source: trunk/kernel/kern/thread.c @ 453

Last change on this file since 453 was 450, checked in by alain, 7 years ago

Fix a bug in function sched_handle_signal():
When the deleted user thread is the last executed thread,
the sched->u_last field must be updated to point on another user thread.

File size: 36.7 KB
RevLine 
[1]1/*
2 * thread.c -  implementation of thread operations (user & kernel)
[171]3 *
[1]4 * Author  Ghassan Almaless (2008,2009,2010,2011,2012)
[23]5 *         Alain Greiner (2016,2017)
[1]6 *
7 * Copyright (c) UPMC Sorbonne Universites
8 *
[5]9 * This file is part of ALMOS-MKH.
[1]10 *
[5]11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
[1]12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
[5]15 * ALMOS-MKH is distributed in the hope that it will be useful, but
[1]16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
[5]21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
[1]22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[1]26#include <hal_types.h>
27#include <hal_context.h>
28#include <hal_irqmask.h>
29#include <hal_special.h>
30#include <hal_remote.h>
31#include <memcpy.h>
32#include <printk.h>
33#include <cluster.h>
34#include <process.h>
35#include <scheduler.h>
[188]36#include <dev_pic.h>
[1]37#include <core.h>
38#include <list.h>
39#include <xlist.h>
40#include <page.h>
41#include <kmem.h>
42#include <ppm.h>
43#include <thread.h>
[446]44#include <rpc.h>
[1]45
46//////////////////////////////////////////////////////////////////////////////////////
47// Extern global variables
48//////////////////////////////////////////////////////////////////////////////////////
49
50extern process_t      process_zero;
51
52//////////////////////////////////////////////////////////////////////////////////////
[16]53// This function returns a printable string for the thread type.
[1]54//////////////////////////////////////////////////////////////////////////////////////
[5]55char * thread_type_str( uint32_t type )
56{
[296]57    if     ( type == THREAD_USER   ) return "USR";
[16]58    else if( type == THREAD_RPC    ) return "RPC";
59    else if( type == THREAD_DEV    ) return "DEV";
[296]60    else if( type == THREAD_IDLE   ) return "IDL";
[5]61    else                             return "undefined";
62}
63
[1]64/////////////////////////////////////////////////////////////////////////////////////
[14]65// This static function allocates physical memory for a thread descriptor.
66// It can be called by the three functions:
[1]67// - thread_user_create()
[14]68// - thread_user_fork()
[1]69// - thread_kernel_create()
70/////////////////////////////////////////////////////////////////////////////////////
[14]71// @ return pointer on thread descriptor if success / return NULL if failure.
[1]72/////////////////////////////////////////////////////////////////////////////////////
[14]73static thread_t * thread_alloc()
[1]74{
[23]75        page_t       * page;   // pointer on page descriptor containing thread descriptor
[171]76        kmem_req_t     req;    // kmem request
[1]77
78        // allocates memory for thread descriptor + kernel stack
79        req.type  = KMEM_PAGE;
[14]80        req.size  = CONFIG_THREAD_DESC_ORDER;
[1]81        req.flags = AF_KERNEL | AF_ZERO;
82        page      = kmem_alloc( &req );
83
[23]84        if( page == NULL ) return NULL;
[1]85
[315]86    // return pointer on new thread descriptor
87    xptr_t base_xp = ppm_page2base( XPTR(local_cxy , page ) );
88    return (thread_t *)GET_PTR( base_xp );
89
90}  // end thread_alloc()
91 
92
[14]93/////////////////////////////////////////////////////////////////////////////////////
[23]94// This static function releases the physical memory for a thread descriptor.
[53]95// It is called by the three functions:
[23]96// - thread_user_create()
97// - thread_user_fork()
98// - thread_kernel_create()
99/////////////////////////////////////////////////////////////////////////////////////
100// @ thread  : pointer on thread descriptor.
101/////////////////////////////////////////////////////////////////////////////////////
102static void thread_release( thread_t * thread )
103{
104    kmem_req_t   req;
105
[315]106    xptr_t base_xp = ppm_base2page( XPTR(local_cxy , thread ) );
107
[23]108    req.type  = KMEM_PAGE;
[315]109    req.ptr   = GET_PTR( base_xp );
[23]110    kmem_free( &req );
111}
112
113/////////////////////////////////////////////////////////////////////////////////////
[14]114// This static function initializes a thread descriptor (kernel or user).
[438]115// It can be called by the four functions:
[14]116// - thread_user_create()
117// - thread_user_fork()
118// - thread_kernel_create()
[438]119// - thread_idle_init()
120// It updates the local DQDT.
[14]121/////////////////////////////////////////////////////////////////////////////////////
122// @ thread       : pointer on thread descriptor
123// @ process      : pointer on process descriptor.
124// @ type         : thread type.
125// @ func         : pointer on thread entry function.
126// @ args         : pointer on thread entry function arguments.
127// @ core_lid     : target core local index.
