    // request target scheduler to deschedule the target thread
822    // when killer thread is not running on same core as target thread
823    if( killer->core->lid != target->core->lid )
[1]824    {
[409]825        // set signal in target thread descriptor and in target scheduler
[416]826        thread_set_req_ack( target , (void *)(&rsp_count) );
[409]827
828        // send an IPI to the target thread core.
829        dev_pic_send_ipi( local_cxy , target->core->lid );
830
831        // poll the response
832        while( 1 )
833        {
834            // exit when response received from scheduler
[416]835            if( rsp_count == 0 )  break;
[409]836
837            // deschedule without blocking
838            hal_fixed_delay( 1000 );
839        }
[1]840    }
841
[416]842        // set REQ_DELETE flag
843        hal_atomic_or( &target->flags , THREAD_FLAG_REQ_DELETE );
[1]844
[416]845thread_dmsg("\n[DBG] %s : killer thread %x exit for target thread %x\n",
[409]846__FUNCTION__, local_cxy, killer->trdid , target trdid );
847
[407]848}  // end thread_kill()
849
[14]850///////////////////////
851void thread_idle_func()
[1]852{
853    while( 1 )
854    {
[408]855        // unmask IRQs
856        hal_enable_irq( NULL );
857
[407]858        if( CONFIG_THREAD_IDLE_MODE_SLEEP ) // force core to low-power mode
859        {
[1]860
[407]861idle_dmsg("\n[DBG] %s : core[%x][%d] goes to sleep at cycle %d\n",
862__FUNCTION__ , local_cxy , CURRENT_THREAD->core->lid , hal_get_cycles() );
[1]863
[407]864            hal_core_sleep();
[1]865
[407]866idle_dmsg("\n[DBG] %s : core[%x][%d] wake up at cycle %d\n",
867__FUNCTION__ , local_cxy , CURRENT_THREAD->core->lid , hal_get_cycles() );
868
869        }
[418]870        else                                // search a runable thread
[407]871        {
[418]872            sched_yield( "IDLE" );
[407]873        }
[418]874    }
[407]875}  // end thread_idle()
[1]876
[407]877
[16]878/////////////////////////////////////////////////
879void thread_user_time_update( thread_t * thread )
880{
881    // TODO
[337]882    // printk("\n[WARNING] function %s not implemented\n", __FUNCTION__ );
[16]883}
[1]884
[16]885///////////////////////////////////////////////////
886void thread_kernel_time_update( thread_t * thread )
887{
888    // TODO
[337]889    // printk("\n[WARNING] function %s not implemented\n", __FUNCTION__ );
[16]890}
891
[23]892/////////////////////////////////////
893xptr_t thread_get_xptr( pid_t    pid,
894                        trdid_t  trdid )
895{
896    cxy_t         target_cxy;          // target thread cluster identifier
897    ltid_t        target_thread_ltid;  // target thread local index
[171]898    thread_t    * target_thread_ptr;   // target thread local pointer
[23]899    xptr_t        target_process_xp;   // extended pointer on target process descriptor
[171]900    process_t   * target_process_ptr;  // local pointer on target process descriptor
[23]901    pid_t         target_process_pid;  // target process identifier
902    xlist_entry_t root;                // root of list of process in target cluster
903    xptr_t        lock_xp;             // extended pointer on lock protecting  this list
[16]904
[23]905    // get target cluster identifier and local thread identifier
906    target_cxy         = CXY_FROM_TRDID( trdid );
907    target_thread_ltid = LTID_FROM_TRDID( trdid );
908
909    // get root of list of process descriptors in target cluster
910    hal_remote_memcpy( XPTR( local_cxy  , &root ),
911                       XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ),
912                       sizeof(xlist_entry_t) );
913
[171]914    // get extended pointer on lock protecting the list of processes
[23]915    lock_xp = XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_lock );
916
917    // take the lock protecting the list of processes in target cluster
918    remote_spinlock_lock( lock_xp );
919
920    // loop on list of process in target cluster to find the PID process
921    xptr_t  iter;
922    bool_t  found = false;
923    XLIST_FOREACH( XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ) , iter )
924    {
925        target_process_xp  = XLIST_ELEMENT( iter , process_t , local_list );
926        target_process_ptr = (process_t *)GET_PTR( target_process_xp );
927        target_process_pid = hal_remote_lw( XPTR( target_cxy , &target_process_ptr->pid ) );
928        if( target_process_pid == pid )
929        {
930            found = true;
931            break;
932        }
933    }
934
935    // release the lock protecting the list of processes in target cluster
936    remote_spinlock_unlock( lock_xp );
937
938    // check target thread found
939    if( found == false )
940    {
941        return XPTR_NULL;
942    }
943
944    // get target thread local pointer
945    xptr_t xp = XPTR( target_cxy , &target_process_ptr->th_tbl[target_thread_ltid] );
[171]946    target_thread_ptr = (thread_t *)hal_remote_lpt( xp );
[23]947
948    if( target_thread_ptr == NULL )
949    {
950        return XPTR_NULL;
951    }
952
953    return XPTR( target_cxy , target_thread_ptr );
[171]954}
[23]955
Note: See TracBrowser for help on using the repository browser.