128// @ u_stack_base : stack base (user thread only)
129// @ u_stack_size : stack base (user thread only)
130/////////////////////////////////////////////////////////////////////////////////////
131static error_t thread_init( thread_t      * thread,
132                            process_t     * process,
133                            thread_type_t   type,
134                            void          * func,
135                            void          * args,
136                            lid_t           core_lid,
137                            intptr_t        u_stack_base,
138                            uint32_t        u_stack_size )
139{
140    error_t        error;
141    trdid_t        trdid;      // allocated thread identifier
142
143        cluster_t    * local_cluster = LOCAL_CLUSTER;
144
[443]145#if DEBUG_THREAD_USER_INIT
146uint32_t cycle = (uint32_t)hal_get_cycles();
147if( DEBUG_THREAD_USER_INIT < cycle )
148printk("\n[DBG] %s : thread %x enter to init thread %x in process %x / cycle %d\n",
149__FUNCTION__, CURRENT_THREAD, thread, process->pid , cycle );
150#endif
151
[14]152    // register new thread in process descriptor, and get a TRDID
[1]153    error = process_register_thread( process, thread , &trdid );
154
[171]155    if( error )
[1]156    {
[14]157        printk("\n[ERROR] in %s : cannot get TRDID\n", __FUNCTION__ );
158        return EINVAL;
[1]159    }
[14]160
[407]161    // compute thread descriptor size without kernel stack
162    uint32_t desc_size = (intptr_t)(&thread->signature) - (intptr_t)thread + 4; 
163
[1]164        // Initialize new thread descriptor
165    thread->trdid           = trdid;
[171]166        thread->type            = type;
[1]167    thread->quantum         = 0;            // TODO
168    thread->ticks_nr        = 0;            // TODO
169    thread->time_last_check = 0;
170        thread->core            = &local_cluster->core_tbl[core_lid];
171        thread->process         = process;
172
173    thread->local_locks     = 0;
[409]174    thread->remote_locks    = 0;
[1]175
[409]176#if CONFIG_LOCKS_DEBUG
177    list_root_init( &thread->locks_root ); 
[1]178    xlist_root_init( XPTR( local_cxy , &thread->xlocks_root ) );
[409]179#endif
[1]180
[171]181    thread->u_stack_base    = u_stack_base;
[1]182    thread->u_stack_size    = u_stack_size;
[407]183    thread->k_stack_base    = (intptr_t)thread + desc_size;
184    thread->k_stack_size    = CONFIG_THREAD_DESC_SIZE - desc_size;
[1]185
186    thread->entry_func      = func;         // thread entry point
187    thread->entry_args      = args;         // thread function arguments
[171]188    thread->flags           = 0;            // all flags reset
[1]189    thread->errno           = 0;            // no error detected
[407]190    thread->fork_user       = 0;            // no user defined placement for fork
191    thread->fork_cxy        = 0;            // user defined target cluster for fork
[409]192    thread->blocked         = THREAD_BLOCKED_GLOBAL;
[1]193
[440]194    // reset sched list
[1]195    list_entry_init( &thread->sched_list );
196
197    // reset thread info
198    memset( &thread->info , 0 , sizeof(thread_info_t) );
199
[409]200    // initializes join_lock
201    remote_spinlock_init( XPTR( local_cxy , &thread->join_lock ) );
202
[1]203    // initialise signature
204        thread->signature = THREAD_SIGNATURE;
205
[443]206    // FIXME define and call an architecture specific hal_thread_init()
207    // function to initialise the save_sr field
[408]208    thread->save_sr = 0xFF13;
209
[171]210    // register new thread in core scheduler
[1]211    sched_register_thread( thread->core , thread );
212
[438]213        // update DQDT
214    dqdt_update_threads( 1 );
215
[443]216#if DEBUG_THREAD_USER_INIT
217cycle = (uint32_t)hal_get_cycles();
218if( DEBUG_THREAD_USER_INIT < cycle )
219printk("\n[DBG] %s : thread %x exit  after init of thread %x in process %x / cycle %d\n",
220__FUNCTION__, CURRENT_THREAD, thread, process->pid , cycle );
221#endif
222
[1]223        return 0;
224
[296]225} // end thread_init()
226
[1]227/////////////////////////////////////////////////////////
[23]228error_t thread_user_create( pid_t             pid,
229                            void            * start_func,
230                            void            * start_arg,
[1]231                            pthread_attr_t  * attr,
[23]232                            thread_t       ** new_thread )
[1]233{
234    error_t        error;
235        thread_t     * thread;       // pointer on created thread descriptor
236    process_t    * process;      // pointer to local process descriptor
237    lid_t          core_lid;     // selected core local index
[23]238    vseg_t       * vseg;         // stack vseg
[1]239
[407]240    assert( (attr != NULL) , __FUNCTION__, "pthread attributes must be defined" );
[5]241
[438]242#if DEBUG_THREAD_USER_CREATE
[433]243uint32_t cycle = (uint32_t)hal_get_cycles();
[438]244if( DEBUG_THREAD_USER_CREATE < cycle )
[443]245printk("\n[DBG] %s : thread %x enter for process %x in cluster %x / cycle %d\n",
246__FUNCTION__, CURRENT_THREAD, pid , local_cxy , cycle );
[433]247#endif
[428]248
[23]249    // get process descriptor local copy
250    process = process_get_local_copy( pid );
[440]251
[23]252    if( process == NULL )
253    {
254                printk("\n[ERROR] in %s : cannot get process descriptor %x\n",
255               __FUNCTION__ , pid );
256        return ENOMEM;
257    }
258
[443]259#if( DEBUG_THREAD_USER_CREATE & 1)
260if( DEBUG_THREAD_USER_CREATE < cycle )
261printk("\n[DBG] %s : process descriptor = %x for process %x in cluster %x\n",
262__FUNCTION__, process , pid , local_cxy );
263#endif
264
[171]265    // select a target core in local cluster
[407]266    if( attr->attributes & PT_ATTR_CORE_DEFINED )
[23]267    {
[407]268        core_lid = attr->lid;
269        if( core_lid >= LOCAL_CLUSTER->cores_nr )
270        {
271                printk("\n[ERROR] in %s : illegal core index attribute = %d\n",
272            __FUNCTION__ , core_lid );
273            return EINVAL;
274        }
[23]275    }
[407]276    else
277    {
278        core_lid = cluster_select_local_core();
279    }
[1]280
[443]281#if( DEBUG_THREAD_USER_CREATE & 1)
282if( DEBUG_THREAD_USER_CREATE < cycle )
283printk("\n[DBG] %s : core[%x,%d] selected\n",
284__FUNCTION__, local_cxy , core_lid );
285#endif
286
[171]287    // allocate a stack from local VMM
[407]288    vseg = vmm_create_vseg( process,
289                            VSEG_TYPE_STACK,
290                            0,                 // size unused
291                            0,                 // length unused
292                            0,                 // file_offset unused
293                            0,                 // file_size unused
294                            XPTR_NULL,         // mapper_xp unused
295                            local_cxy );
[1]296
[170]297    if( vseg == NULL )
[23]298    {
299            printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ );
300                return ENOMEM;
[171]301    }
[23]302
[171]303    // allocate memory for thread descriptor
[14]304    thread = thread_alloc();
[1]305
[23]306    if( thread == NULL )
307    {
308            printk("\n[ERROR] in %s : cannot create new thread\n", __FUNCTION__ );
309        vmm_remove_vseg( vseg );
310        return ENOMEM;
311    }
[14]312
[443]313#if( DEBUG_THREAD_USER_CREATE & 1)
314if( DEBUG_THREAD_USER_CREATE < cycle )
315printk("\n[DBG] %s : thread descriptor %x allocated\n",
316__FUNCTION__, thread );
317#endif
318
[171]319    // initialize thread descriptor
[14]320    error = thread_init( thread,
321                         process,
322                         THREAD_USER,
[23]323                         start_func,
324                         start_arg,
[14]325                         core_lid,
[23]326                         vseg->min,
327                         vseg->max - vseg->min );
[171]328    if( error )
[14]329    {
[23]330            printk("\n[ERROR] in %s : cannot initialize new thread\n", __FUNCTION__ );
331        vmm_remove_vseg( vseg );
332        thread_release( thread );
[14]333        return EINVAL;
334    }
335
[443]336#if( DEBUG_THREAD_USER_CREATE & 1)
337if( DEBUG_THREAD_USER_CREATE < cycle )
338printk("\n[DBG] %s : thread descriptor %x initialised / trdid = %x\n",
339__FUNCTION__, thread , thread->trdid );
340#endif
341
[14]342    // set DETACHED flag if required
[407]343    if( attr->attributes & PT_ATTR_DETACH ) 
344    {
345        thread->flags |= THREAD_FLAG_DETACHED;
346    }
[1]347
[171]348    // allocate & initialize CPU context
[407]349        if( hal_cpu_context_create( thread ) )
[23]350    {
351            printk("\n[ERROR] in %s : cannot create CPU context\n", __FUNCTION__ );
352        vmm_remove_vseg( vseg );
353        thread_release( thread );
354        return ENOMEM;
355    }
356
[407]357    // allocate  FPU context
358    if( hal_fpu_context_alloc( thread ) )
[23]359    {
360            printk("\n[ERROR] in %s : cannot create FPU context\n", __FUNCTION__ );
361        vmm_remove_vseg( vseg );
362        thread_release( thread );
363        return ENOMEM;
364    }
365
[438]366#if DEBUG_THREAD_USER_CREATE
[433]367cycle = (uint32_t)hal_get_cycles();
[438]368if( DEBUG_THREAD_USER_CREATE < cycle )
[443]369printk("\n[DBG] %s : thread %x exit / new_thread %x in process %x / core %d / cycle %d\n",
370__FUNCTION__, CURRENT_THREAD, thread->trdid , pid , core_lid, cycle );
[433]371#endif
[1]372
373    *new_thread = thread;
374        return 0;
[14]375
[296]376}  // end thread_user_create()
377
[408]378///////////////////////////////////////////////////////
379error_t thread_user_fork( xptr_t      parent_thread_xp,
380                          process_t * child_process,
381                          thread_t ** child_thread )
[1]382{
383    error_t        error;
[408]384        thread_t     * child_ptr;        // local pointer on local child thread
385    lid_t          core_lid;         // selected core local index
[1]386
[408]387    thread_t     * parent_ptr;       // local pointer on remote parent thread
388    cxy_t          parent_cxy;       // parent thread cluster
389    process_t    * parent_process;   // local pointer on parent process
390    xptr_t         parent_gpt_xp;    // extended pointer on parent thread GPT
[5]391
[408]392    void         * func;             // parent thread entry_func
393    void         * args;             // parent thread entry_args
394    intptr_t       base;             // parent thread u_stack_base
395    uint32_t       size;             // parent thread u_stack_size
396    uint32_t       flags;            // parent_thread flags
397    vpn_t          vpn_base;         // parent thread stack vpn_base
398    vpn_t          vpn_size;         // parent thread stack vpn_size
399    reg_t        * uzone;            // parent thread pointer on uzone 
400
401    vseg_t       * vseg;             // child thread STACK vseg
402
[438]403#if DEBUG_THREAD_USER_FORK
[433]404uint32_t cycle = (uint32_t)hal_get_cycles();
[438]405if( DEBUG_THREAD_USER_FORK < cycle )
[433]406printk("\n[DBG] %s : thread %x enter / child_process %x / cycle %d\n",
407__FUNCTION__, CURRENT_THREAD, child_process->pid, cycle );
408#endif
[408]409
[1]410    // select a target core in local cluster
411    core_lid = cluster_select_local_core();
412
[408]413    // get cluster and local pointer on parent thread descriptor
414    parent_cxy = GET_CXY( parent_thread_xp );
415    parent_ptr = (thread_t *)GET_PTR( parent_thread_xp );
[1]416
[408]417    // get relevant fields from parent thread
[428]418    func  = (void *)  hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_func    ));
419    args  = (void *)  hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_args    ));
420    base  = (intptr_t)hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->u_stack_base  ));
421    size  = (uint32_t)hal_remote_lw ( XPTR( parent_cxy , &parent_ptr->u_stack_size  ));
422    flags =           hal_remote_lw ( XPTR( parent_cxy , &parent_ptr->flags         ));
423    uzone = (reg_t *) hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->uzone_current ));
[1]424
[408]425    vpn_base = base >> CONFIG_PPM_PAGE_SHIFT;
426    vpn_size = size >> CONFIG_PPM_PAGE_SHIFT;
427
428    // get pointer on parent process in parent thread cluster
429    parent_process = (process_t *)hal_remote_lpt( XPTR( parent_cxy,
430                                                        &parent_ptr->process ) );
431 
432    // get extended pointer on parent GPT in parent thread cluster
433    parent_gpt_xp = XPTR( parent_cxy , &parent_process->vmm.gpt );
434
435    // allocate memory for child thread descriptor
436    child_ptr = thread_alloc();
437    if( child_ptr == NULL )
[23]438    {
439        printk("\n[ERROR] in %s : cannot allocate new thread\n", __FUNCTION__ );
[408]440        return -1;
[23]441    }
[14]442
[171]443    // initialize thread descriptor
[408]444    error = thread_init( child_ptr,
445                         child_process,
[14]446                         THREAD_USER,
[408]447                         func,
448                         args,
[14]449                         core_lid,
[408]450                         base,
451                         size );
[23]452    if( error )
[14]453    {
[408]454            printk("\n[ERROR] in %s : cannot initialize child thread\n", __FUNCTION__ );
455        thread_release( child_ptr );
[14]456        return EINVAL;
457    }
458
[407]459    // return child pointer
[408]460    *child_thread = child_ptr;
[1]461
[408]462    // set detached flag if required
463    if( flags & THREAD_FLAG_DETACHED ) child_ptr->flags = THREAD_FLAG_DETACHED;
[1]464
[408]465    // update uzone pointer in child thread descriptor
[428]466    child_ptr->uzone_current = (char *)((intptr_t)uzone +
467                                        (intptr_t)child_ptr - 
468                                        (intptr_t)parent_ptr );
[408]469 
470
[407]471    // allocate CPU context for child thread
[408]472        if( hal_cpu_context_alloc( child_ptr ) )
[23]473    {
[407]474            printk("\n[ERROR] in %s : cannot allocate CPU context\n", __FUNCTION__ );
[408]475        thread_release( child_ptr );
476        return -1;
[23]477    }
478
[407]479    // allocate FPU context for child thread
[408]480        if( hal_fpu_context_alloc( child_ptr ) )
[23]481    {
[407]482            printk("\n[ERROR] in %s : cannot allocate FPU context\n", __FUNCTION__ );
[408]483        thread_release( child_ptr );
484        return -1;
[23]485    }
486
[408]487    // create and initialize STACK vseg
488    vseg = vseg_alloc();
489    vseg_init( vseg,
490               VSEG_TYPE_STACK,
491               base,
492               size,
493               vpn_base,
494               vpn_size,
495               0, 0, XPTR_NULL,                         // not a file vseg
496               local_cxy );
[1]497
[408]498    // register STACK vseg in local child VSL
499    vseg_attach( &child_process->vmm , vseg );
500
501    // copy all valid STACK GPT entries   
502    vpn_t          vpn;
503    bool_t         mapped;
504    ppn_t          ppn;
505    for( vpn = vpn_base ; vpn < (vpn_base + vpn_size) ; vpn++ )
506    {
507        error = hal_gpt_pte_copy( &child_process->vmm.gpt,
508                                  parent_gpt_xp,
509                                  vpn,
510                                  true,                 // set cow
511                                  &ppn,
512                                  &mapped );
513        if( error )
514        {
515            vseg_detach( &child_process->vmm , vseg );
516            vseg_free( vseg );
517            thread_release( child_ptr );
518            printk("\n[ERROR] in %s : cannot update child GPT\n", __FUNCTION__ );
519            return -1;
520        }
521
[433]522        // increment pending forks counter for the page if mapped
[408]523        if( mapped )
524        {
525            xptr_t   page_xp  = ppm_ppn2page( ppn );
526            cxy_t    page_cxy = GET_CXY( page_xp );
527            page_t * page_ptr = (page_t *)GET_PTR( page_xp );
[433]528            hal_remote_atomic_add( XPTR( page_cxy , &page_ptr->forks ) , 1 );
[408]529
[438]530#if (DEBUG_THREAD_USER_FORK & 1)
[433]531cycle = (uint32_t)hal_get_cycles();
[438]532if( DEBUG_THREAD_USER_FORK < cycle )
[433]533printk("\n[DBG] %s : thread %x copied stack PTE to child GPT : vpn %x\n",
534__FUNCTION__, CURRENT_THREAD, vpn );
535#endif
[408]536
537        }
538    }
539
[433]540    // set COW flag for all mapped entries of STAK vseg in parent thread GPT
541    hal_gpt_set_cow( parent_gpt_xp,
542                     vpn_base,
543                     vpn_size );
[408]544 
[438]545#if DEBUG_THREAD_USER_FORK
[433]546cycle = (uint32_t)hal_get_cycles();
[438]547if( DEBUG_THREAD_USER_FORK < cycle )
[433]548printk("\n[DBG] %s : thread %x exit / child_process %x / child_thread %x / cycle %d\n",
549__FUNCTION__, CURRENT_THREAD, child_process->pid, child_ptr, cycle );
550#endif
[407]551
[1]552        return 0;
[5]553
[296]554}  // end thread_user_fork()
555
[1]556/////////////////////////////////////////////////////////
557error_t thread_kernel_create( thread_t     ** new_thread,
558                              thread_type_t   type,
[171]559                              void          * func,
560                              void          * args,
[1]561                                              lid_t           core_lid )
562{
563    error_t        error;
[14]564        thread_t     * thread;       // pointer on new thread descriptor
[1]565
[407]566    assert( ( (type == THREAD_IDLE) || (type == THREAD_RPC) || (type == THREAD_DEV) ) ,
567    __FUNCTION__ , "illegal thread type" );
[1]568
[171]569    assert( (core_lid < LOCAL_CLUSTER->cores_nr) ,
[5]570            __FUNCTION__ , "illegal core_lid" );
[1]571
[438]572#if DEBUG_THREAD_KERNEL_CREATE
[433]573uint32_t cycle = (uint32_t)hal_get_cycles();
[438]574if( DEBUG_THREAD_KERNEL_CREATE < cycle )
[433]575printk("\n[DBG] %s : thread %x enter / requested_type %s / cycle %d\n",
576__FUNCTION__, CURRENT_THREAD, thread, thread_type_str(type), cycle );
577#endif
578
[171]579    // allocate memory for new thread descriptor
[14]580    thread = thread_alloc();
581
582    if( thread == NULL ) return ENOMEM;
583
[171]584    // initialize thread descriptor
[14]585    error = thread_init( thread,
586                         &process_zero,
587                         type,
588                         func,
589                         args,
590                         core_lid,
591                         0 , 0 );  // no user stack for a kernel thread
592
[171]593    if( error ) // release allocated memory for thread descriptor
[1]594    {
[185]595        thread_release( thread );
[14]596        return EINVAL;
[1]597    }
598
[171]599    // allocate & initialize CPU context
600        hal_cpu_context_create( thread );
[14]601
[438]602#if DEBUG_THREAD_KERNEL_CREATE
[433]603cycle = (uint32_t)hal_get_cycles();
[438]604if( DEBUG_THREAD_KERNEL_CREATE < cycle )
[433]605printk("\n[DBG] %s : thread %x exit / new_thread %x / type %s / cycle %d\n",
606__FUNCTION__, CURRENT_THREAD, thread, thread_type_str(type), cycle );
607#endif
[1]608
[171]609    *new_thread = thread;
[1]610        return 0;
[5]611
[296]612} // end thread_kernel_create()
613
[438]614/////////////////////////////////////////////////
615error_t thread_idle_init( thread_t      * thread,
616                          thread_type_t   type,
617                          void          * func,
618                          void          * args,
619                                          lid_t           core_lid )
[14]620{
[407]621    assert( (type == THREAD_IDLE) , __FUNCTION__ , "illegal thread type" );
[1]622
[407]623    assert( (core_lid < LOCAL_CLUSTER->cores_nr) , __FUNCTION__ , "illegal core index" );
[14]624
625    error_t  error = thread_init( thread,
626                                  &process_zero,
627                                  type,
628                                  func,
629                                  args,
630                                  core_lid,
631                                  0 , 0 );   // no user stack for a kernel thread
632
633    // allocate & initialize CPU context if success
634    if( error == 0 ) hal_cpu_context_create( thread );
[171]635
[14]636    return error;
637
[438]638}  // end thread_idle_init()
[407]639
[1]640///////////////////////////////////////////////////////////////////////////////////////
641// TODO: check that all memory dynamically allocated during thread execution
[440]642// has been released, using a cache of mmap requests. [AG]
[1]643///////////////////////////////////////////////////////////////////////////////////////
[443]644bool_t thread_destroy( thread_t * thread )
[1]645{
[409]646    reg_t        save_sr;
[443]647    bool_t       last_thread;
[1]648
649    process_t  * process    = thread->process;
650    core_t     * core       = thread->core;
651
[438]652#if DEBUG_THREAD_DESTROY
[433]653uint32_t cycle = (uint32_t)hal_get_cycles();
[438]654if( DEBUG_THREAD_DESTROY < cycle )
[433]655printk("\n[DBG] %s : thread %x enter to destroy thread %x in process %x / cycle %d\n",
[450]656__FUNCTION__, CURRENT_THREAD, thread->trdid, process->pid, cycle );
[433]657#endif
[1]658
[443]659    assert( (thread->local_locks == 0) , __FUNCTION__ , 
660    "local lock not released for thread %x in process %x", thread->trdid, process->pid );
[171]661
[443]662    assert( (thread->remote_locks == 0) , __FUNCTION__ , 
663    "remote lock not released for thread %x in process %x", thread->trdid, process->pid );
[5]664
[1]665    // update intrumentation values
[408]666        process->vmm.pgfault_nr += thread->info.pgfault_nr;
[1]667
668    // release memory allocated for CPU context and FPU context
669        hal_cpu_context_destroy( thread );
[409]670        if ( thread->type == THREAD_USER ) hal_fpu_context_destroy( thread );
[1]671       
[428]672    // release FPU ownership if required
[409]673        hal_disable_irq( &save_sr );
[1]674        if( core->fpu_owner == thread )
675        {
676                core->fpu_owner = NULL;
677                hal_fpu_disable();
678        }
[409]679        hal_restore_irq( save_sr );
[1]680
[171]681    // remove thread from process th_tbl[]
[443]682    last_thread = process_remove_thread( thread );
[1]683       
[438]684    // update DQDT
685    dqdt_update_threads( -1 );
[23]686
[1]687    // invalidate thread descriptor
688        thread->signature = 0;
689
690    // release memory for thread descriptor
[23]691    thread_release( thread );
[1]692
[438]693#if DEBUG_THREAD_DESTROY
[433]694cycle = (uint32_t)hal_get_cycles();
[438]695if( DEBUG_THREAD_DESTROY < cycle )
[450]696printk("\n[DBG] %s : thread %x exit / destroyed thread %x in process %x / last %d / cycle %d\n",
697__FUNCTION__, CURRENT_THREAD, thread->trdid, process->pid, last_thread / cycle );
[433]698#endif
[1]699
[443]700    return last_thread;
701
[407]702}   // end thread_destroy()
703
[416]704//////////////////////////////////////////////////
705inline void thread_set_req_ack( thread_t * target,
706                                uint32_t * rsp_count )
[1]707{
[409]708    reg_t    save_sr;   // for critical section
709
[416]710    // get pointer on target thread scheduler
711    scheduler_t * sched = &target->core->scheduler;
[409]712
[416]713    // wait scheduler ready to handle a new request
714    while( sched->req_ack_pending ) asm volatile( "nop" );
[409]715   
716    // enter critical section
717    hal_disable_irq( &save_sr );
718     
[416]719    // set request in target thread scheduler
720    sched->req_ack_pending = true;
[409]721
[416]722    // set ack request in target thread "flags"
723    hal_atomic_or( &target->flags , THREAD_FLAG_REQ_ACK );
[409]724
[416]725    // set pointer on responses counter in target thread
726    target->ack_rsp_count = rsp_count;
[409]727   
728    // exit critical section
729    hal_restore_irq( save_sr );
730
[407]731    hal_fence();
[171]732
[416]733}  // thread_set_req_ack()
[409]734
[416]735/////////////////////////////////////////////////////
736inline void thread_reset_req_ack( thread_t * target )
[1]737{
[409]738    reg_t    save_sr;   // for critical section
739
740    // get pointer on target thread scheduler
[416]741    scheduler_t * sched = &target->core->scheduler;
[409]742
743    // check signal pending in scheduler
[416]744    assert( sched->req_ack_pending , __FUNCTION__ , "no pending signal" );
[409]745   
746    // enter critical section
747    hal_disable_irq( &save_sr );
748     
749    // reset signal in scheduler
[416]750    sched->req_ack_pending = false;
[409]751
752    // reset signal in thread "flags"
[416]753    hal_atomic_and( &target->flags , ~THREAD_FLAG_REQ_ACK );
[409]754
755    // reset pointer on responses counter
[416]756    target->ack_rsp_count = NULL;
[409]757   
758    // exit critical section
759    hal_restore_irq( save_sr );
760
[407]761    hal_fence();
[171]762
[416]763}  // thread_reset_req_ack()
[409]764
[1]765////////////////////////////////
766inline bool_t thread_can_yield()
767{
768    thread_t * this = CURRENT_THREAD;
[367]769    return (this->local_locks == 0) && (this->remote_locks == 0);
[1]770}
771
[367]772/////////////////////////
773void thread_check_sched()
[1]774{
[338]775    thread_t * this = CURRENT_THREAD;
[1]776
[367]777        if( (this->local_locks == 0) && 
778        (this->remote_locks == 0) &&
779        (this->flags & THREAD_FLAG_SCHED) ) 
780    {
781        this->flags &= ~THREAD_FLAG_SCHED;
[408]782        sched_yield( "delayed scheduling" );
[367]783    }
[1]784
[407]785}  // end thread_check_sched()
786
[436]787//////////////////////////////////////
788void thread_block( xptr_t   thread_xp,
789                   uint32_t cause )
[407]790{
[436]791    // get thread cluster and local pointer
792    cxy_t      cxy = GET_CXY( thread_xp );
793    thread_t * ptr = GET_PTR( thread_xp );
794
[407]795    // set blocking cause
[436]796    hal_remote_atomic_or( XPTR( cxy , &ptr->blocked ) , cause );
[407]797    hal_fence();
798
[438]799#if DEBUG_THREAD_BLOCK
[433]800uint32_t cycle = (uint32_t)hal_get_cycles();
[438]801if( DEBUG_THREAD_BLOCK < cycle )
[450]802printk("\n[DBG] %s : thread %x  in cxy %x blocked thread %x in cxy %x / cause %x / cycle %d\n",
[446]803__FUNCTION__ , CURRENT_THREAD , local_cxy , ptr , cxy , cause , cycle );
[433]804#endif
805
[407]806} // end thread_block()
807
[433]808////////////////////////////////////////////
809uint32_t thread_unblock( xptr_t   thread_xp,
[407]810                         uint32_t cause )
811{
812    // get thread cluster and local pointer
[433]813    cxy_t      cxy = GET_CXY( thread_xp );
814    thread_t * ptr = GET_PTR( thread_xp );
[407]815
816    // reset blocking cause
817    uint32_t previous = hal_remote_atomic_and( XPTR( cxy , &ptr->blocked ) , ~cause );
818    hal_fence();
819
[438]820#if DEBUG_THREAD_BLOCK
[433]821uint32_t cycle = (uint32_t)hal_get_cycles();
[438]822if( DEBUG_THREAD_BLOCK < cycle )
[450]823printk("\n[DBG] %s : thread %x  in cxy %x unblocked thread %x in cxy %x / cause %x / cycle %d\n",
[446]824__FUNCTION__ , CURRENT_THREAD , local_cxy , ptr , cxy , cause , cycle );
[433]825#endif
826
[446]827    // return a non zero value if the cause bit is modified
828    return( previous & cause );
[436]829
[446]830}  // end thread_unblock()
[407]831
[440]832//////////////////////////////////////
833void thread_delete( xptr_t  target_xp,
834                    pid_t   pid,
835                    bool_t  is_forced )
836{
837    reg_t       save_sr;                // for critical section
838    bool_t      target_join_done;       // joining thread arrived first
839    bool_t      target_attached;        // target thread attached
840    xptr_t      killer_xp;              // extended pointer on killer thread (this)
841    thread_t  * killer_ptr;             // pointer on killer thread (this)
842    cxy_t       target_cxy;             // target thread cluster     
843    thread_t  * target_ptr;             // pointer on target thread
844    xptr_t      target_flags_xp;        // extended pointer on target thread <flags>
845    uint32_t    target_flags;           // target thread <flags> value
846    xptr_t      target_join_lock_xp;    // extended pointer on target thread <join_lock>
847    xptr_t      target_join_xp_xp;      // extended pointer on target thread <join_xp>
848    trdid_t     target_trdid;           // target thread identifier
849    ltid_t      target_ltid;            // target thread local index
850    xptr_t      joining_xp;             // extended pointer on joining thread
851    thread_t  * joining_ptr;            // pointer on joining thread
852    cxy_t       joining_cxy;            // joining thread cluster
853    cxy_t       owner_cxy;              // process owner cluster
854
855
856    // get target thread pointers, identifiers, and flags
857    target_cxy      = GET_CXY( target_xp );
858    target_ptr      = GET_PTR( target_xp );
859    target_trdid    = hal_remote_lw( XPTR( target_cxy , &target_ptr->trdid ) );
860    target_ltid     = LTID_FROM_TRDID( target_trdid );
861    target_flags_xp = XPTR( target_cxy , &target_ptr->flags ); 
862    target_flags    = hal_remote_lw( target_flags_xp );
863
864    // get killer thread pointers
865    killer_ptr = CURRENT_THREAD;
866    killer_xp  = XPTR( local_cxy , killer_ptr );
867
868#if DEBUG_THREAD_DELETE
869uint32_t cycle  = (uint32_t)hal_get_cycles;
870if( DEBUG_THREAD_DELETE < cycle )
871printk("\n[DBG] %s : killer thread %x enter for target thread %x / cycle %d\n",
872__FUNCTION__, killer_ptr, target_ptr, cycle );
873#endif
874
875    // target thread cannot be the main thread, because the main thread
876    // must be deleted by the parent process sys_wait() function
877    owner_cxy = CXY_FROM_PID( pid );
878    assert( ((owner_cxy != target_cxy) || (target_ltid != 0)), __FUNCTION__,
879    "tharget thread cannot be the main thread\n" );
880
881    // block the target thread
882    thread_block( target_xp , THREAD_BLOCKED_GLOBAL );
883
884    // get attached from target flag descriptor
885    target_attached = ((hal_remote_lw( target_flags_xp ) & THREAD_FLAG_DETACHED) != 0);
886
887    // synchronize with the joining thread if the target thread is attached
888    if( target_attached && (is_forced == false) )
889    {
890        // build extended pointers on target thread join fields
891        target_join_lock_xp  = XPTR( target_cxy , &target_ptr->join_lock );
892        target_join_xp_xp    = XPTR( target_cxy , &target_ptr->join_xp );
893
894        // enter critical section
895        hal_disable_irq( &save_sr );
896
897        // take the join_lock in target thread descriptor
898        remote_spinlock_lock( target_join_lock_xp );
899
900        // get join_done from target thread descriptor
901        target_join_done = ((hal_remote_lw( target_flags_xp ) & THREAD_FLAG_JOIN_DONE) != 0);
902   
903        if( target_join_done )  // joining thread arrived first => unblock the joining thread
904        {
905            // get extended pointer on joining thread
906            joining_xp  = (xptr_t)hal_remote_lwd( target_join_xp_xp );
907            joining_ptr = GET_PTR( joining_xp );
908            joining_cxy = GET_CXY( joining_xp );
909           
910            // reset the join_done flag in target thread
911            hal_remote_atomic_and( target_flags_xp , ~THREAD_FLAG_JOIN_DONE );
912
913            // unblock the joining thread
914            thread_unblock( joining_xp , THREAD_BLOCKED_JOIN );
915
916            // release the join_lock in target thread descriptor
917            remote_spinlock_unlock( target_join_lock_xp );
918
919            // restore IRQs
920            hal_restore_irq( save_sr );
921        }
922        else                // this thread arrived first => register flags and deschedule
923        {
924            // set the kill_done flag in target thread
925            hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_KILL_DONE );
926
927            // block this thread on BLOCKED_JOIN
928            thread_block( killer_xp , THREAD_BLOCKED_JOIN );
929
930            // set extended pointer on killer thread in target thread
931            hal_remote_swd( target_join_xp_xp , killer_xp );
932
933            // release the join_lock in target thread descriptor
934            remote_spinlock_unlock( target_join_lock_xp );
935
936            // deschedule
937            sched_yield( "killer thread wait joining thread" );
938
939            // restore IRQs
940            hal_restore_irq( save_sr );
941        }
942    }  // end if attached
943
944    // set the REQ_DELETE flag in target thread descriptor
945    hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE );
946
947#if DEBUG_THREAD_DELETE
948cycle  = (uint32_t)hal_get_cycles;
949if( DEBUG_THREAD_DELETE < cycle )
950printk("\n[DBG] %s : killer thread %x exit for target thread %x / cycle %d\n",
951__FUNCTION__, killer_ptr, target_ptr, cycle );
952#endif
953
954}  // end thread_delete()
955
956
957
[14]958///////////////////////
959void thread_idle_func()
[1]960{
[446]961
962#if DEBUG_THREAD_IDLE
963uint32_t cycle;
964#endif
965
[1]966    while( 1 )
967    {
[408]968        // unmask IRQs
969        hal_enable_irq( NULL );
970
[443]971        // force core to low-power mode (optional)
972        if( CONFIG_THREAD_IDLE_MODE_SLEEP ) 
[407]973        {
[1]974
[446]975#if (DEBUG_THREAD_IDLE & 1)
976cycle  = (uint32_t)hal_get_cycles;
[438]977if( DEBUG_THREAD_IDLE < cycle )
[446]978printk("\n[DBG] %s : idle thread on core[%x,%d] goes to sleep / cycle %d\n",
979__FUNCTION__, local_cxy, CURRENT_THREAD->core->lid, cycle );
[433]980#endif
[1]981
[407]982            hal_core_sleep();
[1]983
[446]984#if (DEBUG_THREAD_IDLE & 1)
[433]985cycle  = (uint32_t)hal_get_cycles;
[438]986if( DEBUG_THREAD_IDLE < cycle )
[446]987printk("\n[DBG] %s : idle thread on core[%x,%d] wake up / cycle %d\n",
[433]988__FUNCTION__, this, local_cxy, this->core->lid, cycle );
989#endif
[407]990
991        }
[443]992
[446]993#if DEBUG_THREAD_IDLE
994sched_display( CURRENT_THREAD->core->lid );
995#endif     
996
[443]997        // search a runable thread
998        sched_yield( "IDLE" );
[418]999    }
[407]1000}  // end thread_idle()
[1]1001
[407]1002
[16]1003/////////////////////////////////////////////////
1004void thread_user_time_update( thread_t * thread )
1005{
1006    // TODO
[337]1007    // printk("\n[WARNING] function %s not implemented\n", __FUNCTION__ );
[16]1008}
[1]1009
[16]1010///////////////////////////////////////////////////
1011void thread_kernel_time_update( thread_t * thread )
1012{
1013    // TODO
[337]1014    // printk("\n[WARNING] function %s not implemented\n", __FUNCTION__ );
[16]1015}
1016
[23]1017/////////////////////////////////////
1018xptr_t thread_get_xptr( pid_t    pid,
1019                        trdid_t  trdid )
1020{
1021    cxy_t         target_cxy;          // target thread cluster identifier
1022    ltid_t        target_thread_ltid;  // target thread local index
[171]1023    thread_t    * target_thread_ptr;   // target thread local pointer
[23]1024    xptr_t        target_process_xp;   // extended pointer on target process descriptor
[171]1025    process_t   * target_process_ptr;  // local pointer on target process descriptor
[23]1026    pid_t         target_process_pid;  // target process identifier
1027    xlist_entry_t root;                // root of list of process in target cluster
1028    xptr_t        lock_xp;             // extended pointer on lock protecting  this list
[16]1029
[23]1030    // get target cluster identifier and local thread identifier
1031    target_cxy         = CXY_FROM_TRDID( trdid );
1032    target_thread_ltid = LTID_FROM_TRDID( trdid );
1033
[436]1034    // check trdid argument
1035        if( (target_thread_ltid >= CONFIG_THREAD_MAX_PER_CLUSTER) || 
1036        cluster_is_undefined( target_cxy ) )         return XPTR_NULL;
1037
[23]1038    // get root of list of process descriptors in target cluster
1039    hal_remote_memcpy( XPTR( local_cxy  , &root ),
1040                       XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ),
1041                       sizeof(xlist_entry_t) );
1042
[171]1043    // get extended pointer on lock protecting the list of processes
[23]1044    lock_xp = XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_lock );
1045
1046    // take the lock protecting the list of processes in target cluster
1047    remote_spinlock_lock( lock_xp );
1048
1049    // loop on list of process in target cluster to find the PID process
1050    xptr_t  iter;
1051    bool_t  found = false;
1052    XLIST_FOREACH( XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ) , iter )
1053    {
1054        target_process_xp  = XLIST_ELEMENT( iter , process_t , local_list );
1055        target_process_ptr = (process_t *)GET_PTR( target_process_xp );
1056        target_process_pid = hal_remote_lw( XPTR( target_cxy , &target_process_ptr->pid ) );
1057        if( target_process_pid == pid )
1058        {
1059            found = true;
1060            break;
1061        }
1062    }
1063
1064    // release the lock protecting the list of processes in target cluster
1065    remote_spinlock_unlock( lock_xp );
1066
[436]1067    // check PID found
1068    if( found == false ) return XPTR_NULL;
[23]1069
1070    // get target thread local pointer
1071    xptr_t xp = XPTR( target_cxy , &target_process_ptr->th_tbl[target_thread_ltid] );
[171]1072    target_thread_ptr = (thread_t *)hal_remote_lpt( xp );
[23]1073
[436]1074    if( target_thread_ptr == NULL )  return XPTR_NULL;
[23]1075
1076    return XPTR( target_cxy , target_thread_ptr );
[171]1077}
[23]1078
Note: See TracBrowser for help on using the repository browser.